Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation
Abstract
:1. Introduction
2. Methods for Systematic Review
- -
- RQ 1: What are the ML research trends in the mining industry (yearly, publication sources, detailed application fields)?
- -
- RQ 2: Which ML models were used in your research (data type, large data, model usage frequency, detailed application in the field)?
- -
- RQ 3: How did you evaluate the ML models (model evaluation data, evaluation metrics, quantification of the evaluation results by models)?
2.1. Search Method
2.2. Selection Criteria
3. Results
3.1. RQ 1: ML Research Trends in the Mining Industry
3.1.1. Publication Year
3.1.2. Publication Source
3.1.3. Detailed Fields of Application
3.2. RQ 2: ML Models
3.2.1. Data set type
3.2.2. Big Data
3.2.3. ML Models
3.2.4. ML Model Used for Specific Purposes in Mining
3.3. RQ 3: ML Model Evaluation
3.3.1. Model Evaluation Data
3.3.2. Model Evaluation Metrics
4. Conclusions
- -
- Several studies have been conducted since 2018, and the highest number of studies have been conducted in the drilling and blasting items in the exploitation stage.
- -
- The research was conducted using the open-source data predominantly. Ensemble, deep learning, and SVM were extensively used in the fields of exploration, exploitation, and reclamation, respectively.
- -
- The ML model was evaluated using test data, and the evaluation metrics used were RMSE, R, accuracy, MAE and AUC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalski, R.S.; Carbonell, J.G.; Mitchell, T.M. Machine Learning: An Artificial Intelligence Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Malhotra, R. A systematic review of machine learning techniques for software fault prediction. Appl. Soft Comput. 2015, 27, 504–518. [Google Scholar] [CrossRef]
- Handelman, G.S.; Kok, H.K.; Chandra, R.V.; Razavi, A.H.; Huang, S.; Brooks, M.; Lee, M.J.; Asadi, H. Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol. 2019, 212, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Spasić, I.; Nenadic, G. Clinical Text Data in Machine Learning: Systematic Review. JMIR Med. Inform. 2020, 8, e17984. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, C.; Jabbar, M.S.M.; Zaiane, O.; Osornio-Vargas, A.R. A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Heal. 2017, 17, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Senders, J.T.; Staples, P.C.; Karhade, A.V.; Zaki, M.M.; Gormley, W.B.; Broekman, M.; Smith, T.R.; Arnaout, O. Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review. World Neurosurg. 2018, 109, 476–486e1. [Google Scholar] [CrossRef]
- Palaniappan, R.; Sundaraj, K.; Ahamed, N.U. Machine learning in lung sound analysis: A systematic review. Biocybern. Biomed. Eng. 2013, 33, 129–135. [Google Scholar] [CrossRef]
- Mosavi, A.; Salimi, M.; Ardabili, S.F.; Rabczuk, T.; Shamshirband, S.; Varkonyi-Koczy, A.R. State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. Energies 2019, 12, 1301. [Google Scholar] [CrossRef] [Green Version]
- Portugal, I.; Alencar, P.S.C.; Cowan, D. The use of machine learning algorithms in recommender systems: A systematic review. Expert Syst. Appl. 2018, 97, 205–227. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Lee, H.W. Trends in Mineral Resources Development Technology Using Artificial Intelligence. ITFIND 2020, 1935, 13–24. [Google Scholar]
- MINING. Goldcorp partners with IBM to hunt for exploration targets at Red Lake. 2017. Available online: www.mining.com/goldcorppartners-ibm-hunt-exploration-targets-red-lake/ (accessed on 15 February 2019).
- CIM Magazine. Revving up. 2018. Available online: magazine.cim.org/en/technology/revving-up-en/ (accessed on 15 February 2019).
- Forbes. NVIDIA and Komatsu Partner on AI-Based Intelligent Equipment for Improved Safety and Efficiency. 2017. Available online: www.forbes.com/sites/tiriasresearch/2017/12/12/nvidia-and-komatsu-partner-on-ai-based-intelligent-equipment/#63ad3365665b (accessed on 15 February 2019).
