Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40Ar/39Ar Dating, Laboratory Experiment, Numerical Simulation
Abstract
:1. Introduction
2. Laboratory Experiment
3. Results
3.1. Results of 40Ar/39Ar Dating of Phlogopite of the Mantle Xenoliths
3.2. Morphology, Composition, and Structural Features of Phlogopites Prior to and after Laboratory Experiments
4. Numerical Simulation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bulanova, G.P.; Muchemwa, E.; Pearson, D.G.; Griffin, B.J.; Kelley, S.P.; Klemme, S.; Smith, C.B. Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe)—Evidence for metasomatic conditions of growth. Lithos 2004, 77, 181–192. [Google Scholar] [CrossRef]
- Gregory, L.C.; Meert, J.G.; Pradhan, V.; Pandit, M.K.; Tamrat, E.; Malone, S.J. A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: Implications for the age of the Upper Vindhyan Supergroup. Precambrian Res. 2006, 149, 65–75. [Google Scholar] [CrossRef]
- Phillips, D.; Harris, J.W. Provenance studies from 40Ar/39Ar dating of mineral inclusions in diamonds: Methodological tests on the Orapa kimberlite, Botswana. Earth Planet. Sci. Lett. 2008, 274, 169–178. [Google Scholar] [CrossRef]
- Zaitsev, A.I.; Smelov, A.P. Isotopic Geochronology of Rocks of the Kimberlite Formation of the Yakut Province; IGABM SB RAS; Offset: Yakutsk, Russia, 2010; 108p. [Google Scholar]
- Osborn, I.; Sherlock, S.; Anand, M.; Argles, T. New Ar–Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res. 2011, 189, 91–103. [Google Scholar] [CrossRef]
- Kostrovitsky, S.I.; Solovyova, L.V.; Yakovlev, D.A.; Suvorova, L.F.; Sandimirova, G.P.; Travin, A.V.; Yudin, D.S. Kimberlites and megacrystal Association of minerals, isotope-geochemical studies. Petrology 2013, 21, 143–162. [Google Scholar] [CrossRef]
- Pokhilenko, L.N.; Alifirova, T.A.; Yudin, D.S. 40Ar/39Ar-Dating of phlogopite from mantle xenoliths: Evidence of ancient deep metasomatism of the lithosphere of the Siberian craton. Dokl. RAS 2013, 449, 76–79. [Google Scholar] [CrossRef]
- Yudin, D.S.; Tomilenko, A.A.; Travin, A.V.; Agashev, A.M.; Pokhilenko, N.P. Orihashi Yu. Age of introduction of the Udachnaya-Vostochnaya kimberlite pipe: U/Pb and 40Ar/39Ar data. Dokl. RAS 2014, 455, 91–93. [Google Scholar] [CrossRef]
- Ashchepkov, I.V.; Logvinova, A.M.; Reimers, L.F.; Ntaflos, T.; Spetsius, Z.V.; Vladykin, N.V.; Downes, H.; Yudin, D.S.; Travin, A.V.; Makovchuk, I.V.; et al. The Sytykanskaya kimberlite pipe: Evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit, Yakutia, Russia. Geosci. Front. 2015, 6, 687–714. [Google Scholar] [CrossRef] [Green Version]
- Larionova, Y.O.; Sazonova, L.V.; Lebedeva, N.M.; Nosova, A.A.; Tretyachenko, V.V.; Travin, A.V.; Kargin, A.V.; Yudin, D.S. Age of the Arkhangelsk Province kimberlites: Rb-Sr, 40Ar/39Ar isotopic-geochronological and mineralogical data for phlogopite. Petrology 2016, 24, 607–639. [Google Scholar] [CrossRef]
