Mixed-Layer Illite-Smectite in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the Illinois Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. X-ray Diffraction Analyses
2.3. Reichweite Ordering
2.4. Δ° 2θ
3. Results
3.1. Clay Mineralogy
3.2. Reichweite Ordering
3.3. Δ° 2θ Analyses
4. Discussion
4.1. Provenance and Detrital Components of Illinois Basin Paleosols
4.2. Origins of Authigenic I-S From Illinois Basin Strata
4.2.1. Pennsylvanian Paleosols
4.2.2. Devonian-Pennsylvanian Siliciclastic Rocks
4.3. Potential Sources of Alteration in Pennsylvanian Phyllosilicates
4.3.1. Coals and Acid Leaching
4.3.2. The Geothermal Gradient
4.3.3. Intrusive Activity
4.3.4. Hydrothermal Brines
4.4. Implications for Pennsylvanian Paleoclimate Reconstructions from the Illinois Basin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, D.; Reynolds, R. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK; New York, NY, USA, 1997. [Google Scholar]
- Reynolds, R.C. Interstratified Clay Minerals. In Crystal Structures of Clay Minerals and Their X-ray Identification; Brindley, G.W., Brown, G., Eds.; Monograph; Mineralogical Society: London, UK, 1980; pp. 249–303. [Google Scholar]
- Środoń, J. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annu. Rev. Earth Planet. Sci. 1999, 27, 19–53. [Google Scholar] [CrossRef]
- Velde, B.B.; Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- MacEwan, D.M.C.; Ruiz-Amíl, A. Interstratified Clay Minerals. In Soil Components: Vol. 2: Inorganic Components; Gieseking, J.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 265–334. [Google Scholar] [CrossRef]
- Weaver, C.E. The Distribution and Identification of Mixed-Layer Clays in Sedimentary Rocks. Am. Mineral. 1956, 41, 202–221. [Google Scholar]
- Hower, J.; Eslinger, E.V.; Hower, M.E.; Perry, E.A. Mechanism of Burial Metamorphism of Argillaceous Sediment: 1. Mineralogical and Chemical Evidence. Geol. Soc. Am. Bull. 1976, 87, 725–737. [Google Scholar] [CrossRef]
- Sudo, T. Long Spacing at about 30 Å, Confirmed from Certain Clays from Japan. Clay Miner. Bull. 1954, 2, 193–203. [Google Scholar] [CrossRef]
- Bettison-Varga, L.; Mackinnon, I.D.R. The Role of Randomly Mixed-Layered Chlorite/Smectite in the Transformation of Smectite to Chlorite. Clays Clay Miner. 1997, 45, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.C.; DiStefano, M.P.; Lahann, R.W. Randomly Interstratified Serpentine/Chlorite: Its Detection and Quantification by Powder X-ray Diffraction Methods. Clays Clay Miner. 1992, 40, 262–267. [Google Scholar] [CrossRef]
- Hillier, S. Pore-Lining Chlorites in Siliciclastic Reservoir Sandstones: Electron Microprobe, SEM and XRD Data, and Implications for Their Origin. Clay Miner. 1994, 29, 665–679. [Google Scholar] [CrossRef]
- Thompson, G.R.; Hower, J. The Mineralogy of Glauconite. Clays Clay Miner. 1975, 23, 289–300. [Google Scholar] [CrossRef]
- Buatier, M.D.; Ouyang, K.; Sanchez, J.P. Iron in Hydrothermal Clays from the Galapagos Spreading Centre Mounds: Consequences for the Clay Transition Mechanism. Clay Miner. 1993, 28, 641–655. [Google Scholar] [CrossRef]
- Merriman, R.J. Clay Minerals and Sedimentary Basin History. Eur. J. Mineral. 2005, 17, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Burst, J.F. Postdiagenetic Clay Mineral Environmental Relationships in the Gulf Coast Eocene. Clays Clay Miner. 1957, 6, 327–341. [Google Scholar] [CrossRef]
- Burst, J.F. Diagenesis of Gulf Coast Clayey Sediments and Its Possible Relation to Petroleum Migration. AAPG Bull. 1969, 53, 73–93. [Google Scholar] [CrossRef]
- Powers, M.C. Fluid-Release Mechanisms in Compacting Marine Mudrocks and Their Importance in Oil Exploration. AAPG Bull. 1967, 51, 1240–1254. [Google Scholar] [CrossRef]
- Perry, E.; Hower, J. Burial Diagenesis in Gulf Coast Pelitic Sediments. Clays Clay Miner. 1970, 18, 165–177. [Google Scholar] [CrossRef]
- Perry, E.A.; Hower, J. Late-Stage Dehydration in Deeply Buried Pelitic Sediments. AAPG Bull. 1972, 56, 2013–2021. [Google Scholar] [CrossRef]
- Boles, J.R.; Franks, S.G. Clay Diagenesis in Wilcox Sandstones of Southwest Texas; Implications of Smectite Diagenesis on Sandstone Cementation. J. Sediment. Res. 1979, 49, 55–70. [Google Scholar] [CrossRef]
- Foscolos, A.E.; Powell, T.G.; Gunther, P.R. The Use of Clay Minerals and Inorganic and Organic Geochemical Indicators for Evaluating the Degree of Diagenesis and Oil Generating Potential of Shales. Geochim. Cosmochim. Acta 1976, 40, 953–966. [Google Scholar] [CrossRef]
- Powell, T.G.; Foscolos, A.E.; Gunther, P.R.; Snowdon, L.R. Diagenesis of Organic Matter and Fine Clay Minerals: A Comparative Study. Geochim. Cosmochim. Acta 1978, 42, 1181–1197. [Google Scholar] [CrossRef]
- Hoffman, J.; Hower, J. Clay Mineral Assemblages as Low Grade Metamorphic Geothermometers: Application to the Thrust Faulted Disturbed Belt of Montana, USA; Society of Economic Paleontologists and Mineralogist: Broken Arrow, OK, USA, 1979. [Google Scholar]
- Morad, S.; Ketzer, J.M.; De Ros, L.F. Spatial and Temporal Distribution of Diagenetic Alterations in Siliclastic Rocks: Implications for Mass Transfer in Sedimentary Basins. Sedimentology 2000, 47, 95–120. [Google Scholar] [CrossRef]
