Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methodology
4. Results
4.1. Zircon (U-Th)/He Data
4.2. Apatite Fission Track Data
4.3. Apatite (U-Th-Sm)/He Data
5. Discussion
5.1. Dispersion of (U-Th)/He Data
5.1.1. ZHe Age Dispersion and Radiation Damage Effects on He Diffusion
5.1.2. AHe Age Dispersion
5.2. Thermal History Modeling
5.2.1. Individual Sample Models
5.2.2. Multi-Sample Model
5.3. Geological Implications
5.3.1. Tectono-Thermal Evolution of the LUOF
5.3.2. Implications for Fengzhou Basin Formation
5.3.3. Implications for Uranium Exploration
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, R.-Z.; Zhou, M.-F. Multiple Mesozoic mineralization events in South China—An introduction to the thematic issue. Min. Depos. 2012, 47, 579–588. [Google Scholar] [CrossRef]
- Mao, J.; Pirajno, F.; Cook, N. Mesozoic metallogeny in East China and corresponding geodynamic settings—An introduction to the special issue. Ore Geol. Rev. 2011, 43, 1–7. [Google Scholar] [CrossRef]
- Hu, R.-Z.; Bi, X.-W.; Zhou, M.-F.; Peng, J.-T.; Su, W.-C.; Liu, S.; Qi, H.-W. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Econ. Geol. 2008, 103, 583–598. [Google Scholar] [CrossRef]
- Li, X.-H. Cretaceous magmatism and lithospheric extension in southeast China. J. Asian Earth Sci. 2000, 18, 293–305. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Wang, D.; Chen, Z.; Hou, K. Age and genesis of the granite in the Huangfengling uranium deposit, Jiangxi Province: Evideng from zircon U-Pb dating and Hf isotopes. Geol. Explor. 2011, 47, 284–293, (In Chinese with English abstract). [Google Scholar]
- Zhang, W.; Gao, M.; Lu, C.; Huang, C.; Huang, D.; Xie, Z. Discovery of the early Indosinian granite in Lujing area, Hunan and Jiangxi border and its geological significance. Geoscience 2018, 32, 863–873, (In Chinese with English abstract). [Google Scholar]
- Zhang, L.; Chen, Z.; Li, S.; Santosh, M.; Huang, G.; Tian, Z. Isotope geochronology, geochemistry, and mineral chemistry of the U-bearing and barren granites from the Zhuguangshan complex, South China: Implications for petrogenesis and uranium mineralization. Ore Geol. Rev. 2017, 91, 1040–1065. [Google Scholar] [CrossRef]
- Zou, M.; Fang, S.; Xu, H.; Huang, H.; Liu, X.; Xiang, T. Liquid immiscibility for U-bearing granites of Huangfengling area, in the middle of Zhuguangshan pluton, Southern China. Chin. J. Geol. 2016, 51, 850–871, (In Chinese with English abstract). [Google Scholar]
- Zhang, W.; He, X.; Lv, C.; Wei, J. Analysis on the metallogenic feature and ore-controlling factors in Lujing uranium orefield. Uranium Geol. 2011, 27, 81–87, (In Chinese with English abstract). [Google Scholar]
- Shao, F.; Zhu, Y.; Guo, H.; He, X.; Shao, S. Analysis on geological characteristics of uranium metallization and prospecting potential in Lujing orefield. Uranium Geol. 2010, 26, 295–300, (In Chinese with English abstract). [Google Scholar]
- Zhang, X.-T.; Pan, J.-Y.; Xia, F.; Zhang, Y.; Liu, G.-Q.; Liu, Y.; Zhong, F.-J. Genesis and metallogenic process of the Lujing uranium deposit, southwest Jiangxi Province, China: Constraints of micropetrography and S–C–O isotopes. Resour. Geol. 2018, 68, 303–325. [Google Scholar] [CrossRef]
- Li, Z.; Fu, Z.; Li, J. Dynamic system analysis of metallogenesis of NNE-trending strike-slip fault-fluid-uranium mineralization in Hunan-Jiangxi border region. Geoscience 1998, 12, 522–531, (In Chinese with English abstract). [Google Scholar]
- Li, X.; Li, J.; Fu, Z. Uranium mineralization related to strike-slip faults, Lujing orefield, border region between eastern Hunan and western Jiangxi. Earth Sci. J. China Univ. Geosci. 1999, 24, 476–479, (In Chinese with English abstract). [Google Scholar]