- Mining Magazine. NEWTRAX. 2018. Available online: www.miningmagazine.com/partners/partner-content/1332132/the-future-of-mining-isunderground (accessed on 15 February 2019).
- Newtrax. Newtrax Makes the Cover of Mining Magazine’s ’The Future of Mining’ Issue. 2018. Available online: www.newtrax.com/miningmagazine-cover-future-of-mining/ (accessed on 15 February 2019).
- McCoy, J.; Auret, L. Machine learning applications in minerals processing: A review. Miner. Eng. 2019, 132, 95–109. [Google Scholar] [CrossRef]
- Ali, D.; Frimpong, S. Artificial intelligence, machine learning and process automation: Existing knowledge frontier and way forward for mining sector. Artif. Intell. Rev. 2020, 53, 6025–6042. [Google Scholar] [CrossRef]
- Jang, H.; Topal, E. A review of soft computing technology applications in several mining problems. Appl. Soft Comput. 2014, 22, 638–651. [Google Scholar] [CrossRef]
- Barnewold, L.; Lottermoser, B.G. Identification of digital technologies and digitalisation trends in the mining industry. Int. J. Min. Sci. Technol. 2020, 30, 747–757. [Google Scholar] [CrossRef]
- Keele, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering: Technical Report Ver. 2.3; EBSE Technical Report. EBSE-200; EBSE: Durham, UK, 2007; p. 6. [Google Scholar]
- Zhang, S.; Xiao, K.; Carranza, E.J.M.; Yang, F.; Zhao, Z. Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration. Comput. Geosci. 2019, 130, 43–56. [Google Scholar] [CrossRef]
- Beretta, F.; Rodrigues, A.L.; De Lemos, P.R.; Costa, J.F.C.L. Automated lithological classification using UAV and machine learning on an open cast mine. Appl. Earth Sci. 2019, 128, 79–88. [Google Scholar] [CrossRef]
- Bérubé, C.L.; Olivo, G.R.; Chouteau, M.; Perrouty, S.; Shamsipour, P.; Enkin, R.J.; Morris, W.A.; Feltrin, L.; Thiémonge, R. Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada. Ore Geol. Rev. 2018, 96, 130–145. [Google Scholar] [CrossRef]
- Schneider, S.; Melkumyan, A.; Murphy, R.J.; Nettleton, E. Classification of Hyperspectral Imagery Using GPs and the OAD Covariance Function with Automated Endmember Extraction. In Proceedings of the 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, Washington, DC, USA, 7–9 November 2011. [Google Scholar]
- Schnitzler, N.; Ross, P.-S.; Gloaguen, E. Using machine learning to estimate a key missing geochemical variable in mining exploration: Application of the Random Forest algorithm to multi-sensor core logging data. J. Geochem. Explor. 2019, 205, 106344. [Google Scholar] [CrossRef]
- Acosta, I.C.C.; Khodadadzadeh, M.; Tusa, L.; Ghamisi, P.; Gloaguen, R. A Machine Learning Framework for Drill-Core Mineral Mapping Using Hyperspectral and High-Resolution Mineralogical Data Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4829–4842. [Google Scholar] [CrossRef]
- Rahman, A.; Shahriar, S.; Timms, G.; Lindley, C.A.; Davie, A.B.; Biggins, D.; Hellicar, A.; Sennersten, C.; Smith, G.; Coombe, M. A machine learning approach to find association between imaging features and XRF signatures of rocks in underground mines. In 2015 IEEE SENSORS; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Rahman, A.; Timms, G.; Shahriar, S.; Sennersten, C.; Davie, A.; Lindley, C.A.; Hellicar, A.D.; Smith, G.; Biggins, D.; Coombe, M. Association Between Imaging and XRF Sensing: A Machine Learning Approach to Discover Mineralogy in Abandoned Mine Voids. IEEE Sens. J. 2016, 16, 4555–4565. [Google Scholar] [CrossRef]
- Hood, S.B.; Cracknell, M.J.; Gazley, M.F. Linking protolith rocks to altered equivalents by combining unsupervised and supervised machine learning. J. Geochem. Explor. 2018, 186, 270–280. [Google Scholar] [CrossRef]
