Effects of Mechanical Activation on the Bioleaching of Sphalerite and Marmatite for Zn Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Mechanical Activation Methods
2.2.2. Batch Bioleaching Methods
2.2.3. Analytical Techniques
3. Results
3.1. Mechanical Activation Results
3.1.1. Particle Size Distribution Analysis
3.1.2. Activated Mineral Morphology
3.1.3. XRD Analyses of the Mechanically Activated Samples
3.2. Batch Bioleaching
3.2.1. Zn and Fe Extractions
3.2.2. Bioleachate (Chemical) Characterization
3.2.3. XRD Spectra and SEM-EDS Analysis of the Residues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ejtemaei, M.; Gharabaghi, M.; Irannajad, M. A review of zinc oxide mineral beneficiation using flotation method. Adv. Colloid Interface Sci. 2014, 206, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Sundramurthy, V.P.; Rajoo, B.; Srinivasan, N.R.; Kavitha, R. Bioleaching of Zn from sphalerite using Leptospirillum ferriphilum isolate: Effect of temperature and kinetic aspects. Appl. Biol. Chem. 2020, 63, 1–13. [Google Scholar] [CrossRef]
- Baba, A.A.; Adekola, F.A. Hydrometallurgical processing of a Nigerian sphalerite in hydrochloric acid: Characterization and dissolution kinetics. Hydrometallurgy 2010, 101, 69–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Meng, X.; Ou, P.; Lv, X.; Zhang, L.; Liu, L.; Chen, F.; Qiu, G. Mineralogical phase transformation of Fe containing sphalerite at acidic environments in the presence of Cu2+. J. Hazard. Mater. 2021, 403, 124058. [Google Scholar] [CrossRef]
- Lai, H.; Deng, J.S.; Liu, Z.L.; Wen, S.M.; Huang, L.Y. Determination of Fe and Zn contents and distributions in natural sphalerite/marmatite by various analysis methods. Trans. Nonferrous Met. Soc. China 2020, 30, 1364–1374. [Google Scholar] [CrossRef]
- Harmer, S.L.; Mierczynska-Vasilev, A.; Beattie, D.A.; Shapter, J.G. The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite. Miner. Eng. 2008, 21, 1005–1012. [Google Scholar] [CrossRef]
- Osadchii, E.G.; Gorbaty, Y.E. Raman spectra and unit cell parameters of sphalerite solid solutions (FexZn1−xS). Geochim. Cosmochim. Acta 2010, 74, 568–573. [Google Scholar] [CrossRef]
- Deng, J.; Lai, H.; Chen, M.; Glen, M.; Wen, S.; Zhao, B.; Wen, S.; Yang, H.; Liu, M.; Huang, L.; et al. Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study. Miner. Eng. 2019, 136, 168–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Qian, L.; Sun, M.; Lv, X.; Zhang, L.; Petersen, J.; Qiu, G. A brief overview on the dissolution mechanisms of sulfide minerals in acidic sulfate environments at low temperatures: Emphasis on electrochemical cyclic voltammetry analysis. Miner. Eng. 2020, 158, 106586. [Google Scholar] [CrossRef]
- Souza, A.D.; Pina, P.S.; Leão, V.A. Bioleaching and chemical leaching as an integrated process in the zinc industry. Miner. Eng. 2007, 20, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Ghassa, S.; Noaparast, M.; Shafaei, S.Z.; Abdollahi, H.; Gharabaghi, M.; Boruomand, Z. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy 2017, 171, 362–373. [Google Scholar] [CrossRef]
- Pina, P.; Leão, V.; Silva, C.; Daman, D.; Frenay, J. The effect of ferrous and ferric iron on sphalerite bioleaching with Acidithiobacillus sp. Miner. Eng. 2005, 18, 549–551. [Google Scholar] [CrossRef]