- Li, J.; Chen, X.; Li, Z.; Fu, Z. Geochemical modeling for the evolution of mineralizing fluids of the Lujing uranium deposit, SE China. Geotecton. Metallog. 2000, 24, 266–273, (In Chinese with English abstract). [Google Scholar]
- McInnes, B.I.A.; Evans, N.J.; Fu, F.Q.; Garwin, S. Application of thermochronology to hydrothermal ore deposits. Rev. Mineral. Geochem. 2005, 58, 467–498. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Wu, L.; Shi, W.; Yang, L. (U-Th)/He thermochronology of metallic ore deposits in the Liaodong Peninsula: Implications for orefield evolution in northeast China. Ore Geol. Rev. 2018, 92, 348–365. [Google Scholar] [CrossRef]
- Márton, I.; Moritz, R.; Spikings, R. Application of low-temperature thermochronology to hydrothermal ore deposits: Formation, preservation and exhumation of epithermal gold systems from the Eastern Rhodopes, Bulgaria. Tectonophysics 2010, 483, 240–254. [Google Scholar] [CrossRef]
- Gong, L.; Kohn, B.P.; Zhang, Z.; Xiao, B.; Wu, L.; Chen, H. Exhumation and preservation of Paleozoic porphyry Cu deposits: Insights from the Yandong deposit, southern Central Asian orogenic belt. Econ. Geol. 2020, in press. [Google Scholar]
- Gleadow, A.J.W.; Duddy, I.R. A natural long-term track annealing experiment for apatite. Nucl. Tracks 1981, 5, 169–174. [Google Scholar] [CrossRef]
- Reiners, P.W. Zircon (U-Th)/He thermochronometry. Rev. Mineral. Geochem. 2005, 58, 151–179. [Google Scholar] [CrossRef]
- Reiners, P.W.; Brandon, M.T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 2006, 34, 419–466. [Google Scholar] [CrossRef] [Green Version]
- Malusà, M.G.; Fitzgerald, P.G. Fission-Track Thermochronology and Its Application to Geology; Springer Textbooks in Earth Sciences, Geography and Environment; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Zhou, A.; Dai, J.-G.; Li, Y.-L.; Li, H.-A.; Tang, J.-X.; Wang, C.-S. Differential exhumation histories between Qulong and Xiongcun porphyry copper deposits in the Gangdese copper metallogenic belt: Insights from low temperature thermochronology. Ore Geol. Rev. 2019, 107, 801–819. [Google Scholar] [CrossRef]
- Li, X.-H.; Li, W.-X.; Li, Z.-X.; Lo, C.-H.; Wang, J.; Ye, M.-F.; Yang, Y.-H. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res. 2009, 174, 117–128. [Google Scholar] [CrossRef]
- Li, L.; Lin, S.; Xing, G.; Davis, D.W.; Jiang, Y.; Davis, W.; Zhang, Y.C. 830 ma back-arc type volcanic rocks in the eastern part of the Jiangnan orogen: Implications for the Neoproterozoic tectonic evolution of South China Block. Precambrian Res. 2016, 275, 209–224. [Google Scholar] [CrossRef]
- Zhao, G. Jiangnan orogen in South China: Developing from divergent double subduction. Gondwana Res. 2015, 27, 1173–1180. [Google Scholar] [CrossRef]
- Shu, L. An analysis of principal features of tectonic evolution in South China Block. Geol. Bull. China 2012, 31, 1035–1053, (In Chinese with English abstract). [Google Scholar]
- Zhang, G.; Guo, A.; Wang, Y.; Li, S.; Dong, Y.; Liu, S.; He, D.; Cheng, S.; Lu, R.; Yao, A. Tectonics of South China continent and its implications. Sci. China Earth Sci. 2013, 56, 1804–1828. [Google Scholar] [CrossRef]
- Yan, Q.; Shi, X.; Castillo, P.R. The late Mesozoic–Cenozoic tectonic evolution of the South China sea: A petrologic perspective. J. Asian Earth Sci. 2014, 85, 178–201. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Suo, Y.; Li, X.; Zhou, J.; Santosh, M.; Wang, P.; Wang, G.; Guo, L.; Yu, S.; Lan, H.; et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth Sci. Rev. 2019, 192, 91–137. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Chen, M.; Franco, P. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Gao, P.; Zhao, Z.-F.; Zheng, Y.-F. Petrogenesis of Triassic granites from the Nanling Range in South China: Implications for geochemical diversity in granites. Lithos 2014, 210, 40–56. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Li, X.; Li, S.; Santosh, M.; Huang, G. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization. Lithos 2018, 308, 19–33. [Google Scholar] [CrossRef]