- Pushkarev, Y.D. Actual Problems of K-Ar Geochronometry: Report at the 1st All-Union Workshop on Isotope Geochronology (5–12 May 1976); USSR AS. Geol. Inst. Kolsky Branch: Apatity, Russia, 1977; 54p. [Google Scholar]
- Levskiy, L.K.; Levchenkov, O.A. Geochronology and Geochemistry of Isotopes: Proceedings; Pre-Cambrian Institute of Geology and Geochronology (USSR Academy of Sciences) Publ. House “Nauka”, Leningrad Branch: Moscow, Russia, 1987; 216p. [Google Scholar]
- Morozova, I.M.; Rublev, A.G. Potassium-Argon Systems of Polymetamorphic Rocks; Shukolyukov, Y.A.М., Ed.; Nauka: Moscow, Russia, 1987; pp. 19–28. [Google Scholar]
- Lee, J.K.W. The argon release mechanisms of hornblende in vacuo. Chemi. Geol. 1993, 106, 133–160. [Google Scholar] [CrossRef]
- Sletten, V.M.; Onstott, T.C. The effect of the instability of muscovite during in vacuo heating on 40Ar/39Ar step-heating spectra. Geochim. Cosmochim. Acta 1998, 62, 123–142. [Google Scholar] [CrossRef]
- Lo, C.-H.; Lee, J.K.W.; Onstott, T.C. Argon release mechanisms of biotite in vacuo and the role of short-circuit diffusion and recoil. Chem. Geol. 2000, 165, 135–166. [Google Scholar] [CrossRef]
- Lovera, O.M.; Grove, M.; Harrison, T.M.; Mahon, K.I. Systematic analysis of K-feldspar 40Ar/39Ar step heating results: I Significance of activation energy determinations. Geochim. Cosmochim. Acta 1997, 61, 3171–3192. [Google Scholar] [CrossRef]
- Wartho, J.-A.; Kelley, S.P. 40Ar/39Ar ages in mantle xenolith phlogopites: Determining the ages of multiple lithospheric mantle events and diatreme ascent rates in southern Africa and Malaita, Solomon Islands. In Geochronology: Linking the Isotopic Record with Petrology and Textures, Geological Journa; Vance, D., Müller, W., Villa, I.M., Eds.; Special Publications: London, UK, 2003; Volume 220, pp. 231–248. [Google Scholar] [CrossRef]
- Cassata, W.S.; Renne, P.R.; Shuster, D.L. Argon diffusion in plagioclase and implications for thermochronology: A case study from the Bushveld Complex, South Africa. Geochim. Cosmochim. Acta 2009, 73, 6600–6612. [Google Scholar] [CrossRef]
- Hodges, K.V. Geochronology and Thermochronology in Orogenic Systems. In Treatise on Geochemistry; Elsevier: Oxford, UK, 2004; pp. 263–292. [Google Scholar] [CrossRef]
- Lee, J.K.W.; Aldama, A.A. Multipath diffusion: A general numerical model. Comput. Geosci. 1992, 18, 531–555. [Google Scholar] [CrossRef]
- Harrison, T.M.; Duncan, I.; McDougall, I. Diffusion of 40Ar in biotite—Temperature, pressure and compositional effects. Geochim. Cosmochim. Acta 1985, 49, 2461–2468. [Google Scholar] [CrossRef]
- Harrison, T.M.; Celerier, J.; Aikman, A.B.; Hermann, J.; Heizler, M.T. Diffusion of 40Ar in muscovite. Geochim. Cosmochim. Acta 2009, 73, 1039–1051. [Google Scholar] [CrossRef]