- Środoń, J.; Eberl, D.D. Illite. In Micas; Bailey, S.W., Ed.; Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1984; pp. 495–544. [Google Scholar]
- Inoue, A.; Kohyama, N.; Kitagawa, R.; Watanabe, T. Chemical and Morphological Evidence for the Conversion of Smectite to Illite. Clays Clay Miner. 1987, 35, 111–120. [Google Scholar] [CrossRef]
- Eberl, D.D.; Środoń, J.; Northrop, H.R. Potassium Fixation in Smectite by Wetting and Drying. ACS Symp. Ser. 1986, 323, 296–326. [Google Scholar] [CrossRef]
- Robinson, D.; Wright, V.P. Ordered Illite-Smectite and Kaolinite-Smectite: Pedogenic Minerals in a Lower Carboniferous Paleosol Sequence, South Wales? Clay Miner. 1987, 22, 109–118. [Google Scholar] [CrossRef]
- Deconinck, J.F.; Strasser, A.; Debrabant, P. Formation of Illitic Minerals at Surface Temperatures in Purbeckian Sediments (Lower Berriasian, Swiss and French Jura). Clay Miner. 1988, 23, 91–103. [Google Scholar] [CrossRef]
- Berkgaut, V.; Singer, A.; Stahr, K. Palagonite Reconsidered: Paracrystalline Illite-Smectites From Regoliths on Basic Pyroclastics. Clays Clay Miner. 1994, 42, 582–592. [Google Scholar] [CrossRef]
- Righi, D.; Velde, B.; Meunier, A. Clay Stability in Clay-Dominated Soil Systems. Clay Miner. 1995, 30, 45–54. [Google Scholar] [CrossRef]
- Gilg, H.A.; Weber, B.; Kasbohm, J.; Frei, R. Isotope Geochemistry and Origin of Illite-Smectite and Kaolinite from the Seilitz and Kemmlitz Kaolin Deposits, Saxony, Germany. Clay Miner. 2003, 38, 95–112. [Google Scholar] [CrossRef]
- Huggett, J.M.; Cuadros, J. Low-Temperature Illitization of Smectite in the Late Eocene and Early Oligocene of the Isle of Wight (Hampshire Basin), U.K. Am. Mineral. 2005, 90, 1192–1202. [Google Scholar] [CrossRef]
- Bethke, C.M.; Altaner, S.P. Layer-By-Layer Mechanism of Smectite Illitization and Application to a New Rate Law. Clays Clay Miner. 1986, 34, 136–145. [Google Scholar] [CrossRef]
- Bethke, C.M.; Vergo, N.; Altaner, S.P. Pathways of Smectite Illitization. Clays Clay Miner. 1986, 34, 125–135. [Google Scholar] [CrossRef]
- Altaner, S.P.; Bethke, C.M. Interlayer Order in Illite/Smectite. Am. Mineral. 1988, 73, 766–774. [Google Scholar]
- Weller, J.M. Cyclical Sedimentation of the Pennsylvanian Period and Its Significance. J. Geol. 1930, 38, 97–135. [Google Scholar] [CrossRef]
- Domeier, M.; Van der Voo, R.; Torsvik, T.H. Paleomagnetism and Pangea: The Road to Reconciliation. Tectonophysics 2012, 514–517, 14–43. [Google Scholar] [CrossRef]
- Cecil, C.B.; DiMichele, W.A.; Elrick, S.D. Middle and Late Pennsylvanian Cyclothems, American Midcontinent: Ice-Age Environmental Changes and Terrestrial Biotic Dynamics. C. R. Geosci. 2014, 346, 159–168. [Google Scholar] [CrossRef]
- Pfefferkorn, H.W.; Gastaldo, R.A.; DiMichele, W.A.; Phillips, T.L. Pennsylvanian Tropical Floras from the United States as a Record of Changing Climate. In Resolving the Late Paleozoic Ice Age in Time and Space; Fielding, C.R., Frank, T.D., Isbell, J.L., Eds.; Special Paper; Geological Society of America: Boulder, CO, USA, 2008; pp. 305–316. [Google Scholar]
- Phillips, T.L.; Peppers, R.A.; Avcin, M.J.; Laughnan, P.F. Fossil Plants and Coal: Patterns of Change in Pennsylvanian Coal Swamps of the Illinois Basin. Science 1974, 184, 1367–1369. [Google Scholar] [CrossRef] [PubMed]
- Sahney, S.; Benton, M.J.; Ferry, P.A. Links between Global Taxonomic Diversity, Ecological Diversity and the Expansion of Vertebrates on Land. Biol. Lett. 2010, 6, 544–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenau, N.A.; Tabor, N.J.; Elrick, S.D.; Nelson, W.J. Polygenetic History of Paleosols in Middle–Upper Pennsylvanian Cyclothems of the Illinois Basin, USA: Part 1. Characterization of Paleosol Types and Interpretation of Pedogenic Processes. J. Sediment. Res. 2013, 83, 606–636. [Google Scholar] [CrossRef]
- Rosenau, N.A.; Tabor, N.J.; Elrick, S.D.; Nelson, W.J. Polygenetic History of Paleosols In Middle–Upper Pennsylvanian Cyclothems of the Illinois Basin, U.S.A.: Part 2. Integrating Geomorphology, Climate, and Glacioeustasy. J. Sediment. Res. 2013, 83, 637–668. [Google Scholar] [CrossRef]
- Rosenau, N.A.; Tabor, N.J. Oxygen and Hydrogen Isotope Compositions of Paleosol Phyllosilicates: Differential Burial Histories and Determination of Middle–Late Pennsylvanian Low-Latitude Terrestrial Paleotemperatures. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 392, 382–397. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, M.; Fuentes, M.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0; ERA Report Series; ECMWF: Reading, UK, 2011; p. 23. [Google Scholar]
- Rowan, E.L.; Goldhaber, M.B.; Hatch, J.R. Regional Fluid Flow as a Factor in the Thermal History of the Illinois Basin: Constraints from Fluid Inclusions and the Maturity of Pennsylvanian Coals. AAPG Bull. 2002, 86, 257–277. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Agriculture Handbook; Natural Resources Conservation Service: Washington, DC, USA; U.S. Department of Agriculture: Washington, DC, USA, 1999; Volume 436.