- Guo, C.; Mao, J.; Bierlein, F.; Chen, Z.; Chen, Y.; Li, C.; Zeng, Z. Shrimp U–Pb (zircon), Ar–Ar (muscovite) and Re–Os (molybdenite) isotopic dating of the Taoxikeng tungsten deposit, South China Block. Ore Geol. Rev. 2011, 43, 26–39. [Google Scholar] [CrossRef]
- Liu, J.; Mao, J.; Ye, H.; Zhang, W. Geology, geochemistry and age of the Hukeng tungsten deposit, Southern China. Ore Geol. Rev. 2011, 43, 50–61. [Google Scholar] [CrossRef]
- Wang, L.; Hu, M.; Yang, Z.; Qu, W.; Xia, J.; Chen, K. U–Pb and Re–Os geochronology and geodynamic setting of the dabaoshan polymetallic deposit, northern Guangdong Province, South China. Ore Geol. Rev. 2011, 43, 40–49. [Google Scholar] [CrossRef]
- Yan, D.-P.; Zhou, M.-F.; Song, H.-L.; Wang, X.-W.; Malpas, J. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics 2003, 361, 239–254. [Google Scholar] [CrossRef]
- Deng, P.; Ren, J.; Ling, H.; Shen, W.; Sun, L.; Zhu, B.; Tan, Z. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China. Chin. Sci. Bull. 2012, 57, 1542–1552. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Min, M.; Zhai, J.; Luo, X.; Lai, Y.; Wei, Y. Alkali metasomatic alteration of the granite in middle Zhuguang mountain, South China. Acta Petrol. Sin. 1998, 14, 90–98, (In Chinese with English abstract). [Google Scholar]
- Shu, L.; Deng, P.; Wang, B.; Tan, Z.; Yu, X.; Sun, Y. Lithology, kinematics and geochronology related to late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China. Sci. China Ser. D Earth Sci. 2004, 47, 673–688. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, J.; Xiao, Z.; Liu, Y.; Pan, C.; Zhong, F.; Lai, J. Structural analysis and ore-prospecting prediction of the Lujing uranium orefield in middle Zhuguangshan, South China. Geol. China 2020, 47, 362–374, (In Chinese with English abstract). [Google Scholar]
- Li, J.; Zhang, Y.; Dong, S.; Johnston, S.T. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth Sci. Rev. 2014, 134, 98–136. [Google Scholar] [CrossRef]
- Zhang, W.-L.; Pan, K.-M. Characteristics of Fengzhou basin in Lujing uranium ore field and its significances to protecting ores. Prog. Rep. China Nucl. Sci. Technol. 2011, 2, 378–382, (In Chinese with English abstract). [Google Scholar]
- Hu, R.-Z.; Bi, X.-W.; Su, W.-C.; Peng, J.-T.; Li, C.-Y. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China. Earth Sci. Front. 2004, 11, 153–160, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.; Huang, G.; Zhu, B.; Chen, Z.; Huang, F.; Zhao, Z.; Tian, Z. The characteristics and metallogenic specialization of granite-hosted uranium deposits in the Nanling region. Geochim. Metallog. 2014, 38, 264–275, (In Chinese with English abstract). [Google Scholar]
- Farley, K.; Wolf, R.; Silver, L. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochim. Cosmochim. Acta 1996, 60, 4223–4229. [Google Scholar] [CrossRef]
- McDowell, F.W.; McIntosh, W.C.; Farley, K.A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [Google Scholar] [CrossRef]
- Gleadow, A.; Harrison, M.; Kohn, B.; Lugo-Zazueta, R.; Phillips, D. The Fish Canyon Tuff: A new look at an old low-temperature thermochronology standard. Earth Planet. Sci. Lett. 2015, 424, 95–108. [Google Scholar] [CrossRef]
- Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission-track annealing in apatite. Am. Mineral. 2007, 92, 799–810. [Google Scholar] [CrossRef]