- Díez-Pastor, J.-F.; Jorge-Villar, S.E.; Arnaiz-González, Á.; García-Osorio, C.; Díaz-Acha, Y.; Campeny, M.; Bosch, J.; Melgarejo, J.C. Machine learning algorithms applied toRaman spectra for the identification of variscite originating from the mining complex of Gavà. J. Raman Spectrosc. 2020, 51, 1563–1574. [Google Scholar] [CrossRef]
- Kaplan, U.E.; Topal, E. A New Ore Grade Estimation Using Combine Machine Learning Algorithms. Minerals 2020, 10, 847. [Google Scholar] [CrossRef]
- Yeomans, C.M.; Shail, R.K.; Grebby, S.; Nykänen, V.; Middleton, M.; Lusty, P.A. A machine learning approach to tungsten prospectivity modelling using knowledge-driven feature extraction and model confidence. Geosci. Front. 2020, 11, 2067–2081. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Xiang, J. Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Comput. Appl. 2019, 32, 2037–2053. [Google Scholar] [CrossRef]
- Sun, T.; Chen, F.; Zhong, L.; Liu, W.; Wang, Y. GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geol. Rev. 2019, 109, 26–49. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, K.; Li, N. Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China. Earth Sci. Inform. 2018, 11, 553–566. [Google Scholar] [CrossRef]
- Granek, J.; Haber, E. Data mining for real mining: A robust algorithm for prospectivity mapping with uncertainties. In Proceedings of the 2015 SIAM International Conference on Data Mining, Vancouver, BC, Canada, 30 April–2 May 2015; Society for Industrial & Applied Mathematics (SIAM): Philadelphia, PA, USA, 2015; pp. 145–153. [Google Scholar]
- Carranza, E.J.M.; Laborte, A.G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geol. Rev. 2015, 71, 777–787. [Google Scholar] [CrossRef]
- Xiong, Y.; Zuo, R.; Carranza, E.J.M. Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geol. Rev. 2018, 102, 811–817. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Laborte, A.G. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput. Geosci. 2015, 74, 60–70. [Google Scholar] [CrossRef]
- Zuo, R.; Carranza, E.J.M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37, 1967–1975. [Google Scholar] [CrossRef]
- Tessema, A. Mineral Systems Analysis and Artificial Neural Network Modeling of Chromite Prospectivity in the Western Limb of the Bushveld Complex, South Africa. Nat. Resour. Res. 2017, 26, 465–488. [Google Scholar] [CrossRef]
- Rodríguez-Galiano, V.; Sanchez-Castillo, M.; Chicaolmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Guo, H.; Nguyen, H.; Vu, D.-A.; Bui, X.-N. Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach. Resour. Policy 2019, 101474. [Google Scholar] [CrossRef]
- Nourali, H.; Osanloo, M. A regression-tree-based model for mining capital cost estimation. Int. J. Min. Reclam. Environ. 2020, 34, 88–100. [Google Scholar] [CrossRef]
- Ajak, A.D.; Lilford, E.; Topal, E. Application of predictive data mining to create mine plan flexibility in the face of geological uncertainty. Resour. Policy 2018, 55, 62–79. [Google Scholar] [CrossRef]
- Paduraru, C.; Dimitrakopoulos, R. Responding to new information in a mining complex: Fast mechanisms using machine learning. Min. Technol. 2019, 128, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Khorolskyi, A.O.; Hrinov, V.; Mamaikin, O.; Demchenko, Y. Models and methods to make decisions while mining production scheduling. Min. Miner. Depos. 2019, 13, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Asa, E. Machine learning characterization of a two-seam coal deposit. J. Min. Sci. 2011, 47, 761–770. [Google Scholar] [CrossRef]
- Ming, J.; Zhang, L.; Sun, J.; Zhang, Y. Analysis models of technical and economic data of mining enterprises based on big data analysis. In Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 20–22 April 2018; pp. 224–227. [Google Scholar]