- Mack, G.H.; James, W.C.; Monger, H.C. Classification of Paleosols. Geol. Soc. Am. Bull. 1993, 105, 129–136. [Google Scholar] [CrossRef]
- McIntosh, J.A. An Analysis of Mixed-Layer Clay Minerals and Major Element Geochemical Trends in Middle-Upper Pennsylvanian-Aged Paleosols as a Proxy for Characterizing Basin-Wide Diagenetic Patterns and the Paleoenvironment of the Illinois Basin, USA. Master’s Thesis, Southern Methodist University, Dallas, TX, USA, 2018. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; University of Wisconsin—Madison Libraries Parallel Press: Madison, WI, USA, 2005. [Google Scholar]
- Tabor, N.J.; Montañez, I.P. Oxygen and Hydrogen Isotope Compositions of Permian Pedogenic Phyllosilicates: Development of Modern Surface Domain Arrays and Implications for Paleotemperature Reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 223, 127–146. [Google Scholar] [CrossRef]
- Kinter, E.B.; Diamond, S. A New Method for Preparation and Treatment of Oriented-Aggregate Specimens of Soil Clays for x-Ray Diffraction Analysis. Soil Sci. 1956, 81, 111–120. [Google Scholar] [CrossRef]
- Brindley, G.W. Ethylene Glycol and Glycerol Complexes of Smectites and Vermiculites. Clay Miner. 1966, 6, 237–259. [Google Scholar] [CrossRef]
- Mosser-Ruck, R.; Devineau, K.; Charpentier, D.; Cathelineau, M. Effects of Ethylene Glycol Saturation Protocols on Xrd Patterns: A Critical Review and Discussion. Clays Clay Miner. 2005, 53, 631–638. [Google Scholar] [CrossRef]
- Jadgozinski, H. Eindimensionale Fehlordnung in Kristallen Und Ihr Einfluss Auf Die Röntgeninterferenzen. I. Berechnung Des Fehlordnungsgrades Aus der Röntgenintensitäten. Acta Crystallogr. 1949, 2, 201–207. [Google Scholar] [CrossRef]
- Środoń, J. Precise Identification of Illite/Smectite Interstratifications by X-ray Powder Diffraction. Clays Clay Miner. 1980, 28, 401–411. [Google Scholar] [CrossRef]
- Brindley, G.W.; Brown, G. Crystal Structures of Clay Minerals and Their X-ray Identification; The Mineralogical Society of Great Britain and Ireland: London, UK, 1982. [Google Scholar]
- Kissock, J.K.; Finzel, E.S.; Malone, D.H.; Craddock, J.P. Lower–Middle Pennsylvanian Strata in the North American Midcontinent Record the Interplay between Erosional Unroofing of the Appalachians and Eustatic Sea-Level Rise. Geosphere 2018, 14, 141–161. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, K.A.; Campbell, I.H.; Palin, J.M.; Allen, C.M.; Bock, B. Evidence for Multiple Recycling in Neoproterozoic through Pennsylvanian Sedimentary Rocks of the Central Appalachian Basin. J. Geol. 2004, 112, 261–276. [Google Scholar] [CrossRef]
- Becker, T.P.; Thomas, W.A.; Samson, S.D.; Gehrels, G.E. Detrital Zircon Evidence of Laurentian Crustal Dominance in the Lower Pennsylvanian Deposits of the Alleghanian Clastic Wedge in Eastern North America. Sediment. Geol. 2005, 182, 59–86. [Google Scholar] [CrossRef]
- Becker, T.P.; Thomas, W.A.; Gehrels, G.E. Linking Late Paleozoic Sedimentary Provenance in the Appalachian Basin to the History of Alleghanian Deformation. Am. J. Sci. 2006, 306, 777–798. [Google Scholar] [CrossRef]
- Potter, P.E.; Siever, R. Sources of Basal Pennsylvanian Sediments in the Eastern Interior Basin 1. Cross-Bedding. J. Geol. 1956, 64, 225–244. [Google Scholar] [CrossRef]
- Archer, A.W.; Greb, S.F. An Amazon-Scale Drainage System in the Early Pennsylvanian of Central North America. J. Geol. 1995, 103, 611–627. [Google Scholar] [CrossRef]
- Willman, H.B.; Atherton, E.; Buschbach, T.C.; Collinson, C.W.; Frye, J.C.; Hopkins, M.E.; Lineback, J.A.; Simon, J.A. Handbook of Illinois Stratigraphy; Illinois State Geological Survey: Champaign, IL, USA, 1975. [Google Scholar]
- Gharrabi, M.; Velde, B. Clay Mineral Evolution in the Illinois Basin and Its Causes. Clay Miner. 1995, 30, 353–364. [Google Scholar] [CrossRef]
- Grim, R.E.; Allen, V.T. Petrology of the Pennsylvanian Underclays of Illinois. GSA Bull. 1938, 49, 1485–1514. [Google Scholar] [CrossRef]
- Schultz, L.G. Petrology of Underclays. GSA Bull. 1958, 69, 363–402. [Google Scholar] [CrossRef]
- Parham, W.E. Lateral Clay Mineral Variations in Certain Pennsylvanian Underclays. Clays Clay Miner. 1963, 12, 581–602. [Google Scholar] [CrossRef]
- Parham, W.E. Lateral Variations of Clay Mineral Assemblages in Modern and Ancient Sediments. In Proceedings of the International Clay Conference, Jerusalem, Israel, 20–24 June 1966; Volume 1, pp. 135–145. [Google Scholar]
- Rimmer, S.; Eberl, D.D. Origin of an Underclay as Revealed by Vertical Variations in Mineralogy and Chemistry. Clays Clay Miner. 1982, 30, 422–430. [Google Scholar] [CrossRef]
- Wilson, M.D.; Pittman, E.D. Authigenic Clays in Sandstones; Recognition and Influence on Reservoir Properties and Paleoenvironmental Analysis. J. Sediment. Res. 1977, 47, 3–31. [Google Scholar] [CrossRef]
- Yeh, H.-W. D/H Ratios and Late-Stage Dehydration of Shales during Burial. Geochim. Cosmochim. Acta 1980, 44, 341–352. [Google Scholar] [CrossRef]