- Gautheron, C.; Tassan-Got, L.; Barbarand, J.; Pagel, M. Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology. Chem. Geol. 2009, 266, 157–170. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; Ketcham, R.A.; Nasdala, L.; Giester, G. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am. J. Sci. 2013, 313, 145–198. [Google Scholar] [CrossRef]
- Beucher, R.; Brown, R.W.; Roper, S.; Stuart, F.; Persano, C. Natural age dispersion arising from the analysis of broken crystals: Part II. Practical application to apatite (U–Th)/He thermochronometry. Geochim. Cosmochim. Acta 2013, 120, 395–416. [Google Scholar] [CrossRef] [Green Version]
- Carlson, W.D.; Donelick, R.A.; Ketcham, R.A. Variability of apatite fission-track annealing kinetics: I. Experimental results. Am. Mineral. 1999, 84, 1213–1223. [Google Scholar] [CrossRef]
- Vermeesch, P. Radialplotter: A java application for fission track, luminescence and other radial plots. Radiat. Meas. 2009, 44, 409–410. [Google Scholar] [CrossRef]
- Danišík, M.; McInnes, B.I.; Kirkland, C.L.; McDonald, B.J.; Evans, N.J.; Becker, T. Seeing is believing: Visualization of he distribution in zircon and implications for thermal history reconstruction on single crystals. Sci. Adv. 2017, 3, e1601121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.J.; Hodges, K.V.; van Soest, M.C. Empirical constraints on the effects of radiation damage on helium diffusion in zircon. Geochim. Cosmochim. Acta 2017, 218, 308–322. [Google Scholar] [CrossRef]
- Johnson, J.E.; Flowers, R.M.; Baird, G.B.; Mahan, K.H. “Inverted” zircon and apatite (U–Th)/He dates from the front range, colorado: High-damage zircon as a low-temperature (<50 °C) thermochronometer. Earth Planet. Sci. Lett. 2017, 466, 80–90. [Google Scholar]
- Weisberg, W.R.; Metcalf, J.R.; Flowers, R.M. Distinguishing slow cooling versus multiphase cooling and heating in zircon and apatite (U-Th)/He datasets: The case of the McClure Mountain syenite standard. Chem. Geol. 2018, 485, 90–99. [Google Scholar] [CrossRef]
- Flowers, R.M.; Kelley, S.A. Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission-track datasets: An example from the US midcontinent. Geochim. Cosmochim. Acta 2011, 75, 5169–5186. [Google Scholar] [CrossRef]
- Orme, D.A.; Guenthner, W.R.; Laskowski, A.K.; Reiners, P.W. Long-term tectonothermal history of Laramide basement from zircon–He age-eU correlations. Earth Planet. Sci. Lett. 2016, 453, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Guenthner, W.R.; Reiners, P.W.; Tian, Y. Interpreting date–eU correlations in zircon (U-Th)/He datasets: A case study from the Longmen Shan, China. Earth Planet. Sci. Lett. 2014, 403, 328–339. [Google Scholar] [CrossRef]
- Reiners, P.W.; Farley, K.A. Influence of crystal size on apatite (U–Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming. Earth Planet. Sci. Lett. 2001, 188, 413–420. [Google Scholar] [CrossRef]
- Fitzgerald, P.G.; Baldwin, S.L.; Webb, L.E.; O’Sullivan, P.B. Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of southern Victoria Land. Chem. Geol. 2006, 225, 91–120. [Google Scholar] [CrossRef]
- Wildman, M.; Brown, R.; Beucher, R.; Persano, C.; Stuart, F.; Gallagher, K.; Schwanethal, J.; Carter, A. The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology. Tectonics 2016, 35, 511–545. [Google Scholar] [CrossRef] [Green Version]
- Meesters, A.G.C.A.; Dunai, T.J. Solving the production–diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source. Chem. Geol. 2002, 186, 57–73. [Google Scholar] [CrossRef]
- Farley, K.A.; Shuster, D.L.; Ketcham, R.A. U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U–Th)/He system. Geochim. Cosmochim. Acta 2011, 75, 4515–4530. [Google Scholar] [CrossRef]