- Baxter, E.F. Diffusion of Noble Gases in Minerals. Rev. Mineral. Geochem. 2010, 72, 509–557. [Google Scholar] [CrossRef]
- Kerchman, V.I.; Lobkovskiy, L.I. Specific features of geology, seismicity, and thermal behaviour of collision-zone belts, due to intracontinental subduction. Rep. USSR Acad. Sci. 1990, 125–132. [Google Scholar]
- Persikov, E.S.; Bukhtiyarov, P.G.; Sokol, A.G. Changes in viscosity of kimberlite and basaltic magmas in the processes of their origination and evolution (forecast). Geol. Geophys. 2015, 56, 1131–1140. [Google Scholar] [CrossRef]
- Peslier, A.H.; Woodland, A.B.; Wolff, J.A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim. Cosmochim. Acta 2008, 72, 2711–2722. [Google Scholar] [CrossRef]
- Alifirova, T.A.; Pokhilenko, L.N. Features of microstructures and accessory mineralogy in garnet peridotites from the Udachnaya kimberlite pipe, Sakha Republic (Yakutia). Lithosphere and alkaline-ultramafic magmatism of the Siberian platform and its framing: Processes of formation of diamond deposits, methods of forecasting and prospecting. Collection of scientific papers on fundamental research of, V.S. Sobolev Institute of Geology and Mineralogy of the SB RAS. Novosibirsk 2018, 2, 4–16. [Google Scholar]
- Pearson, D.G.; Kelly, S.P.; Pokhilenko, N.P.; Boyd, F.R. Laser 40Ar/39Ar analyses of phlogopites from Southern African and Siberian kimberlites and their xenoliths: Modelling of eruption ages, melt degassing, and mantle volatile compositions. Geol. Geophys. 1997, 38, 100–111. [Google Scholar]
- Ichiro, K.; Ken-Ichiro, A. 40Ar/39Ar analyses of phlogopite nodules and phlogopite-bearing peridotites in South African kimberlites. Earth Planet. Sci. Lett. 1978, 40, 119–129. [Google Scholar] [CrossRef]
- Phillips, D. Argon isotope and halogen chemistry of phlogopite from South African kimberlites: A combined step-heating, laser probe, electron microprobe and TEM study. Chem. Geol. Isot. Geosci. Sect. 1991, 87, 71–98. [Google Scholar] [CrossRef]
- Hopp, J.; Trieloff, M.; Brey, G.P.; Woodland, A.B.; Simon, N.S.C.; Wijbrans, J.R.; Siebel, W.; Reitter, E. 40Ar/39Ar-ages of phlogopite in mantle xenoliths from South African kimberlites: Evidence for metasomatic mantle impregnation during the Kibaran orogenic cycle. Lithos 2008, 106, 351–364. [Google Scholar] [CrossRef]
- Foland, K.A. Limited mobility of argon in a metamorphic terrain. Geochim. Cosmochim. Acta 1979, 43, 793–801. [Google Scholar] [CrossRef]
- Roddick, J.C.; Cliff, R.A.; Rex, D.C. The evolution of excess argon in Alpine biotites. A 40Ar/39Ar analysis. Earth Planet. Sci. Lett. 1980, 48, 185–208. [Google Scholar] [CrossRef]
- Dahl, P.S. The crystal-chemical basis for Ar retention in micas: Inferences from interlayer partitioning and implications for geochronology. Contrib. Mineral. Petrol. 1996, 123, 22–39. [Google Scholar] [CrossRef]