- Clauer, N.; Środoń, J.; Francu, J.; Šucha, V. K-Ar Dating of Illite Fundamental Particles Separated from Illite-Smectite. Clay Miner. 1997, 32, 181–196. [Google Scholar] [CrossRef]
- Southard, A.R.; Miller, R.W. Parent Material-Clay Relations in Some Northern Utah Soils. Soil Sci. Soc. Am. J. 1966, 30, 97–101. [Google Scholar] [CrossRef]
- Huang, W.-L.; Bishop, A.M.; Brown, R.W. The Effect of Fluid/Rock Ratio on Feldspar Dissolution and Illite Formation under Reservoir Conditions. Clay Miner. 1986, 21, 585–601. [Google Scholar] [CrossRef]
- Sheldon, N.D.; Tabor, N.J. Quantitative Paleoenvironmental and Paleoclimatic Reconstruction Using Paleosols. Earth Sci. Rev. 2009, 95, 1–52. [Google Scholar] [CrossRef]
- Tabor, N.J.; Myers, T.S. Paleosols as Indicators of Paleoenvironment and Paleoclimate. Annu. Rev. Earth Planet. Sci. 2015, 43, 333–361. [Google Scholar] [CrossRef]
- Nettleton, W.D.; Nelson, R.E.; Flach, K.W. Formation of Mica in Surface Horizons of Dryland Soils. Soil Sci. Soc. Am. J. 1973, 37, 473–478. [Google Scholar] [CrossRef]
- Ross, G.J.; Phillips, P.A.; Culley, J.L.R. Transformation of Vermiculite to Pedogenic Mica by Fixation of Potassium and Ammonium in a Six-Year Field Manure Application Experiment. Can. J. Soil Sci. 2011. [Google Scholar] [CrossRef] [Green Version]
- Fanning, D.S.; Keramidas, V.Z.; El-Desoky, M.A. Micas. In Minerals in Soil Environments; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1989; pp. 551–634. [Google Scholar] [CrossRef]
- Hunziker, J.C.; Frey, M.; Clauer, N.; Dallmeyer, R.D.; Friedrichsen, H.; Flehmig, W.; Hochstrasser, K.; Roggwiler, P.; Schwander, H. The Evolution of Illite to Muscovite: Mineralogical and Isotopic Data from the Glarus Alps, Switzerland. Contr. Mineral. Petrol. 1986, 92, 157–180. [Google Scholar] [CrossRef]
- Kübler, B. Anchimetamorphisme et Schistosite. Bull. Cent. Rech. Explor. Product. 1967, 1, 259–278. [Google Scholar]
- Kübler, B.; Jaboyedoff, M. Illite Crystallinity. Comptes Rendus de l’Académie des Sciences. Earth Planet. Sci. 2000, 331, 75–89. [Google Scholar] [CrossRef]
- Kolata, D.R.; Nelson, W.J. Basin-Forming Mechanisms of the Illinois Basin. In Interior Cratonic Basins; American Association of Petroleum Geologists: Tulsa, OK, USA, 1990; pp. 287–292. [Google Scholar]
- Kolata, D.R.; Nelson, J.W. Tectonic History of the Illinois Basin; American Association of Petroleum Geologists: Tulsa, OK, USA, 1990. [Google Scholar]
- Montañez, I.P.; McElwain, J.C.; Poulsen, C.J.; White, J.D.; DiMichele, W.A.; Wilson, J.P.; Griggs, G.; Hren, M.T. Climate, PCO2 and Terrestrial Carbon Cycle Linkages during Late Palaeozoic Glacial-Interglacial Cycles. Nat. Geosci. 2016, 9, 824–828. [Google Scholar] [CrossRef]
- Pollastro, R.M. Considerations and Applications of the Illite/Smectite Geothermometer in Hydrocarbon-Bearing Rocks of Miocene to Mississippian Age. Clays Clay Miner. 1993, 41, 119–133. [Google Scholar] [CrossRef]
- McCubbin, D.G.; Patton, J.W. Burial Diagenesis of Illite/Smectite, a Kinetic Model: Abstract. AAPG Bull. 1981, 65, 956. [Google Scholar]
- Pytte, A.M.; Reynolds, R.C. The Thermal Transformation of Smectite to Illite. In Thermal History of Sedimentary Basins; Naeser, N.D., McCulloh, T.H., Eds.; Springer: New York, NY, USA, 1989; pp. 133–140. [Google Scholar]
- Velde, B.; Vasseur, G. Estimation of the Diagenetic Smectite to Illite Transformation in Time-Temperature Space. Am. Mineral. 1992, 77, 967–976. [Google Scholar]
- Altschaeffl, A.G.; Harrison, P.W. Estimation of a Minimum Depth of Burial for a Pensylvanian Underclay. J. Sediment. Res. 1959, 29, 178–185. [Google Scholar] [CrossRef]
- Damberger, H.H. Coalification Pattern of the Illinois Basin. Econ. Geol. 1971, 66, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Cobb, J.C. Geology and Geochemistry of Sphalerite in Coal; Illinois State Geological Survey: Champaign, IL, USA, 1981; p. 204. [Google Scholar]
- Cluff, R.M.; Byrnes, A.P. Lopatin Analysis of Maturation and Petroleum Generation in the Illinois Basin; American Association of Petroleum Geologists: Tulsa, OK, USA, 1991. [Google Scholar]
- Moore, D.M. Diagenesis of the Purington Shale in the Illinois Basin and Implications for the Diagenetic State of Sedimentary Rocks of Shallow Paleozoic Basins. J. Geol. 2000, 108, 553–567. [Google Scholar] [CrossRef]
- Moore, D.M. Mineralogy and Diagenesis of the Pennsylvanian Browning Sandstone on the Western Shelf of the Illinois Basin. Ill. State Geol. Surv. Circ. 2003, 561, 20. [Google Scholar]
- Bjorkum, P.A.; Gjelsvik, N. An Isochemical Model for Formation of Authigenic Kaolinite, K-Feldspar and Illite in Sediments. J. Sediment. Res. 1988, 58, 506–511. [Google Scholar] [CrossRef]
- Huddle, J.W.; Patterson, S.H. Origin of Pennsylvanian Underclay and Related Seat Rocks. Geol. Soc. Am. Bull. 1961, 72, 1643–1660. [Google Scholar] [CrossRef]