- Nguyen, H.; Bui, X.-N. Predicting Blast-Induced Air Overpressure: A Robust Artificial Intelligence System Based on Artificial Neural Networks and Random Forest. Nat. Resour. Res. 2019, 28, 893–907. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Shahnazar, A.; Amnieh, H.B.; Armaghani, D.J. Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model. Eng. Comput. 2017, 33, 23–31. [Google Scholar] [CrossRef]
- Khandelwal, M.; Monjezi, M. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method. Rock Mech. Rock Eng. 2012, 46, 389–396. [Google Scholar] [CrossRef]
- Sari, M.; Ghasemi, E.; Ataei, M. Stochastic Modeling Approach for the Evaluation of Backbreak due to Blasting Operations in Open Pit Mines. Rock Mech. Rock Eng. 2013, 47, 771–783. [Google Scholar] [CrossRef]
- Jang, H.; Topal, E.; Kawamura, Y. Decision support system of unplanned dilution and ore-loss in underground stoping operations using a neuro-fuzzy system. Appl. Soft Comput. 2015, 32, 1–12. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, J.; Koopialipoor, M.; Armaghani, D.J.; Tahir, M.M. Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Eng. Comput. 2021, 37, 173–186. [Google Scholar] [CrossRef]
- Amini, H.; Gholami, R.; Monjezi, M.; Torabi, S.R.; Zadhesh, J. Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput. Appl. 2011, 21, 2077–2085. [Google Scholar] [CrossRef]
- Manoj, K.; Monjezi, M. Prediction of flyrock in open pit blasting operation using machine learning method. Int. J. Min. Sci. Technol. 2013, 23, 313–316. [Google Scholar] [CrossRef]
- Lu, X.; Hasanipanah, M.; Brindhadevi, K.; Amnieh, H.B.; Khalafi, S. ORELM: A Novel Machine Learning Approach for Prediction of Flyrock in Mine Blasting. Nat. Resour. Res. 2020, 29, 641–654. [Google Scholar] [CrossRef]
- Monjezi, M.; Khoshalan, H.A.; Varjani, A.Y. Prediction of flyrock and backbreak in open pit blasting operation: A neuro-genetic approach. Arab. J. Geosci. 2012, 5, 441–448. [Google Scholar] [CrossRef]
- Fang, Q.; Nguyen, H.; Bui, X.-N.; Nguyen-Thoi, T. Prediction of Blast-Induced Ground Vibration in Open-Pit Mines Using a New Technique Based on Imperialist Competitive Algorithm and M5Rules. Nat. Resour. Res. 2020, 29, 791–806. [Google Scholar] [CrossRef]
- Chandar, K.R.; Sastry, V.R.; Hegde, C. A Critical Comparison of Regression Models and Artificial Neural Networks to Predict Ground Vibrations. Geotech. Geol. Eng. 2016, 35, 573–583. [Google Scholar] [CrossRef]
- Zhang, X.; Nguyen, H.; Bui, X.-N.; Tran, Q.-H.; Nguyen, D.-A.; Bui, D.T.; Moayedi, H. Novel Soft Computing Model for Predicting Blast-Induced Ground Vibration in Open-Pit Mines Based on Particle Swarm Optimization and XGBoost. Nat. Resour. Res. 2020, 29, 711–721. [Google Scholar] [CrossRef]
- Mulaba-Bafubiandi, A.F.; Tartibu, L.K. A Predictive Approach for Vibration Analysis in Underground Mining Operation. In Proceedings of the 2019 6th International Conference on Soft Computing & Machine Intelligence (ISCMI), Johannesburg, South Africa, 19–20 November 2019; pp. 101–105. [Google Scholar]
- Xu, S.; Li, Y.; Liu, J.; Zhang, F. Optimization of blasting parameters for an underground mine through prediction of blasting vibration. J. Vib. Control. 2019, 25, 1585–1595. [Google Scholar] [CrossRef]
- Nguyen, H.; Drebenstedt, C.; Bui, X.-N.; Bui, D.T. Prediction of Blast-Induced Ground Vibration in an Open-Pit Mine by a Novel Hybrid Model Based on Clustering and Artificial Neural Network. Nat. Resour. Res. 2020, 29, 691–709. [Google Scholar] [CrossRef]
- Nguyen, H. Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: A case study in an open-pit coal mine of Vietnam. SN Appl. Sci. 2019, 1, 283. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Bui, X.-N.; Moayedi, H. A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophys. 2019, 67, 1025–1037. [Google Scholar] [CrossRef]