- Spiegel, C.; Kohn, B.; Belton, D.; Berner, Z.; Gleadow, A. Apatite (U–Th–Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation. Earth Planet. Sci. Lett. 2009, 285, 105–114. [Google Scholar] [CrossRef]
- McDannell, K.T.; Issler, D.R.; O’Sullivan, P.B. Radiation-enhanced fission track annealing revisited and consequences for apatite thermochronometry. Geochim. Cosmochim. Acta 2019, 252, 213–239. [Google Scholar] [CrossRef]
- Gerin, C.; Gautheron, C.; Oliviero, E.; Bachelet, C.; Mbongo Djimbi, D.; Seydoux-Guillaume, A.-M.; Tassan-Got, L.; Sarda, P.; Roques, J.; Garrido, F. Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales. Geochim. Cosmochim. Acta 2017, 197, 87–103. [Google Scholar] [CrossRef]
- Zeitler, P.K.; Enkelmann, E.; Thomas, J.B.; Watson, E.B.; Ancuta, L.D.; Idleman, B.D. Solubility and trapping of helium in apatite. Geochim. Cosmochim. Acta 2017, 209, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Green, P.; Duddy, I. Apatite (U-Th-Sm)/He thermochronology on the wrong side of the tracks. Chem. Geol. 2018, 488, 21–33. [Google Scholar] [CrossRef]
- Łuszczak, K.; Persano, C.; Braun, J.; Stuart, F.M. How local crustal thermal properties influence the amount of denudation derived from low-temperature thermochronometry. Geology 2017, 45, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Mackintosh, V.; Kohn, B.; Gleadow, A.; Tian, Y. Phanerozoic morphotectonic evolution of the Zimbabwe Craton: Unexpected outcomes from a multiple low-temperature thermochronology study. Tectonics 2017, 36, 2044–2067. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, S.; Seagren, E.; Zhang, Y.; Zhang, P.; Qian, X. Exhumation and landscape evolution in eastern South China since the Cretaceous: New insights from fission-track thermochronology. J. Asian Earth Sci. 2020, 191, 104239. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Z.; Boone, S.C.; Zhong, F.; Tao, W. Exhumation history and preservation of the Changjiang uranium ore field, South China: Revealed by (U-Th)/He and fission track thermochronology. Ore Geol. Rev. 2021, in press. [Google Scholar]
- Tao, N.; Li, Z.-X.; Danišík, M.; Evans, N.J.; Batt, G.E.; Li, W.-X.; Pang, C.-J.; Jourdan, F.; Xu, Y.-G.; Liu, L.-P. Thermochronological record of middle–late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block. Gondwana Res. 2017, 46, 191–203. [Google Scholar] [CrossRef]
- Tao, N.; Li, Z.-X.; Danišík, M.; Evans, N.J.; Li, R.-X.; Pang, C.-J.; Li, W.-X.; Jourdan, F.; Yu, Q.; Liu, L.-P.; et al. Post-250 ma thermal evolution of the central Cathaysia block (SE China) in response to flat-slab subduction at the proto-western Pacific margin. Gondwana Res. 2019, 75, 1–15. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Qiao, L.; Liu, X.; Zhang, Q. Cretaceous exhumation history of the southwestern South China Block: Constraints from fission-track thermochronology. Geol. J. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics 2010, 488, 293–325. [Google Scholar] [CrossRef]
- Shu, L.S.; Zhou, X.M.; Deng, P.; Wang, B.; Jiang, S.Y.; Yu, J.H.; Zhao, X.X. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis. J. Asian Earth Sci. 2009, 34, 376–391. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, Y.; Hu, S.; Guo, T.; Fu, X. Present-day geothermal characteristics in South China. Chin. J. Geophys. 2006, 49, 1118–1126, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhong, F.J.; Yan, J.; Xia, F.; Pan, J.Y.; Liu, W.Q.; Lai, J.; Zhao, Q.F. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong, China: Implications for uranium mineralization. Acta Petrol. Sin. 2019, 35, 2727–2744, (In Chinese with English abstract). [Google Scholar]