- Small, J.S. Morphological Changes Associated with the Smectite to Illite Reaction: An Experimental Investigation of the Effect of Organic Acid Anions. Clay Miner. 1994, 29, 539–554. [Google Scholar] [CrossRef]
- Hover, V.C.; Peacor, D.R.; Walter, L.M. Relationship between Organic Matter and Authigenic Illite Smectite in Devonian Black Shales, Michigan and Illinois Basins, USA; Society of Economic Paleontologists and Mineralogist: Broken Arrow, OK, USA, 1996. [Google Scholar]
- Frey, M. Very Low-Grade Metamorphism of Clastic Sedimentary Rocks. In Low Temperature Metamorphism; Frey, M., Ed.; Blackie & Son: Glasgow, UK, 1987; pp. 9–58. [Google Scholar]
- Mariño, J.; Marshak, S.; Masterlerz, M. Evidence for Stratigraphically Controlled Paleogeotherms in the Illinois Basin Based on Vitrinite-Reflectance Analysis: Implications for Interpreting Coal-Rank Anomalies. AAPG Bull. 2015, 99, 1803–1825. [Google Scholar] [CrossRef]
- Bjørlykke, K. Clay Mineral Diagenesis in Sedimentary Basins — a Key to the Prediction of Rock Properties. Examples from the North Sea Basin. Clay Miner. 1998, 33, 15–34. [Google Scholar] [CrossRef]
- Potter, P.E.; Glass, H.D. Petrology and Sedimentation of the Pennsylvanian Sediments in Southern Illinois: A Vertical Profile; Illinois State Geological Survey Report of Investigations 204; Illinois State Geological Survey: Urbana, IL, USA, 1958; p. 72. [Google Scholar]
- Brannon, J.C.; Podosek, F.A.; McLimans, R.K. Alleghenian Age of the Upper Mississippi Valley Zinc–Lead Deposit Determined by Rb–Sr Dating of Sphalerite. Nature 1992, 356, 509–511. [Google Scholar] [CrossRef]
- Chesley, J.T.; Halliday, A.N.; Kyser, T.K.; Spry, P.G. Direct Dating of Mississippi Valley-Type Mineralization; Use of Sm-Nd in Fluorite. Econ. Geol. 1994, 89, 1192–1199. [Google Scholar] [CrossRef]
- Smart, G.; Clayton, T. The Progressive Illitization of Interstratified Illite-Smectite from Carboniferous Sediments of Northern England and Its Relationship to Organic Maturity Indicators. Clay Miner. 1985, 20, 455–466. [Google Scholar] [CrossRef]
- Hower, J.C.; Fiene, F.L.; Wild, G.D.; Helfrich, C.T. Coal Metamorphism in the Upper Portion of the Pennsylvanian Sturgis Formation in Western Kentucky. GSA Bull. 1983, 94, 1475–1481. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A. Isotopically Exchangeable Organic Hydrogen in Coal Relates to Thermal Maturity and Maceral Composition. Org. Geochem. 2002, 33, 921–931. [Google Scholar] [CrossRef]
- Schimmelmann, A.; Mastalerz, M.; Gao, L.; Sauer, P.E.; Topalov, K. Dike Intrusions into Bituminous Coal, Illinois Basin: H, C, N, O Isotopic Responses to Rapid and Brief Heating. Geochim. Cosmochim. Acta 2009, 73, 6264–6281. [Google Scholar] [CrossRef]
- Cao, X.; Chappell, M.A.; Schimmelmann, A.; Mastalerz, M.; Li, Y.; Hu, W.; Mao, J. Chemical Structure Changes in Kerogen from Bituminous Coal in Response to Dike Intrusions as Investigated by Advanced Solid-State 13C NMR Spectroscopy. Int. J. Coal Geol. 2013, 108, 53–64. [Google Scholar] [CrossRef]
- Quaderer, A.; Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Bish, D.L.; Wintsch, R.P. Dike-Induced Thermal Alteration of the Springfield Coal Member (Pennsylvanian) and Adjacent Clastic Rocks, Illinois Basin, USA. Int. J. Coal Geol. 2016, 166, 108–117. [Google Scholar] [CrossRef]
- Bethke, C.M. Hydrologic Constraints on the Genesis of the Upper Mississippi Valley Mineral District from Illinois Basin Brines. Econ. Geol. 1986, 81, 233–249. [Google Scholar] [CrossRef]
- Bethke, C.M.; Marshak, S. Brine Migrations across North America-The Plate Tectonics of Groundwater. Annu. Rev. Earth Planet. Sci. 1990, 18, 287–315. [Google Scholar] [CrossRef]
- Garven, G.; Ge, S.; Pearson, M.A.; Sverjensky, D.A. Genesis of Stratabound Ore Deposits in the Midcontinent Basins of North America; 1, The Role of Regional Groundwater Flow. Am. J. Sci. 1993, 293, 497–568. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Goldhaber, M.B.; Rowan, E.L. The Potential Role of Magmatic Gases in the Genesis of Illinois-Kentucky Fluorspar Deposits; Implications from Chemical Reaction Path Modeling. Econ. Geol. 1995, 90, 999–1011. [Google Scholar] [CrossRef]
- Odom, I.E.; Willand, T.N.; Lassin, R.J. Paragenesis of Diagenetic Minerals in the St. Peter Sandstone (Ordovician), Wisconsin and Illinois; Society of Economic Paleontologists and Mineralogist: Broken Arrow, OK, USA, 1979; pp. 425–443. [Google Scholar]
- Fishman, N.S. Basin-Wide Fluid Movement in a Cambrian Paleoaquifer: Evidence from the MT. Simon Sandstone, Illinois and Indiana; Society of Economic Paleontologists and Mineralogist: Broken Arrow, OK, USA, 1997. [Google Scholar]
- Pitman, J.K.; Goldhaber, M.B.; Spöetl, C. Regional Diagenetic Patterns in the St. Peter Sandstone: Implications for Brine Migration in the Illinois Basin; U.S. Government Printing Office: Washington, DC, USA, 1997.