- Shang, Y.; Nguyen, H.; Bui, X.-N.; Tran, Q.-H.; Moayedi, H. A Novel Artificial Intelligence Approach to Predict Blast-Induced Ground Vibration in Open-Pit Mines Based on the Firefly Algorithm and Artificial Neural Network. Nat. Resour. Res. 2020, 29, 723–737. [Google Scholar] [CrossRef]
- Nguyen, H.; Bui, X.-N.; Bui, H.-B.; Cuong, D.T. Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study. Acta Geophys. 2019, 67, 477–490. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Amnieh, H.B.; Arab, H.; Zamzam, M.S. Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput. Appl. 2018, 30, 1015–1024. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, X.; Li, X. Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J. Vib. Control. 2016, 22, 3986–3997. [Google Scholar] [CrossRef]
- Jang, H.; Topal, E.; Kawamura, Y. Unplanned dilution and ore loss prediction in longhole stoping mines via multiple regression and artificial neural network analyses. J. S. Afr. Inst. Min. Met. 2015, 115, 449–456. [Google Scholar] [CrossRef]
- D’Angelo, T.; Mendes, M.; Keller, B.; Ferreira, R.; Delabrida, S.; Rabelo, R.; Azpurua, H.; Bianchi, A. Deep Learning-Based Object Detection for Digital Inspection in the Mining Industry. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 633–640. [Google Scholar]
- Zhang, Y.; Ma, X.; Zhang, Y.; Yang, J. Support vector machine of the coal mine machinery equipment fault diagnosis. In Proceedings of the 2013 IEEE International Conference on Information and Automation (ICIA), Yinchuan, China, 26–28 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1141–1146. [Google Scholar]
- Ristovski, K.; Gupta, C.; Harada, K.; Tang, H.-K. Dispatch with Confidence. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2017; pp. 1981–1989. [Google Scholar]
- Baek, J.; Choi, Y. Deep Neural Network for Ore Production and Crusher Utilization Prediction of Truck Haulage System in Underground Mine. Appl. Sci. 2019, 9, 4180. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Choi, Y. Deep Neural Network for Predicting Ore Production by Truck-Haulage Systems in Open-Pit Mines. Appl. Sci. 2020, 10, 1657. [Google Scholar] [CrossRef] [Green Version]
- Xue, E.; Sun, W.; Liang, R. A new method of real time dynamic forecast of truck link travel time in open mines. J. Chin. Coal Soc. 2012, 37, 1418–1422. [Google Scholar]
- Sun, X.; Zhang, H.; Tian, F.; Yang, L. The Use of a Machine Learning Method to Predict the Real-Time Link Travel Time of Open-Pit Trucks. Math. Probl. Eng. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, S.S.; Kanellakis, C.; Georgoulas, G.; Nikolakopoulos, G. Towards MAV Navigation in Underground Mine Using Deep Learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 880–885. [Google Scholar]
- Vayenas, N.; Peng, S. Reliability analysis of underground mining equipment using genetic algorithms. J. Qual. Maint. Eng. 2014, 20, 32–50. [Google Scholar] [CrossRef]
- Ding, H.; Li, G.; Dong, X.; Lin, Y. Prediction of Pillar Stability for Underground Mines Using the Stochastic Gradient Boosting Technique. IEEE Access 2018, 6, 69253–69264. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods. J. Comput. Civ. Eng. 2016, 30, 04016003. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Shi, X. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- He, M.; E Sousa, L.R.; Miranda, T.F.S.; Zhu, G. Rockburst laboratory tests database—Application of data mining techniques. Eng. Geol. 2015, 185, 116–130. [Google Scholar] [CrossRef]
- Du, S.; Feng, G.-R.; Wang, J.; Feng, S.; Malekian, R.; Li, Z. A New Machine-Learning Prediction Model for Slope Deformation of an Open-Pit Mine: An Evaluation of Field Data. Energies 2019, 12, 1288. [Google Scholar] [CrossRef] [Green Version]