- Haghshenas, D.F.; Alamdari, E.K.; Torkmahalleh, M.A.; Bonakdarpour, B.; Nasernejad, B. Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate. Miner. Eng. 2009, 22, 1299–1306. [Google Scholar] [CrossRef]
- Schippers, A.; Tanne, C.; Stummeyer, J.; Graupner, T. Sphalerite bioleaching comparison in shake flasks and percolators. Miner. Eng. 2019, 132, 251–257. [Google Scholar] [CrossRef]
- Ban, J.R.; Gu, G.H.; Hu, K. Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans. Trans. Nonferrous Met. Soc. China 2013, 23, 494–500. [Google Scholar] [CrossRef]
- Ahmadi, A.; Mousavi, S. The influence of physicochemical parameters on the bioleaching of zinc sulfide concentrates using a mixed culture of moderately thermophilic microorganisms. Int. J. Miner. Process. 2015, 135, 32–39. [Google Scholar] [CrossRef]
- Haghshenas, D.F.; Bonakdarpour, B.; Alamdari, E.K.; Nasernejad, B. Optimization of physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using shaking bioreactors. Hydrometallurgy 2012, 111-112, 22–28. [Google Scholar] [CrossRef]
- Charikinya, E.; Bradshaw, S. An experimental study of the effect of microwave treatment on long term bioleaching of coarse, massive zinc sulphide ore particles. Hydrometallurgy 2017, 173, 106–114. [Google Scholar] [CrossRef]
- Ghorbani, Y.; Petersen, J.; Harrison, S.T.; Tupikina, O.V.; Becker, M.; Mainza, A.N.; Franzidis, J.-P. An experimental study of the long-term bioleaching of large sphalerite ore particles in a circulating fluid fixed-bed reactor. Hydrometallurgy 2012, 161–171. [Google Scholar] [CrossRef]
- Tao, L.; Yao, C.; Juanjuan, S.; Wei, C.; Yangge, Z.; Chonghui, Z.; Xianzhong, B. Effect of grinding media on the flotation of copper-activated marmatite. Physicochem. Probl. Miner. Process. 2020, 56, 229–237. [Google Scholar]
- Tian, L.; Zhang, T.; Liu, Y.; Lv, G.Z.; Tang, J.J. Oxidative acid leaching of mechanically activated sphalerite. Can. Met. Q. 2017, 57, 59–69. [Google Scholar] [CrossRef]
- Cao, S.T.; Zheng, X.; Nie, Z.; Zhou, Y.H.; Liu, H.C.; Chen, J.H.; Yang, H.; Xia, J.L. Mechanical Activation on Bioleaching of Chalcopyrite: A New Insight. Minerals 2020, 10, 788. [Google Scholar] [CrossRef]
- Baláž, P. Mechanical activation in hydrometallurgy. Int. J. Miner. Process. 2003, 72, 341–354. [Google Scholar] [CrossRef]
- Tromans, D.; Meech, J. Enhanced dissolution of minerals: Stored energy, amorphism and mechanical activation. Miner. Eng. 2001, 14, 1359–1377. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Qin, W.; Hu, M.; Zhu, S.; Qiu, G. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms. Miner. Eng. 2015, 71, 159–169. [Google Scholar] [CrossRef]
- Baláž, P.; Achimovičová, M.; Bastl, Z.; Ohtani, T.; Sánchez, M. Influence of mechanical activation on the alkaline leaching of enargite concentrate. Hydrometallurgy 2000, 54, 205–216. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Yaghmaei, S.; Vossoughi, M.; Roostaazad, R.; Jafari, A.; Ebrahimi, M.; Chabok, O.H.; Turunen, I. The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bioresour. Technol. 2008, 99, 2840–2845. [Google Scholar] [CrossRef]
- Daoud, J.; Karamanev, D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Miner. Eng. 2006, 19, 960–967. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, S.L.; Du, H.; Xu, H.B.; Zhang, Y. Effect of mechanical activation on alkali leaching of chromite ore. Trans. Nonferrous Met. Soc. China 2010, 20, 888–891. [Google Scholar] [CrossRef]