- McLimans, R.K. Geological, Fluid Inclusion, and Stable Isotope Studies of the Upper Mississippi Valley Zinc-Lead District, Southwest Wisconsin. Ph.D. Thesis, Pennsylvanian State University, State College, PA, USA, 1977. [Google Scholar]
- Richardson, C.K.; Pinckney, D.M. The Chemical and Thermal Evolution of the Fluids in the Cave-in-Rock Fluorspar District, Illinois; Mineralogy, Paragenesis, and Fluid Inclusions. Econ. Geol. 1984, 79, 1833–1856. [Google Scholar] [CrossRef]
- Richardson, C.K.; Rye, R.O.; Wasserman, M.D. The Chemical and Thermal Evolution of the Fluids in the Cave-in-Rock Fluorspar District, Illinois; Stable Isotope Systematics at the Deardorff Mine. Econ. Geol. 1988, 83, 765–783. [Google Scholar] [CrossRef]
- Duffin, M.E.; Lee, M.; Klein, G.D.; Hay, R.L. Potassic Diagenesis of Cambrian Sandstones and Precambrian Granitic Basement in UPH-3 Deep Hole, Upper Mississippi Valley, U.S.A. J. Sediment. Res. 1989, 59, 848–861. [Google Scholar] [CrossRef]
- Pitman, J.K.; Spötl, C. Origin and Timing of Carbonate Cements in the St. Peter Sandstone, Illinois Basin: Evidence for a Genetic Link to Mississippi Valley-Type Mineralization; Society of Economic Paleontologists and Mineralogist: Broken Arrow, OK, USA, 1996. [Google Scholar]
- Chen, Z.; Riciputi, L.R.; Mora, C.I.; Fishman, N.S. Regional Fluid Migration in the Illinois Basin: Evidence from in Situ Oxygen Isotope Analysis of Authigenic K-Feldspar and Quartz from the Mount Simon Sandstone. Geology 2001, 29, 1067–1070. [Google Scholar] [CrossRef]
- Sutton, S.J.; Maynard, J.B.; Sutton, S. Basement Unconformity Control on Alteration, St. Francois Mountains, SE Missouri. J. Geol. 1996, 104, 55–70. [Google Scholar] [CrossRef]
- Stueber, A.M.; Walter, L.M. Origin and Chemical Evolution of Formation Waters from Silurian-Devonian Strata in the Illinois Basin, USA. Geochim. Cosmochim. Acta 1991, 55, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Hay, R.L.; Lee, M.; Kolata, D.R.; Matthews, J.C.; Morton, J.P. Episodic Potassic Diagenesis of Ordovician Tuffs in the Mississippi Valley Area. Geology 1988, 16, 743–747. [Google Scholar] [CrossRef]
- Grathoff, G.H.; Moore, D.M. Illite Polytype Quantification Using Wildfire© Calculated X-ray Diffraction Patterns. Clays Clay Miner. 1996, 44, 835–842. [Google Scholar] [CrossRef]
- Hyodo, A.; Kozdon, R.; Pollington, A.D.; Valley, J.W. Evolution of Quartz Cementation and Burial History of the Eau Claire Formation Based on in Situ Oxygen Isotope Analysis of Quartz Overgrowths. Chem. Geol. 2014, 384, 168–180. [Google Scholar] [CrossRef]
- Denny, A.C.; Kozdon, R.; Kitajima, K.; Valley, J.W. Isotopically Zoned Carbonate Cements in Early Paleozoic Sandstones of the Illinois Basin: Δ18O and Δ13C Records of Burial and Fluid Flow. Sediment. Geol. 2017, 361, 93–110. [Google Scholar] [CrossRef]
- Grathoff, G.H.; Moore, D.M.; Hay, R.L.; Wemmer, K. Origin of Illite in the Lower Paleozoic of the Illinois Basin: Evidence for Brine Migrations. GSA Bull. 2001, 113, 1092–1104. [Google Scholar] [CrossRef]
- Whelan, J.F.; Cobb, J.C.; Rye, R.O. Stable Isotope Geochemistry of Sphalerite and Other Mineral Matter in Coal Beds of the Illinois and Forest City Basins. Econ. Geol. 1988, 83, 990–1007. [Google Scholar] [CrossRef]
- Hower, J.C.; Gayer, R.A. Mechanisms of Coal Metamorphism: Case Studies from Paleozoic Coalfields. Int. J. Coal Geol. 2002, 50, 215–245. [Google Scholar] [CrossRef]
- Treworgy, J.D. Structural Features in Illinois—A Compendium; Illinois State Geological Survey: Champaign, IL, USA, 1981; Circular 519; p. 22. [Google Scholar]
- Cerling, T.E. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett. 1984, 71, 229–240. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Kharaka, Y.K. Hydrogen and Oxygen Isotope Exchange Reactions between Clay Minerals and Water. Geochim. Cosmochim. Acta 1976, 40, 241–246. [Google Scholar] [CrossRef]
- Yeh, H.-W.; Savin, S.M. Mechanism of Burial Metamorphism of Argillaceous Sediments: 3. O-Isotope Evidence. GSA Bull. 1977, 88, 1321–1330. [Google Scholar] [CrossRef]
- Sheppard, S.M.F.; Gilg, H.A. Stable Isotope Geochemistry of Clay Minerals. Clay Miner. 1996, 31, 1–24. [Google Scholar] [CrossRef]
Core | Paleosol (P)# | Sample ID | North American Series | Formation | Paleosol Type (Pedotype) a | Depth in Core (m) |
---|---|---|---|---|---|---|
ADM b | 1 | 6 | Missourian | Bond | calcic Vertisol (G) | 71.6 |
2 | 18 | Missourian | Bond | calcic Vertisol (G) | 79.7 | |
3 | 25 | Missourian | Bond | gleyed vertic Calcisol (E) | 95.2 | |
3 | 22 | Missourian | Bond | gleyed vertic Calcisol (E) | 96.4 | |
3 | 21 | Missourian | Bond | gleyed vertic Calcisol (E) | 96.7 | |
4 | 32 | Missourian | Patoka | gleyed calcic Vertisol (D) | 112.7 | |
4 | 29 | Missourian | Patoka | gleyed calcic Vertisol (D) | 113.3 | |
4 | 27 | Missourian | Patoka | gleyed calcic Vertisol (D) | 113.9 | |
5 | 35 | Missourian | Patoka | gleyed Vertisol (C) | 129.8 | |