Lithology-Age | Sample | Longitude °E | Latitude °N | Elevation (m) | ZHe | AFT | AHe |
---|---|---|---|---|---|---|---|
Sandstone-Cambrian | ZG01 | 113°57′27.33″ | 25°37′10.47″ | 322 | x | x | x |
Sandstone-Cambrian | ZG09 | 113°56′28.37″ | 25°37′09.53″ | 340 | x | x | x |
Sandstone-Cretaceous | ZG02 | 113°58′24.51″ | 25°37′33.61″ | 281 | x | - | x |
Granite-Triassic | ZG03 | 113°56′32.81″ | 25°39′43.41″ | 530 | x | - | x |
Granite-Jurassic | ZG04 | 113°58′05.71″ | 25°40′41.11″ | 849 | x | - | - |
Granite-Triassic | ZG06 | 113°58′43.43″ | 25°37′10.94″ | 332 | x | - | - |
Granite-Triassic | ZG07 | 113°57′44.14″ | 25°35′02.87″ | 360 | x | x | x |
Granite-Triassic | ZG08 | 113°57′35.57″ | 25°35′36.64″ | 312 | x | x | x |
Mineralized granite-Triassic | ZG05 | 113°57′52.81″ | 25°39′17.86″ | 384 | x | - | x |
Mineralized granite-Triassic | ZG11 | 113°59′45.85″ | 25°37′22.06″ | 304 | x | x | x |
Grain No. | 4He (ncc) | Mass (μg) | FT | U (ppm) | Th (ppm) | Th/U | eU (ppm) | Grain Length (μm) | Grain Half-Width (μm) | Rs (μm) | Corrected Age (Ma) | Error ± 1σ (Ma) | Crystal Morphology |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sandstone | |||||||||||||
ZG01-01 | 57.28 | 7.9 | 0.81 | 432.4 | 46.0 | 0.11 | 443.2 | 220.8 | 55.1 | 66.1 | 132.2 | 8.2 | 2T |
02 | 65.97 | 11.1 | 0.81 | 357.2 | 87.2 | 0.24 | 377.7 | 291.9 | 52.6 | 66.9 | 128.2 | 7.9 | 2T |
03 | 72.86 | 7.6 | 0.80 | 571.0 | 67.4 | 0.12 | 586.8 | 220.3 | 53.4 | 64.5 | 133.3 | 8.3 | 2T |
04 | 64.54 | 9.8 | 0.81 | 430.3 | 242.4 | 0.56 | 487.2 | 265.2 | 53.0 | 66.3 | 109.7 | 6.8 | 2T |
05 | 78.73 | 6.5 | 0.79 | 766.5 | 42.2 | 0.06 | 776.4 | 212.7 | 50.0 | 60.7 | 126.5 | 7.8 | 2T |
ZG09-01 | 26.53 | 8.8 | 0.81 | 254.5 | 92.3 | 0.36 | 276.2 | 221.8 | 58.8 | 69.7 | 89.4 | 5.5 | 2T |
02 | 40.53 | 9.6 | 0.80 | 250.4 | 86.3 | 0.34 | 270.7 | 271.3 | 51.2 | 64.6 | 126.7 | 7.9 | 2T |
03 | 68.32 | 10.3 | 0.82 | 479.5 | 127.6 | 0.27 | 509.5 | 260.7 | 55.4 | 68.5 | 106.2 | 6.6 | 2T |
04 | 58.59 | 6.7 | 0.77 | 489.0 | 337.8 | 0.69 | 568.4 | 244.7 | 44.9 | 56.9 | 124.7 | 7.7 | 2T |
05 | 79.57 | 6.8 | 0.80 | 544.2 | 83.0 | 0.15 | 563.7 | 217.3 | 50.6 | 61.6 | 167.0 | 10.4 | 2T |
ZG02-01 | 23.20 | 2.5 | 0.71 | 649.0 | 140.3 | 0.22 | 681.9 | 161.0 | 35.0 | 43.1 | 110.6 | 6.9 | 2T |
02 | 23.08 | 2.8 | 0.71 | 482.1 | 232.6 | 0.48 | 536.8 | 172.4 | 35.5 | 44.2 | 123.8 | 7.7 | 2T |
03 | 10.18 | 2.2 | 0.70 | 203.1 | 177.1 | 0.87 | 244.7 | 145.6 | 35.4 | 42.7 | 154.0 | 9.5 | 2T |
04 | 21.81 | 2 | 0.68 | 1012.4 | 366.0 | 0.36 | 1098.4 | 135.4 | 35.9 | 42.6 | 81.3 | 5.0 | 2T |
Non-Mineralized Granite | |||||||||||||
ZG03-01 | 84.13 | 6.4 | 0.79 | 1323.0 | 179.0 | 0.14 | 1365.0 | 206.7 | 51.1 | 61.5 | 78.3 | 4.9 | 2T |
02 | 68.46 | 5.6 | 0.76 | 1295.4 | 249.7 | 0.19 | 1354.1 | 228.5 | 42.3 | 53.5 | 74.2 | 4.6 | 2T |
03 | 261.39 | 11 | 0.80 | 4506.2 | 461.3 | 0.10 | 4614.7 | 330.7 | 47.5 | 62.3 | 42.2 | 2.6 | 2T |
04 | 183.85 | 10.9 | 0.82 | 2939.4 | 329.0 | 0.11 | 3016.8 | 283.2 | 53.4 | 67.4 | 45.8 | 2.8 | 2T |
ZG04-01 | 91.87 | 6.2 | 0.80 | 1922.2 | 673.1 | 0.35 | 2080.3 | 185.2 | 56.9 | 65.3 | 58.6 | 3.6 | 2T |
02 | 39.25 | 2.8 | 0.73 | 2148.9 | 282.6 | 0.13 | 2215.3 | 153.3 | 39.8 | 47.4 | 51.5 | 3.2 | 2T |
03 | 59.61 | 3.7 | 0.76 | 3529.6 | 457.5 | 0.13 | 3637.1 | 179.3 | 40.6 | 49.7 | 36.5 | 2.3 | 2T |
ZG06-01 | 75.77 | 4.3 | 0.75 | 2311.5 | 585.6 | 0.25 | 2449.2 | 203.4 | 39.8 | 49.9 | 59.1 | 3.7 | 2T |
02 | 58.07 | 3.2 | 0.69 | 3515.4 | 1703.2 | 0.48 | 3915.6 | 208.9 | 32.8 | 42.5 | 37.6 | 2.3 | 2T |
03 | 27.65 | 3.9 | 0.74 | 410.7 | 299.3 | 0.73 | 481.1 | 190.5 | 40.1 | 49.7 | 118.6 | 7.4 | 2T |
ZG07-01 | 146.91 | 10.1 | 0.82 | 1753.3 | 375.1 | 0.21 | 1841.4 | 238.1 | 59.9 | 71.8 | 64.8 | 4.0 | 2T |