- Bui, X.-N.; Nguyen, H.; Choi, Y.; Nguyen-Thoi, T.; Zhou, J.; Dou, J. Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Wu, S.; Jin, W. Real-Time Monitoring and Prediction Method to Slope Displacement in Transition from Open Pit to Underground. Electr. J. Geotech. Eng. 2015, 20, 9649–9656. [Google Scholar]
- Qi, C.; Tang, X. A hybrid ensemble method for improved prediction of slope stability. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 1823–1839. [Google Scholar] [CrossRef]
- Jiang, S.; Lian, M.; Lu, C.; Gu, Q.; Ruan, S.; Xie, X. Ensemble Prediction Algorithm of Anomaly Monitoring Based on Big Data Analysis Platform of Open-Pit Mine Slope. Complexity 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Qi, C.; Chen, Q.; Fourie, A.; Zhang, Q. An intelligent modelling framework for mechanical properties of cemented paste backfill. Miner. Eng. 2018, 123, 16–27. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, W.; Ding, X.; Shi, X.; Luan, B.; Li, M. Ensemble Learning Regression for Estimating Unconfined Compressive Strength of Cemented Paste Backfill. IEEE Access 2019, 7, 72125–72133. [Google Scholar] [CrossRef]
- Qi, C.; Chen, Q.; Dong, X.; Zhang, Q.; Yaseen, Z.M. Pressure drops of fresh cemented paste backfills through coupled test loop experiments and machine learning techniques. Powder Technol. 2020, 361, 748–758. [Google Scholar] [CrossRef]
- Hasan, A.N.; Twala, B. Improving single classifiers prediction accuracy for underground water pump station in a gold mine using ensemble techniques. In Proceedings of the IEEE EUROCON 2015-International Conference on Computer as a Tool (EUROCON), Salamanca, Spain, 8–11 September 2015; pp. 1–7. [Google Scholar]
- Hasan, A.N.; Twala, B.; Marwala, T. Moving towards accurate monitoring and prediction of gold mine underground dam levels. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 2844–2849. [Google Scholar]
- Wei, W.; Shi, L.; Lu, X.; Zhang, F. Prediction of Mine Water Inflow Based on Support Vector Machine. In Proceedings of the 2011 Workshop on Digital Media and Digital Content Management, Hangzhou, China , 15–16 May 2011; pp. 326–329. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, Q.; Cui, F.; Xu, H.; Zeng, Y.; Cao, Y.; Du, Y. Using random forest for the risk assessment of coal-floor water inrush in Panjiayao Coal Mine, northern China. Hydrogeol. J. 2018, 26, 2327–2340. [Google Scholar] [CrossRef]
- Jo, B.W.; Khan, R.M.A. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning. Sensors 2018, 18, 930. [Google Scholar] [CrossRef] [Green Version]
- Bui, X.-N.; Lee, C.W.; Nguyen, H.; Bui, H.-B.; Long, N.Q.; Le, Q.-T.; Nguyen, V.-D.; Nguyen, N.-B.; Moayedi, H. Estimating PM10 Concentration from Drilling Operations in Open-Pit Mines Using an Assembly of SVR and PSO. Appl. Sci. 2019, 9, 2806. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Zhou, W.; Lu, X.; Luocd, H.; Pham, B.T.; Yaseen, Z.M. Particulate matter concentration from open-cut coal mines: A hybrid machine learning estimation. Environ. Pollut. 2020, 263, 114517. [Google Scholar] [CrossRef] [PubMed]
- Boullé, M. Predicting Dangerous Seismic Events in Coal Mines under Distribution Drift. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, Gdansk, Poland, 11–14 September 2016; pp. 221–224. [Google Scholar]
- Geng, Y.; Su, L.; Jia, Y.; Han, C. Seismic Events Prediction Using Deep Temporal Convolution Networks. J. Electr. Comput. Eng. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Krzystanek, Z.; Bojko, B.; Śpiechowicz, K. Application of a hybrid method of machine learning for description and on-line estimation of methane hazard in mine workings. J. Min. Sci. 2011, 47, 493–505. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, X.; Zhou, Y. Application of the PSO-SVM model for coal mine safety assessment. In Proceedings of the 2012 8th International Conference on Natural Computation, Chongqing, China, 29–31 May 2012; pp. 393–397. [Google Scholar]