5 | 33 | Missourian | Patoka | gleyed Vertisol (C) | 130.2 | |
VERM c | 1 | 2 | Missourian | Bond | gleyed calcic Vertisol (D) | 30.1 |
FC d | 6 | Missourian | Bond | N/A | 34.9 | |
2 | 15 | Missourian | Bond | gleyed calcic Vertisol (D) | 35.2 | |
2 | 12 | Missourian | Bond | gleyed calcic Vertisol (D) | 35.9 | |
2 | 7 | Missourian | Bond | gleyed calcic Vertisol (D) | 37.1 | |
3 | 22 | Missourian | Patoka | calcic Vertisol (G) | 42 | |
4 | 31 | Missourian | Patoka | gleyed calcic Vertisol (D) | 48.4 | |
4 | 26 | Missourian | Patoka | gleyed calcic Vertisol (D) | 50.2 | |
4 | 23 | Missourian | Patoka | gleyed calcic Vertisol (D) | 52.9 | |
5 | 41 | Missourian | Patoka | gleyed calcic Vertisol (D) | 57.2 | |
5 | 35 | Missourian | Patoka | gleyed calcic Vertisol (D) | 60.8 | |
5 | 33 | Missourian | Patoka | gleyed calcic Vertisol (D) | 61.4 | |
6 | 51 | Desmoinesian | Carbondale | gleyed calcic Vertisol (D) | 96.7 | |
6 | 49 | Desmoinesian | Carbondale | gleyed calcic Vertisol (D) | 97.2 | |
6 | 46 | Desmoinesian | Carbondale | gleyed calcic Vertisol (D) | 97.8 | |
HAM e | 1 | 4 | Missourian | Bond | gleyed calcic Vertisol (D) | 20.2 |
1 | 2 | Missourian | Bond | gleyed calcic Vertisol (D) | 20.5 | |
3 | 7 | Missourian | Bond | gleyed Protosol (B) | 41.6 | |
4 | 11 | Missourian | Patoka | gleyed Vertisol (C) | 73 | |
4 | 9 | Missourian | Patoka | gleyed Vertisol (C) | 73.6 | |
6 | 16 | Missourian | Patoka | gleyed Protosol (B) | 138.1 | |
7 | 19 | Desmoinesian | Shelburn | gleyed Protosol (B) | 171.9 | |
10 | 27 | Desmoinesian | Shelburn | gleyed Protosol (B) | 196 | |
12 | 33 | Desmoinesian | Shelburn | gleyed Vertisol (C) | 202.2 | |
13 | 38 | Desmoinesian | Carbondale | gleyed Protosol (B) | 220.1 | |
13 | 36 | Desmoinesian | Carbondale | gleyed Protosol (B) | 220.4 | |
14 | 43 | Desmoinesian | Carbondale | gleyed calcic Vertisol (D) | 244.7 | |
14 | 40 | Desmoinesian | Carbondale | gleyed calcic Vertisol (D) | 245.7 | |
CHA f | 1 | 3 | Virgilian | Mattoon | gleyed calcic Vertisol (D) | 60 |
2 | 7 | Virgilian | Mattoon | calcic Vertisol (G) | 70.2 | |
3 | 10 | Virgilian | Mattoon | gleyed Vertisol (C) | 80.6 | |
4 | 17 | Missourian | Mattoon | gleyed Protosol (B) | 147.8 | |
5 | 21 | Missourian | Mattoon | gleyed vertic Calcisol (E) | 158.7 | |
6 | 26 | Missourian | Bond | gleyed calcic Vertisol (D) | 160.6 | |
7 | 30 | Missourian | Bond | gleyed Protosol (B) | 171.8 | |
8 | 40 | Missourian | Bond | gleyed calcic Vertisol (D) | 203.1 | |
8 | 37 | Missourian | Bond | gleyed calcic Vertisol (D) | 204.1 | |
9 | 45 | Missourian | Bond | gleyed Protosol (B) | 214.5 | |
10 | 49 | Missourian | Bond | gleyed vertic Calcisol (E) | 215.3 | |
11 | 55 | Missourian | Patoka | gleyed Vertisol (C) | 224.9 | |
11 | 51 | Missourian | Patoka | gleyed Vertisol (C) | 225.6 | |
12 | 57 | Missourian | Patoka | gleyed calcic Vertisol (D) | 237.5 | |
13 | 64 | Desmoinesian | Patoka | gleyed calcic Vertisol (D) | 258.6 | |
13 | 62 | Desmoinesian | Patoka | gleyed calcic Vertisol (D) | 259.2 | |
13 | 60 | Desmoinesian | Patoka | gleyed calcic Vertisol (D) | 259.8 | |
14 | 73 | Desmoinesian | Shelburn | gleyed Vertisol (C) | 264.4 | |
15 | 82 | Desmoinesian | Shelburn | gleyed Protosol (B) | 271.5 | |
16 | 86 | Desmoinesian | Shelburn | gleyed Vertisol (C) | 295.2 | |
16 | 83 | Desmoinesian | Shelburn | gleyed Vertisol (C) | 295.9 | |
17a | 98 | Desmoinesian | Carbondale | gleyed calcic Vertisol (D) | 326.1 | |
17b | 93 | Desmoinesian | Carbondale | gleyed Vertisol (C) | 327.5 | |
17b | 90 | Desmoinesian | Carbondale | gleyed Vertisol (C) | 328.4 | |
18 | 100 | Desmoinesian | Carbondale | gleyed Vertisol (C) | 334.5 | |
19 | 102 | Desmoinesian | Carbondale | gleyed calcic Vertisol (D) | 336.7 |
Core | Paleosol (P)# | Sample ID | I-S (002/003) (° 2θ) a | I-S (001/002) (° 2θ) a | Δ° 2θ b | % Illite in I-S (±3%) | Reichweite Order |
---|---|---|---|---|---|---|---|
ADM | 1 | 6 | 16.72 | 9.56 | 7.16 | 63% | 1 |
2 | 18 | 16.32 | 9.64 | 6.68 | 53% | 0 | |
3 | 25 | 16.04 | 9.84 | 6.2 | 42% | 0 | |
3 | 22 | 16.6 | 9.48 | 7.12 | 63% | 1 | |
3 | 21 | 16.84 | 9.52 | 7.32 | 68% | 1 | |
4 | 32 | 16.9 | 9.3 | 7.6 | 74% | 1 | |
4 | 29 | 16.68 | 9.36 | 7.32 | 68% | 1 | |
4 | 27 | 16.84 | 9.56 | 7.28 | 67% | 1 | |
5 | 35 | 16.64 | 10.04 | 6.6 | 52% | 1 | |
5 | 33 | 16.92 | 9.8 | 7.12 | 63% | 1 | |
VERM | 1 | 2 | 16.76 | 9.32 | 7.44 | 71% | 1 |
FC c | 6 | N/A | N/A | N/A | N/A | N/A d | |
2 | 15 | 16.6 | 9.4 | 7.2 | 65% | 1 | |
2 | 12 | 16.8 | 9.53 | 7.27 | 67% | 1 | |
2 | 7 | 17.04 | 9.44 | 7.6 | 74% | 1 | |
3 | 22 | 16.72 | 9.56 | 7.16 | 64% | 1 | |
4 | 31 | N/A | N/A | N/A | N/A | N/A | |
4 | 26 | 17.04 | 9.56 | 7.48 | 72% | 1 | |
4 | 23 | 16.92 | 9.52 | 7.4 | 70% | 1 | |
5 | 41 | 17.04 | 9.48 | 7.56 | 74% | 1 | |
5 | 35 | 17.08 | 9.12 | 7.96 | 80% | 1 | |
5 | 33 | 17 | 9.44 | 7.56 | 74% | 1 | |
6 | 51 | 16.8 | 9.4 | 7.4 | 70% | 1 | |