02 | 170.51 | 7.2 | 0.78 | 2164.3 | 277.1 | 0.13 | 2229.5 | 267.5 | 43.7 | 56.3 | 86.2 | 5.3 | 2T |
03 | 377.98 | 24.5 | 0.85 | 2913.9 | 172.4 | 0.06 | 2954.4 | 442.0 | 61.1 | 80.5 | 42.7 | 2.6 | 2T |
04 | 140.00 | 6.7 | 0.77 | 2824.4 | 578.9 | 0.20 | 2960.4 | 277.0 | 40.7 | 53.2 | 57.8 | 3.6 | 2T |
ZG08-01 | 194.65 | 15.8 | 0.84 | 1633.4 | 258.3 | 0.16 | 1694.1 | 302.1 | 63.7 | 78.9 | 59.5 | 3.7 | 2T |
02 | 147.93 | 10 | 0.80 | 1832.4 | 173.6 | 0.09 | 1873.2 | 308.0 | 47.3 | 61.5 | 64.9 | 4.0 | 2T |
03 | 92.94 | 11.2 | 0.81 | 384.1 | 77.2 | 0.20 | 402.3 | 315.2 | 49.8 | 64.5 | 167.0 | 10.4 | 2T |
Mineralized Granite | |||||||||||||
ZG05-01 | 170.43 | 14.8 | 0.81 | 1155.9 | 194.8 | 0.17 | 1201.7 | 281.6 | 53.1 | 67.0 | 78.5 | 4.9 | 0T |
02 | 57.29 | 4.4 | 0.75 | 1251.7 | 633.9 | 0.51 | 1400.7 | 196.2 | 42.0 | 51.9 | 75.3 | 4.7 | 2T |
03 | 160.68 | 7.3 | 0.80 | 2893.5 | 1330.2 | 0.46 | 3206.1 | 219.0 | 52.5 | 63.5 | 56.1 | 3.5 | 2T |
ZG11-01 | 180.97 | 6.4 | 0.79 | 2475.3 | 540.9 | 0.22 | 2602.4 | 201.3 | 52.5 | 62.5 | 88.7 | 5.5 | 2T |
02 | 191.83 | 6.8 | 0.80 | 2469.2 | 932.8 | 0.38 | 2688.4 | 191.2 | 58.7 | 67.4 | 85.9 | 5.3 | 2T |
03 | 210.91 | 10.4 | 0.81 | 2629.5 | 498.3 | 0.19 | 2746.6 | 286.9 | 51.2 | 65.2 | 60.6 | 3.8 | 2T |
04 | 372.25 | 17.7 | 0.84 | 3601.0 | 410.2 | 0.11 | 3697.4 | 366.6 | 58.1 | 75.2 | 46.5 | 2.9 | 2T |
Fish Canyon Tuff Standard | |||||||||||||
FCT-01 | 3.883 | 2.3 | 0.70 | 435.6 | 219.9 | 0.50 | 487.3 | 160.6 | 33.5 | 41.6 | 28.0 | 1.7 | 2T |
02 | 10.926 | 5.6 | 0.77 | 470.7 | 405.5 | 0.86 | 566.0 | 218.6 | 44.4 | 55.4 | 28.0 | 1.7 | 2T |
03 | 7.489 | 4.9 | 0.77 | 401.3 | 256.5 | 0.64 | 461.6 | 204.2 | 43.0 | 53.2 | 27.4 | 1.7 | 2T |
04 | 3.897 | 2.2 | 0.71 | 482.7 | 242.2 | 0.50 | 539.6 | 130.9 | 39.8 | 45.8 | 27.5 | 1.7 | 2T |
Sample | No. Grains (n) | Ns (n) | ρs (105.cm−2) | 238U (ppm) | Mean Dpar (Range) (μm) | P (χ2) | Central Age (Ma ± 1σ) | Nlength | Mean Track Length (μm) ± std Error | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|---|
Sandstone | ||||||||||
ZG01 | 26 | 911 | 7.49 | 26.73 | 1.75 (1.61–2.01) | 0.15 | 57.3 ± 2.6 | 84 | 13.21 ± 0.16 | 1.44 |
ZG09 | 36 | 908 | 5.99 | 21.30 | 1.93 (1.67–2.18) | 0.44 | 58.1 ± 2.4 | 102 | 13.59 ± 0.12 | 1.24 |
Non-Mineralized Granite | ||||||||||
ZG07 | 36 | 1385 | 11.24 | 39.70 | 1.74 (1.59–1.87) | 0.45 | 58.1 ± 1.9 | 102 | 13.36 ± 0.14 | 1.39 |
ZG08 | 33 | 2005 | 15.01 | 54.46 | 1.72 (1.41–2.09) | 0.13 | 54.8 ± 1.6 | 121 | 13.68 ± 0.14 | 1.56 |
Mineralized Granite | ||||||||||
ZG11 | 31 | 1339 | 14.16 | 46.45 | 1.78 (1.63–1.95) | 0.49 | 61.5 ± 2.0 | 110 | 12.84 ± 0.15 | 1.57 |
Grain No. | 4He (ncc) | Mass (μg) | FT | U (ppm) | Th (ppm) | Sm (ppm) | Th/U | eU (ppm) | Grain Length (μm) | Grain Half-Width (μm) | Rs (μm) | Corrected Age (Ma) | Error ± 1σ (Ma) | Crystal Morphology |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sandstone | ||||||||||||||
ZG01-01 | 0.164 | 5.39 | 0.75 | 5.7 | 7.2 | 29.1 | 1.26 | 7.4 | 169.6 | 56.2 | 63.3 | 44.6 | 2.8 | 0T |
02 | 0.140 | 3.84 | 0.72 | 10.0 | 14.7 | 46.3 | 1.47 | 13.5 | 163.6 | 48.3 | 56.0 | 30.8 | 1.9 | 0T |
03 | 0.122 | 6.98 | 0.78 | 4.9 | 3.4 | 38.9 | 0.69 | 5.7 | 173.4 | 63.3 | 69.6 | 32.0 | 2.0 | 0T |
04 | 0.693 | 7.39 | 0.80 | 35.2 | 6.8 | 63.3 | 0.19 | 36.8 | 151.3 | 69.7 | 71.6 | 26.2 | 1.6 | 0T |
05 | 0.282 | 4.21 | 0.73 | 16.8 | 26.1 | 266.4 | 1.56 | 22.9 | 153.2 | 52.3 | 58.5 | 32.3 | 2.0 | 0T |
ZG09-01 | 0.052 | 8.55 | 0.79 | 1.3 | 2.8 | 77.3 | 2.19 | 2.0 | 169.6 | 70.8 | 74.9 | 31.0 | 1.9 | 0T |
02 | 0.193 | 4.68 | 0.74 | 10.7 | 10.9 | 86.4 | 1.02 | 13.3 | 172.8 | 51.9 | 59.9 | 33.9 | 2.1 | 0T |