- Zhang, C.; Fu, Y.; Deng, F.; Wei, B.; Wu, X. Methane Gas Density Monitoring and Predicting Based on RFID Sensor Tag and CNN Algorithm. Electron. 2018, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Bewley, A.; Upcroft, B. Background Appearance Modeling with Applications to Visual Object Detection in an Open-Pit Mine. J. Field Robot. 2016, 34, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Gernand, J. Machine Learning Classification Models for More Effective Mine Safety Inspections. Adv. Manuf. 2014. [Google Scholar] [CrossRef]
- Kashnikov, A.; Levin, L.Y. Applying machine learning techniques to mine ventilation control systems. In Proceedings of the 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), St. Petersburg, Russia, 24–26 May 2017; pp. 391–393. [Google Scholar]
- Petropoulos, G.P.; Partsinevelos, P.; Mitraka, Z. Change detection of surface mining activity and reclamation based on a machine learning approach of multi-temporal Landsat TM imagery. Geocarto Int. 2013, 28, 323–342. [Google Scholar] [CrossRef]
- He, D.; Le, B.T.; Xiao, D.; Mao, Y.; Shan, F.; Ha, T.T.L. Coal mine area monitoring method by machine learning and multispectral remote sensing images. Infrared Phys. Technol. 2019, 103, 103070. [Google Scholar] [CrossRef]
- Maxwell, A.; Strager, M.; Warner, T.; Zégre, N.; Yuill, C. Comparison of NAIP orthophotography and RapidEye satellite imagery for mapping of mining and mine reclamation. GIScience Remote Sens. 2014, 51, 301–320. [Google Scholar] [CrossRef]
- Demirel, N.; Emil, M.K.; Duzgun, H.S. Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. Int. J. Coal Geol. 2011, 86, 3–11. [Google Scholar] [CrossRef]
- Vasuki, Y.; Yu, L.; Holden, E.-J.; Kovesi, P.; Wedge, D.; Grigg, A.H. The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A Visual Analytics Approach. Ore Geol. Rev. 2019, 108, 23–32. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A. Differentiating mine-reclaimed grasslands from spectrally similar land cover using terrain variables and object-based machine learning classification. Int. J. Remote Sens. 2015, 36, 4384–4410. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, J.; Mukhopadhyay, J.; Chakravarty, D.; Aikat, S. A Novel Index to Detect Opencast Coal Mine Areas from Landsat 8 OLI/TIRS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 891–897. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Cheng, X.; Wang, L. A Comparison of Machine Learning Algorithms for Mapping of Complex Surface-Mined and Agricultural Landscapes Using ZiYuan-3 Stereo Satellite Imagery. Remote Sens. 2016, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.; Warner, T.; Strager, M.; Conley, J.; Sharp, A. Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, W.-X.; Zhao, H.-Q.; Yang, Q.-C.; Chen, M. Quantitative evaluation of mining geo-environmental quality in Northeast China: Comprehensive index method and support vector machine models. Environ. Earth Sci. 2014, 73, 7945–7955. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, J.; Zhao, S.; Wang, L.; Liu, J.; Guo, J. Comparative Assessment of Three Nonlinear Approaches for Landslide Susceptibility Mapping in a Coal Mine Area. ISPRS Int. J. Geo-Information 2017, 6, 228. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Lin, F.; Zhu, S.; Yu, M.; Zhang, Z.; Meng, L.; Peng, J. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors. PLoS ONE 2019, 14, e0215134. [Google Scholar] [CrossRef]