- Smye, A.J.; Warren, C.J.; Bickle, M.J. The signature of devolatisation: Extraneous 40Ar systematics in high-pressure metamorphic rocks. Geochim. Cosmochim. Acta 2013, 113, 94–112. [Google Scholar] [CrossRef]
- Baxter, E.F. Quantification of the factors controlling the presence of excess 40Ar or 4He. Earth Planet. Sci. Lett. 2003, 216, 619–634. [Google Scholar] [CrossRef]
- Watson, E.B.; Baxter, E.F. Diffusion in solid-Earth systems. Earth Planet. Sci. Lett. 2007, 253, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Baksi, A.K.; Archibald, D.A.; Farrar, E. Intercalibration of 40Ar/39Ar dating standards. Chem. Geol. 1996, 129, 307–324. [Google Scholar] [CrossRef]
- Chepurov, A.I.; Fedorov, I.I.; Sonin, V.M. Experimental study of diamond formation at high P-T parameters. Geol. Geofiz. 1998, 39, 234–244. [Google Scholar]
- Zhimulev, E.I.; Chepurov, A.I.; Sonin, V.M.; Litasov, K.D.; Chepurov, A.A. Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0–5.5 GPa and 1600 °C. High Press. Res. 2018, 38, 153–164. [Google Scholar] [CrossRef]
- Chepurov, A.A.; Sonin, V.M.; Dereppe, J.M.; Zhimulev, E.I.; Chepurov, A.I. How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology. Eur. J. Mineral. 2020, 32, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.L.; Sobolev, N.V.; Khar’kiv, A.D. New data on the ageof Yakutian kimberlites obtained by the uranium-lead methodon zircons. Dokl. Akad. Nauk SSSR 1980, 254, 175–179. [Google Scholar]
- Kinny, P.D.; Griffin, B.J.; Heaman, L.M.; Brakhfogel, F.F.; Spetsius, Z.V. SHRIMP U-Pb ages of perovskite from Yakutian kimberlites. Geol. Geofiz. 1997, 38, 91–99. [Google Scholar]
- Winterburn, P.A.; Harte, B.; Gurney, J.J. Peridotite xenoliths from the Jagersfontein kimberlite pipe: I. Primary and primary metasomatic mineralogy. Geochim. Cosmochim. Acta 1990, 54, 329–341. [Google Scholar] [CrossRef]
- Erlank, A.J.; Water, F.G.; Haggerty, S.E.; Hawkesworth, C.J. Characterization of metasomatic processes in peridotite nodules contained in kimberlite. In Proceedings of the 4th International Kimberlite Conference: Extended Abstracts, Perth, Australia, 11–15 August 1986; pp. 232–234. [Google Scholar]
- Solovieva, L.V.; Vladimirov, V.M.; Dneprovskaya, L.V.; Maslovskaya, M.I.; Brandt, S.B. Kimberlites and Kimberlite-Like Rocks: Upper Mantle Material under Ancient Platforms; VO “Nauka”: Novosibirsk, Russia, 1997; 256p. [Google Scholar]
- Galimov, E.M.; Solovieva, L.V.; Belomestnykh, A.V. Isotopic composition of carbon from metasomatically altered mantle rocks. Geochemistry/Geokhimiya 1989, 4, 508–515. [Google Scholar]
- Rozen, O.M.; Manakov, A.V.; Serenko, V.P. Palaeoproterozoic collision system and diamond-bearing crustal root of the Yakutsk kimberlite province. Geol. Geophys. 2005, 46, 1259–1272. [Google Scholar]