03 | 0.099 | 3.05 | 0.74 | 9.6 | 8.0 | 76.5 | 0.83 | 11.5 | 150.9 | 57.0 | 62.0 | 31.1 | 1.9 | 1T |
04 | 1.582 | 9.78 | 0.77 | 23.6 | 92.1 | 135.5 | 3.90 | 45.2 | 258.3 | 67.5 | 80.2 | 37.7 | 2.3 | 2T |
05 | 0.321 | 8.18 | 0.80 | 7.8 | 3.7 | 125.4 | 0.48 | 8.7 | 183.6 | 66.6 | 73.3 | 45.9 | 2.8 | 0T |
ZG02-01 | 0.066 | 2.42 | 0.65 | 9.8 | 35.6 | 81.6 | 3.64 | 18.2 | 168.4 | 37.8 | 46.3 | 18.9 | 1.2 | 0T |
02 | 0.158 | 1.96 | 0.61 | 19.0 | 88.3 | 109.5 | 4.65 | 39.8 | 161.6 | 38.2 | 46.3 | 27.4 | 1.7 | 2T |
03 | 0.281 | 5.52 | 0.76 | 17.4 | 30.4 | 34.9 | 1.74 | 24.5 | 155.1 | 59.5 | 64.5 | 22.5 | 1.4 | 0T |
04 | 1.044 | 8.28 | 0.79 | 41.2 | 33.3 | 149.4 | 0.81 | 49.0 | 289.4 | 63.5 | 78.1 | 26.5 | 1.6 | 1T |
05 | 0.237 | 3.64 | 0.70 | 15.0 | 60.1 | 103.5 | 4.00 | 29.1 | 186.3 | 44.1 | 53.5 | 26.2 | 1.6 | 0T |
Non-Mineralized Granite | ||||||||||||||
ZG03-01 | 0.622 | 12.53 | 0.82 | 6.8 | 3.9 | 102.1 | 0.57 | 7.7 | 221.4 | 75.0 | 84.0 | 62.8 | 3.9 | 0T |
02 | 4.440 | 14.21 | 0.83 | 43.8 | 16.1 | 306.3 | 0.37 | 47.6 | 229.1 | 78.6 | 87.7 | 64.2 | 4.0 | 0T |
03 | 2.922 | 15.28 | 0.83 | 28.8 | 24.4 | 408.6 | 0.85 | 34.5 | 241.6 | 79.3 | 89.6 | 53.9 | 3.3 | 0T |
04 | 0.567 | 8.72 | 0.80 | 9.2 | 5.0 | 108.6 | 0.54 | 10.4 | 216.5 | 63.3 | 73.5 | 63.9 | 4.0 | 0T |
ZG07-01 | 1.314 | 5.27 | 0.75 | 55.8 | 28.2 | 322.1 | 0.51 | 62.4 | 206.4 | 50.4 | 60.8 | 43.2 | 2.7 | 0T |
02 | 0.387 | 2.68 | 0.67 | 43.9 | 30.7 | 392.7 | 0.70 | 51.1 | 209.4 | 35.7 | 45.8 | 34.3 | 2.1 | 0T |
03 | 0.429 | 2.81 | 0.69 | 38.7 | 24.1 | 289.9 | 0.62 | 44.4 | 164.9 | 41.2 | 49.5 | 40.2 | 2.5 | 0T |
04 | 0.586 | 3.49 | 0.73 | 24.3 | 15.1 | 262.9 | 0.62 | 27.8 | 125.3 | 52.7 | 55.6 | 66.8 | 4.1 | 0T |
ZG08-01 | 7.933 | 6.45 | 0.77 | 49.4 | 121.7 | 332.7 | 2.46 | 78.0 | 251.1 | 60.7 | 73.3 | 166.0 | 10.3 | 1T |
02 | 1.965 | 7.58 | 0.79 | 47.4 | 13.6 | 285.4 | 0.29 | 50.6 | 193.8 | 62.4 | 70.8 | 52.6 | 3.3 | 0T |
03 | 1.259 | 2.79 | 0.74 | 71.2 | 32.5 | 452.0 | 0.46 | 78.8 | 148.4 | 54.8 | 60.0 | 63.1 | 3.9 | 1T |
Mineralized Granite | ||||||||||||||
ZG05-01 | 8.507 | 26.62 | 0.86 | 17.8 | 9.1 | 225.7 | 0.51 | 19.9 | 295.6 | 94.6 | 107.5 | 148.9 | 9.2 | 0T |
02 | 1.730 | 4.42 | 0.74 | 24.9 | 21.4 | 313.3 | 0.86 | 29.9 | 183.9 | 48.9 | 57.9 | 143.2 | 8.9 | 0T |
ZG11-01 | 6.955 | 10.09 | 0.80 | 35.2 | 24.2 | 438.9 | 0.69 | 40.9 | 220.8 | 67.4 | 77.5 | 168.2 | 10.4 | 0T |
02 | 3.152 | 7.88 | 0.79 | 21.2 | 15.6 | 267.7 | 0.73 | 24.9 | 173.8 | 67.2 | 72.7 | 163.4 | 10.1 | 0T |
03 | 1.103 | 3.63 | 0.71 | 34.7 | 33.2 | 393.1 | 0.96 | 42.5 | 198.4 | 42.7 | 52.7 | 81.7 | 5.1 | 0T |
Durango Apatite Standard | ||||||||||||||
Durango | 4.111 | - | 1.00 | - | - | - | 21.45 | - | - | - | - | 31.0 | 1.9 | - |
Durango | 3.921 | - | 1.00 | - | - | - | 22.28 | - | - | - | - | 31.9 | 2.0 | - |
Durango | 7.102 | - | 1.00 | - | - | - | 21.64 | - | - | - | - | 31.6 | 2.0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Kohn, B.P.; Boone, S.C.; Wang, D.; Wang, K. Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology. Minerals 2021, 11, 116. https://doi.org/10.3390/min11020116
Sun Y, Kohn BP, Boone SC, Wang D, Wang K. Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology. Minerals. 2021; 11(2):116. https://doi.org/10.3390/min11020116
Chicago/Turabian StyleSun, Yue, Barry P. Kohn, Samuel C. Boone, Dongsheng Wang, and Kaixing Wang. 2021. "Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology" Minerals 11, no. 2: 116. https://doi.org/10.3390/min11020116
APA StyleSun, Y., Kohn, B. P., Boone, S. C., Wang, D., & Wang, K. (2021). Burial and Exhumation History of the Lujing Uranium Ore Field, Zhuguangshan Complex, South China: Evidence from Low-Temperature Thermochronology. Minerals, 11(2), 116. https://doi.org/10.3390/min11020116