6 | 49 | 16.72 | 9.56 | 7.16 | 64% | 1 | |
6 | 46 | 17.12 | 9.56 | 7.56 | 74% | 1 | |
HAM | 1 | 4 | 16.88 | 9.48 | 7.4 | 70% | 1 |
1 | 2 | 16.8 | 9.32 | 7.48 | 72% | 1 | |
3 | 7 | N/A | N/A | N/A | N/A | N/A | |
4 | 11 | N/A | N/A | N/A | N/A | N/A | |
4 | 9 | 16.76 | 9.36 | 7.4 | 70% | 1 | |
6 | 16 | 17.04 | 9.24 | 7.8 | 78% | 1 | |
7 | 19 | N/A | N/A | N/A | N/A | N/A | |
10 | 27 | N/A | N/A | N/A | N/A | N/A | |
12 | 33 | 17.12 | 9.28 | 7.84 | 79% | 1 | |
13 | 38 | N/A | N/A | N/A | N/A | N/A | |
13 | 36 | 17.08 | 9.45 | 7.63 | 75% | 1 | |
14 | 43 | 17 | 9.2 | 7.8 | 78% | 1 | |
14 | 40 | 17.16 | 9.16 | 8 | 82% | 1 | |
CHA | 1 | 3 | 16.8 | 9.62 | 7.18 | 65% | 1 |
2 | 7 | 16.96 | 9.64 | 7.32 | 68% | 1 | |
3 | 10 | 16.64 | 9.62 | 7.02 | 60% | 1 | |
4 | 17 | 16.98 | 9.64 | 7.34 | 69% | 1 | |
5 | 21 | 16.56 | 9.64 | 6.92 | 58% | 0 | |
6 | 26 | 16.68 | 9.4 | 7.28 | 67% | 0 | |
7 | 30 | 16.58 | 9.64 | 6.94 | 59% | 0 | |
8 | 40 | 17.16 | 9.52 | 7.64 | 75% | 1 | |
8 | 37 | 16.96 | 9.44 | 7.52 | 73% | 1 | |
9 | 45 | 16.72 | 9.28 | 7.44 | 71% | 1 | |
10 | 49 | 17 | 9.4 | 7.6 | 74% | 1 | |
11 | 55 | 16.72 | 9.52 | 7.2 | 65% | 0 | |
11 | 51 | N/A | N/A | N/A | N/A | N/A | |
12 | 57 | 17.12 | 9.48 | 7.64 | 75% | 1 | |
13 | 64 | 16.88 | 9.44 | 7.44 | 71% | 1 | |
13 | 62 | 16.68 | 9.6 | 7.08 | 62% | 1 | |
13 | 60 | 16.92 | 9.52 | 7.4 | 70% | 1 | |
14 | 73 | 17 | 9.6 | 7.4 | 70% | 0 | |
15 | 82 | N/A | N/A | N/A | N/A | N/A | |
16 | 86 | 16.84 | 9.56 | 7.28 | 67% | 1 | |
16 | 83 | 17 | 9.24 | 7.76 | 78% | 1 | |
17a | 98 | 16.84 | 9.52 | 7.32 | 68% | 1 | |
17b | 93 | 16.92 | 9.44 | 7.48 | 72% | 1 | |
17b | 90 | N/A | N/A | N/A | N/A | N/A | |
18 | 100 | N/A | N/A | N/A | N/A | N/A | |
19 | 102 | 16.92 | 9.28 | 7.64 | 75% | 1 |
Core | Paleosol (P)# | Sample ID | I-S (002/003) (° 2θ) a | I-S (001/002) (° 2θ) a | Δ° 2θ b | % Illite in I-S (±3%) | Reichweite Order |
---|---|---|---|---|---|---|---|
ADM | 3 | 22 | 16.68 | 9.32 | 7.36 | 69% | 1 |
4 | 27 | N/A c | N/A | N/A | N/A | N/A | |
VERM | 2 | 12 | 16.86 | 9.62 | 7.24 | 66% | 1 |
4 | 23 | 17.06 | 9.22 | 7.84 | 79% | 1 | |
6 | 49 | 17 | 9.44 | 7.56 | 74% | 1 | |
6 | 46 | 17.06 | 9.4 | 7.66 | 75% | 1 | |
HAM | 4 | 9 | 17.04 | 9.24 | 7.8 | 78% | 1 |
6 | 16 | 17.16 | 9.28 | 7.88 | 80% | 1 | |
13 | 36 | 17.04 | 9.56 | 7.48 | 72% | 1 | |
14 | 43 | 17 | 9.24 | 7.76 | 78% | 1 | |
CHA | 9 | 45 | 16.76 | 9.44 | 7.32 | 68% | 1 |
10 | 49 | N/A | N/A | N/A | N/A | N/A | |
12 | 57 | N/A | N/A | N/A | N/A | N/A | |
13 | 62 | 16.8 | 9.64 | 7.16 | 64% | 1 | |
16 | 83 | 17.04 | 9.48 | 7.56 | 74% | 1 | |
17b | 93 | 16.96 | 9.34 | 7.62 | 74% | 1 |
Core | Paleosol (P)# | Sample ID | Overlying Coal | Coal Depth in Core (m) | Paleosol Sampling Depth below Coal (cm) |
---|---|---|---|---|---|
ADM | 2 | 18 | Flat Creek | 79 | 70 |
3 | 25 | Fairbanks | 94.94 | 26 | |
3 | 22 | Fairbanks | 94.94 | 146 | |
3 | 21 | Fairbanks | 94.94 | 176 | |
5 | 35 | Chapel | 129.63 | 17 | |
5 | 33 | Chapel | 129.63 | 57 | |
VERM | 4 | 31 | Womac | 48.31 | 9 |
4 | 26 | Womac | 48.31 | 189 | |
HAM | 3 | 7 | Fairbanks | 41.39 | 21 |
4 | 11 | New Haven | 72.67 | 33 | |
4 | 9 | New Haven | 72.67 | 93 | |
6 | 16 | Chapel | 137.67 | 43 | |
7 | 19 | Athensville | 171.75 | 15 | |
10 | 27 | Danville | 195.85 | 15 | |
12 | 33 | Baker | 201.158 | 104.2 | |
13 | 38 | Herrin | 219.03 | 107 | |
13 | 36 | Herrin | 219.03 | 137 | |
14 | 43 | Springfield | 244.224 | 47.6 | |
14 | 40 | Springfield | 244.224 | 147.6 | |
CHA | 5 | 21 | McCleary’s Bluff | 157.76 | 94 |
8 | 40 | Flat Creek | 201.98 | 112 | |
9 | 45 | Fairbanks | 213.72 | 78 | |
10 | 49 | Fairbanks | 214.87 | 43 | |
12 | 57 | Womac | 236.79 | 71 | |
13 | 64 | Chapel | 258.34 | 26 | |
13 | 62 | Chapel | 258.34 | 86 | |
13 | 60 | Chapel | 258.34 | 146 | |
14 | 73 | Rock Branch | 262.72 | 168 | |
16 | 86 | Danville | 294.24 | 96 | |
16 | 83 | Danville | 294.24 | 166 | |
17a | 98 | Herrin | 325.85 | 25 | |
17b | 93 | Herrin | 325.85 | 165 | |
18 | 100 | Springfield | 334.04 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McIntosh, J.A.; Tabor, N.J.; Rosenau, N.A. Mixed-Layer Illite-Smectite in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the Illinois Basin. Minerals 2021, 11, 108. https://doi.org/10.3390/min11020108
McIntosh JA, Tabor NJ, Rosenau NA. Mixed-Layer Illite-Smectite in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the Illinois Basin. Minerals. 2021; 11(2):108. https://doi.org/10.3390/min11020108
Chicago/Turabian StyleMcIntosh, Julia A., Neil J. Tabor, and Nicholas A. Rosenau. 2021. "Mixed-Layer Illite-Smectite in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the Illinois Basin" Minerals 11, no. 2: 108. https://doi.org/10.3390/min11020108
APA StyleMcIntosh, J. A., Tabor, N. J., & Rosenau, N. A. (2021). Mixed-Layer Illite-Smectite in Pennsylvanian-Aged Paleosols: Assessing Sources of Illitization in the Illinois Basin. Minerals, 11(2), 108. https://doi.org/10.3390/min11020108