- Nimis, P.; Taylor, W.R. Single Clinopyroxene Thermobarometery for Garnet Peridotites. Part, I. Calibration and Testing of the Cr-in-Cpx Barometer and an Enstitite-in-Cpx Thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Brey, G.P.; Köhler, T. Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Tutti, F.; Dubrovinsky, L.S.; Saxena, S.K. High pressure transformation of jadeite and stability of NaAlSiO4 with calcium-ferrite type structure in the lower mantle conditions. Geophys. Res. Lett. 2000, 27, 2025–2028. [Google Scholar] [CrossRef]
- Tutti, F.; Lazor, P. Temperature-induced phase transition in phlogopite revealed by Raman spectroscopy. J. Phys. Chem. Solids 2008, 69, 2535–2539. [Google Scholar] [CrossRef]
- Comodi, P.; Fumagalli, P.; Montagnoli, M.; Zanazzi, P.F. A single-crystal study on the pressure behavior of phlogopite and petrological implications. Am. Mineral. 2004, 89, 647–653. [Google Scholar] [CrossRef]
- Chon, C.-M.; Lee, C.-K.; Song, Y.; Kim, S.A. Structural changes and oxidation of ferroan phlogopite with increasing temperature: In situ neutron neutron powder diffraction and Fourier transform infrared spectroscopy. Phys. Chem. Miner. 2006, 33, 289–299. [Google Scholar] [CrossRef]
- Giletti, B.J. Studies in diffusion. Argon in phlogopite mica. In Geochemical Transport and Kinetics. Carnegie Institution of Washington; Hofmann, A.W., Giletti, B.J., Yoder, H.S., Jr., Yund, R.A., Eds.; Carnegie Institution of Washington: Washington, DC, USA, 1974; pp. 107–115. [Google Scholar]
- Hodges, K.V.; Hames, W.E.; Bowring, S.A. 40Ar/39Ar gradients in micas from a high-temperature-low-pressure metamorphic terrain: Evidence for very slow cooling and implications for the interpretation of age spectra. Geology 1994, 22, 55–58. [Google Scholar] [CrossRef]
- Giletti, B.J.; Tullis, J. Studies in diffusion. Pressure dependence of Ar Diffusion in Phlogopite mica. Earth Planet. Sci. Lett. 1977, 35, 180–183. [Google Scholar] [CrossRef]
- McDougall, I.; Harrison, T.M. Geochronology and Thermochronology by the 40Ar/39Ar Method; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Lister, G.S.; Baldwin, S.L. Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh. Tectonophysics 1996, 253, 83–109. [Google Scholar] [CrossRef]
T0C | t (min) | 40Ar, 10−9 cm3 STP | 40Ar/39Ar | ±1σ | 38Ar/39Ar | ±1σ | 37Ar/39Ar | ±1σ | 36Ar/39Ar | ±1σ | Ca/K | ∑39Ar (%) | Age, Ma | ±1σ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
М4/01 phlogopite (0.89 mg), J = 0.00465 ± 0.000057; Total Fusion Age (TFA) = 2404 ± 17 Ma | ||||||||||||||
500 | 10 | 3.56 | 257.26 | 33.76 | 0.0061 | 0.0499 | 0.500 | 0.6606 | 0.6720 | 0.1188 | 1.798 | 1.0 | 435.4 | 163.3 |
750 | 10 | 47.03 | 351.06 | 3.46 | 0.0729 | 0.0086 | 0.186 | 0.1020 | 0.1983 | 0.0089 | 0.669 | 11.1 | 1549.1 | 18.7 |
900 | 10 | 123.05 | 590.64 | 2.84 | 0.0330 | 0.0059 | 0.080 | 0.0559 | 0.0384 | 0.0046 | 0.286 | 26.8 | 2357.3 | 17.6 |