- Lee, S.; Park, I. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. J. Environ. Manag. 2013, 127, 166–176. [Google Scholar] [CrossRef]
- Bui, D.T.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Pradhan, B.; Pourghasemi, H.R.; Khosravi, K.; Panahi, M.; Bin Ahmad, B.; Lee, S. Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors 2018, 18, 2464. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Tan, Z.; Yan, L.; Deng, K. Time series prediction of mining subsidence based on a SVM. Min. Sci. Technol. (China) 2011, 21, 557–562. [Google Scholar] [CrossRef]
- Aryafar, A.; Gholami, R.; Rooki, R.; Ardejani, F.D. Heavy metal pollution assessment using support vector machine in the Shur River, Sarcheshmeh copper mine, Iran. Environ. Earth Sci. 2012, 67, 1191–1199. [Google Scholar] [CrossRef]
- Betrie, G.D.; Tesfamariam, S.; Morin, K.A.; Sadiq, R. Predicting copper concentrations in acid mine drainage: A comparative analysis of five machine learning techniques. Environ. Monit. Assess. 2012, 185, 4171–4182. [Google Scholar] [CrossRef] [PubMed]
- Boente, C.; Albuquerque, M.T.D.; Gerassis, S.; Rodríguez-Valdés, E.; Gallego, J.R. A coupled multivariate statistics, geostatistical and machine-learning approach to address soil pollution in a prototypical Hg-mining site in a natural reserve. Chemosphere 2019, 218, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Betrie, G.D.; Sadiq, R.; Tesfamariam, S.; Morin, K.A. On the Issue of Incomplete and Missing Water-Quality Data in Mine Site Databases: Comparing Three Imputation Methods. Mine Water Environ. 2014, 35, 3–9. [Google Scholar] [CrossRef]
- Manca, G.; Cervone, G. The case of arsenic contamination in the Sardinian Geopark, Italy, analyzed using symbolic machine learning. Environmetrics 2013, 24, 400–406. [Google Scholar] [CrossRef]
- Betrie, G.D.; Sadiq, R.; Morin, K.A.; Tesfamariam, S. Uncertainty quantification and integration of machine learning techniques for predicting acid rock drainage chemistry: A probability bounds approach. Sci. Total. Environ. 2014, 490, 182–190. [Google Scholar] [CrossRef]
- IBM. Analytics: The Real-World Use of Big Data. Available online: http://www.informationweek.com/pdf_whitepapers/approved/1372892704_analytics_the_real_world_use_of_big_data.pdf (accessed on 10 June 2019).
- Kuhn, M.; Johnson, K. Applied Predictive Modeling, 1st ed.; Springer: New York, NY, USA, 2013; Volume 26, p. 67. ISBN 978-1-4614-6848-6. [Google Scholar]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
Publication Name | Number of Research Papers |
---|---|
Natural Resources Research | 7 |
Ore Geology Reviews | 6 |
Applied Sciences | 3 |
Acta Geophysica | 2 |
Computers & Geosciences | 2 |
Engineering with Computers | 2 |
Environmental Earth Sciences | 2 |
IEEE Access | 2 |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2 |
International Journal of Remote Sensing | 2 |
Journal of Geochemical Exploration | 2 |
Journal of Mining Science | 2 |
Journal of Vibration and Control | 2 |
Resources Policy | 2 |
Rock Mechanics and Rock Engineering | 2 |
Sensors | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, D.; Choi, Y. Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation. Minerals 2021, 11, 148. https://doi.org/10.3390/min11020148
Jung D, Choi Y. Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation. Minerals. 2021; 11(2):148. https://doi.org/10.3390/min11020148
Chicago/Turabian StyleJung, Dahee, and Yosoon Choi. 2021. "Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation" Minerals 11, no. 2: 148. https://doi.org/10.3390/min11020148
APA StyleJung, D., & Choi, Y. (2021). Systematic Review of Machine Learning Applications in Mining: Exploration, Exploitation, and Reclamation. Minerals, 11(2), 148. https://doi.org/10.3390/min11020148