- Jones, G.C.; Corin, K.; Van Hille, R.; Harrison, S.T. The generation of toxic reactive oxygen species (ROS) from mechanically activated sulphide concentrates and its effect on thermophilic bioleaching. Miner. Eng. 2011, 24, 1198–1208. [Google Scholar] [CrossRef]
- Xia, L.X.; Liu, J.S.; Xiao, L.; Zeng, J.; Li, B.M.; Geng, M.M.; Qiu, G.Z. Single and cooperative bioleaching of sphalerite by two kinds of bacteria—Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans. Trans. Nonferrous Met. Soc. China 2008, 18, 190–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, H.; Zhang, Y.; Liu, H.; Yin, H.; Deng, J.; Qiu, G. Interaction mechanism between marmatite and chalcocite in acidic (microbial) environments. Hydrometallurgy 2020, 191, 105217. [Google Scholar] [CrossRef]
- Liu, S.; Hong, M.; Wang, X.; Yang, B.; Lin, H.; Lin, M.; Wang, J.; Qiu, G. Pretreatment with acidic ferric sulfate leaching promotes the bioleaching of bornite. Hydrometallurgy 2020, 196, 105349. [Google Scholar] [CrossRef]
- Shi, S.Y.; Fang, Z.H.; Ni, J.R. Comparative study on the bioleaching of zinc sulphides. Process. Biochem. 2006, 41, 438–446. [Google Scholar] [CrossRef]
- Crundwell, F.K. Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution. AIChE J. 1988, 34, 1128–1134. [Google Scholar] [CrossRef]
- Crundwell, F.K. Analysis of the activation energy of dissolution of the iron-containing zinc sulfide (sphalerite). J. Phys. Chem. C 2020, 124, 15347–15354. [Google Scholar] [CrossRef]
- Borda, M.J.; Elsetinow, A.R.; Strongin, D.R.; Schoonen, M.A. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 2003, 67, 935–939. [Google Scholar] [CrossRef]
Samples | Zn | Fe | S | O | Si | Ca | Al | Mg | Cd | Pb | Cu | Mn | Others |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sphalerite | 63.86 | 1.18 | 31.42 | 0.93 | 0.61 | 0.46 | 0.26 | 0.27 | 0.83 | - | - | - | 0.18 |
Marmatite | 52.19 | 12.29 | 33.08 | 0.18 | 0.62 | - | 0.06 | - | 0.28 | 0.71 | 0.18 | 0.18 | 0.23 |
Elements | Wt% | At% |
---|---|---|
O K | 48.51 | 73.61 |
S K | 11.50 | 8.71 |
K K | 5.00 | 3.10 |
Fe K | 24.97 | 10.86 |
Zn K | 10.03 | 3.72 |
Matrix | Correction | ZAF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, Y.; Zhang, L.; Tang, A.; Lv, X.; Zhao, Y.; Shen, L.; Zhao, H.; Qiu, G. Effects of Mechanical Activation on the Bioleaching of Sphalerite and Marmatite for Zn Extraction. Minerals 2021, 11, 111. https://doi.org/10.3390/min11020111
Li S, Zhang Y, Zhang L, Tang A, Lv X, Zhao Y, Shen L, Zhao H, Qiu G. Effects of Mechanical Activation on the Bioleaching of Sphalerite and Marmatite for Zn Extraction. Minerals. 2021; 11(2):111. https://doi.org/10.3390/min11020111
Chicago/Turabian StyleLi, Shusheng, Yisheng Zhang, Luyuan Zhang, Anni Tang, Xin Lv, Yu Zhao, Li Shen, Hongbo Zhao, and Guanzhou Qiu. 2021. "Effects of Mechanical Activation on the Bioleaching of Sphalerite and Marmatite for Zn Extraction" Minerals 11, no. 2: 111. https://doi.org/10.3390/min11020111
APA StyleLi, S., Zhang, Y., Zhang, L., Tang, A., Lv, X., Zhao, Y., Shen, L., Zhao, H., & Qiu, G. (2021). Effects of Mechanical Activation on the Bioleaching of Sphalerite and Marmatite for Zn Extraction. Minerals, 11(2), 111. https://doi.org/10.3390/min11020111