1000 | 10 | 135.97 | 627.21 | 1.91 | 0.0108 | 0.0021 | 0.108 | 0.0216 | 0.0453 | 0.0037 | 0.389 | 43.1 | 2434.1 | 17.0 |
1070 | 10 | 127.95 | 657.52 | 3.85 | 0.0475 | 0.0069 | 0.0701 | 0.0342 | 0.0962 | 0.00867 | 0.252 | 57.7 | 2467.0 | 19.1 |
1100 | 10 | 270.49 | 692.55 | 2.76 | 0.0194 | 0.0039 | 0.0434 | 0.0176 | 0.0349 | 0.00202 | 0.156 | 87.1 | 2577.1 | 17.7 |
1130 | 6 | 117.06 | 682.01 | 8.24 | 0.0498 | 0.0059 | 0.0012 | 0.0456 | 0.0397 | 0.0063 | 0.0043 | 100 | 2553.0 | 23.8 |
М5/01 phlogopite (0.74 mg), J = 0.00463 ± 0.000056; TFA = 2354 ± 17 Ma | ||||||||||||||
650 | 10 | 15.80 | 406.69 | 13.00 | 0.0816 | 0.0170 | 0.450 | 0.2223 | 0.1060 | 0.0323 | 1.620 | 5.1 | 1817.1 | 48.7 |
800 | 10 | 61.34 | 567.22 | 4.48 | 0.0018 | 0.0122 | 0.091 | 0.0577 | 0.0320 | 0.0150 | 0.326 | 19.3 | 2302.1 | 21.4 |
900 | 10 | 75.90 | 592.18 | 4.02 | 0.0282 | 0.0101 | 0.209 | 0.0552 | 0.0981 | 0.0051 | 0.753 | 36.2 | 2314.7 | 18.4 |
1000 | 10 | 67.17 | 608.56 | 7.21 | 0.0484 | 0.0136 | 0.082 | 0.0838 | 0.1039 | 0.0121 | 0.296 | 50.7 | 2348.4 | 23.6 |
1130 | 6 | 240.21 | 639.59 | 2.36 | 0.04 | 0.0028 | 0.115 | 0.0265 | 0.0849 | 0.0029 | 0.413 | 100 | 2429.8 | 17.0 |
М31/01 phlogopite (12.84 mg), J = 0.004611 ± 0.000056; TFA = 2099 ± 15 Ma | ||||||||||||||
500 | 10 | 9.65 | 232.22 | 9.02 | 0.1778 | 0.0298 | 0.816 | 0.0641 | 0.4849 | 0.0398 | 2.936 | 0.2 | 619.9 | 64.7 |
600 | 10 | 19.83 | 349.94 | 12.30 | 0.1836 | 0.0233 | 2.477 | 0.1171 | 0.5846 | 0.0282 | 8.917 | 0.5 | 1077.3 | 39.9 |
700 | 10 | 47.46 | 298.51 | 1.59 | 0.0601 | 0.0089 | 0.405 | 0.0222 | 0.1428 | 0.0083 | 1.459 | 1.3 | 1407.5 | 16.0 |
800 | 10 | 207.15 | 338.19 | 0.92 | 0.0366 | 0.0036 | 0.026 | 0.0163 | 0.0819 | 0.0015 | 0.092 | 4.5 | 1615.0 | 13.4 |
900 | 10 | 653.33 | 341.99 | 0.42 | 0.0295 | 0.00094 | 0.0082 | 0.0042 | 0.0554 | 0.00108 | 0.0296 | 14.3 | 1654.1 | 13.3 |
950 | 10 | 725.87 | 387.25 | 0.39 | 0.0282 | 0.00086 | 0.0197 | 0.0045 | 0.0564 | 0.00081 | 0.071 | 23.9 | 1797.7 | 13.9 |
980 | 10 | 851.55 | 484.19 | 0.43 | 0.0311 | 0.0014 | 0.0049 | 0.0037 | 0.06 | 0.00105 | 0.0178 | 33.0 | 2070.5 | 15.0 |
1000 | 10 | 766.97 | 518.62 | 0.46 | 0.0317 | 0.00081 | 0.0091 | 0.0025 | 0.0771 | 0.00068 | 0.0328 | 40.6 | 2146.4 | 15.3 |
1020 | 10 | 681.26 | 539.22 | 0.46 | 0.0277 | 0.00028 | 0.0144 | 0.0066 | 0.0743 | 0.00077 | 0.0519 | 47.1 | 2199.9 | 15.5 |
1040 | 10 | 1195.4 | 543.76 | 0.82 | 0.0326 | 0.00059 | 0.0032 | 0.0040 | 0.0814 | 0.0011 | 0.0114 | 58.4 | 2205.9 | 15.6 |
1050 | 10 | 2196.2 | 564.54 | 0.83 | 0.038 | 0.00073 | 0.0079 | 0.0045 | 0.1201 | 0.00129 | 0.0285 | 78.4 | 2228.6 | 15.7 |
1050 | 10 | 349.27 | 572.96 | 1.66 | 0.0318 | 0.0034 | 0.017 | 0.0124 | 0.0788 | 0.00334 | 0.0612 | 81.5 | 2277.8 | 16.3 |
1060 | 10 | 925.45 | 576.19 | 0.57 | 0.0336 | 0.00058 | 0.0006 | 0.0036 | 0.0729 | 0.00103 | 0.0023 | 89.8 | 2289.5 | 15.8 |
1070 | 10 | 762.07 | 582.61 | 0.78 | 0.0336 | 0.0014 | 0.0113 | 0.0045 | 0.0849 | 0.00159 | 0.0406 | 96.5 | 2296.2 | 15.9 |
1080 | 10 | 304.65 | 556.59 | 1.32 | 0.0337 | 0.003 | 0.0437 | 0.0111 | 0.0981 | 0.00172 | 0.1574 | 99.3 | 2225.1 | 15.9 |
1100 | 10 | 69.209 | 518.24 | 7.038 | 0.0509 | 0.0082 | 0.0523 | 0.0219 | 0.0935 | 0.00688 | 0.1883 | 100 | 2133.2 | 23.3 |
УВ300/09 phlogopite (1.19 mg), J = 0.004571 ± 0.000055; TFA = 2122 ± 15 Ma | ||||||||||||||
500 | 10 | 5.77 | 359.81 | 7.37 | 0.2394 | 0.0536 | 0.267 | 0.8766 | 0.5348 | 0.0922 | 0.961 | 0.9 | 1179.0 | 117.9 |
700 | 10 | 20.14 | 138.78 | 1.70 | 0.0177 | 0.0105 | 0.165 | 0.0487 | 0.0193 | 0.0081 | 0.592 | 9.1 | 857.3 | 17.0 |
850 | 10 | 38.93 | 231.02 | 1.71 | 0.0346 | 0.0045 | 0.095 | 0.0680 | 0.0449 | 0.0082 | 0.344 | 18.7 | 1246.3 | 16.2 |
975 | 10 | 120.08 | 477.96 | 1.58 | 0.0433 | 0.0072 | 0.057 | 0.0382 | 0.0549 | 0.0044 | 0.207 | 32.9 | 2047.3 | 15.7 |
1050 | 10 | 142.64 | 586.77 | 3.28 | 0.0413 | 0.0072 | 0.035 | 0.0311 | 0.0443 | 0.0023 | 0.125 | 46.7 | 2322.0 | 17.4 |
1130 | 6 | 558.17 | 593.08 | 1.002 | 0.0233 | 0.00129 | 0.021 | 0.0088 | 0.0265 | 0.00098 | 0.075 | 100 | 2348.2 | 16.0 |
Sample | Rock | T, °C | P, GPa |
---|---|---|---|
M4/01 | spinel-garnet olivine websterite | 560 * | 2.8 * |
M5/01 | garnet websterite | 690 ** | 2.0 ** |
M31/01 | garnet olivine websterite | 890 ** | 4.3 ** |
УВ300/09 | garnet-olivine clinopyroxenite | 895 * | 3.7 * |
No. of Specimen | А 800 °С, 2 h | А 850 °С, 2 h | А 1000 °С, 2 h | А | А 700 °С, 72 h | А 800 °С, 72 h | А 900 °С, 72 h | А 1000 °С, 72 h |
SiO2 | 37.74 | 37.97 | 38.03 | 38.31 | 37.84 | 38.39 | 37.96 | 38.12 |
TiO2 | 0.62 | 0.60 | 0.61 | 0.59 | 0.59 | 0.63 | 0.62 | 0.60 |
Cr2O3 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl |
Al2O3 | 16.71 | 16.62 | 17.14 | 16.48 | 16.63 | 16.80 | 16.72 | 16.50 |
FeO | 6.10 | 6.01 | 6.07 | 5.96 | 6.10 | 6.30 | 6.05 | 6.22 |
MnO | 0.06 | 0.07 | 0.07 | 0.05 | 0.06 | 0.06 | 0.07 | 0.07 |
MgO | 22.50 | 22.37 | 22.76 | 22.88 | 22.80 | 23.12 | 22.89 | 22.62 |
CaO | 0.03 | 0.06 | bdl | bdl | bdl | bdl | bdl | bdl |
BaO | 0.59 | 0.63 | 0.47 | 0.62 | 0.72 | 0.55 | 0.66 | 0.68 |
Na2O | 0.28 | 0.33 | 0.29 | 0.34 | 0.31 | 0.36 | 0.33 | 0.33 |
K2O | 9.94 | 10.06 | 10.13 | 9.58 | 9.89 | 9.88 | 9.92 | 9.70 |
RbO | 0.03 | bdl | bdl | bdl | bdl | bdl | bdl | bdl |
F | 1.35 | 1.34 | 1.38 | 1.19 | 1.48 | 1.39 | 1.40 | 1.38 |
Cl | 0.19 | 0.22 | 0.20 | 0.22 | 0.19 | 0.17 | 0.20 | 0.20 |
Total | 95.53 | 95.67 | 96.52 | 95.83 | 96.06 | 97.07 | 96.28 | 95.91 |
Si | 2.742 | 2.755 | 2.730 | 2.772 | 2.737 | 2.742 | 2.736 | 2.764 |
IVAl | 1.258 | 1.245 | 1.270 | 1.228 | 1.263 | 1.258 | 1.264 | 1.236 |
Ti | 0.034 | 0.033 | 0.033 | 0.032 | 0.032 | 0.034 | 0.034 | 0.033 |
Fe2+ | 0.371 | 0.365 | 0.364 | 0.361 | 0.369 | 0.376 | 0.365 | 0.377 |
VIAl | 0.173 | 0.178 | 0.181 | 0.177 | 0.155 | 0.157 | 0.157 | 0.174 |
Mn | 0.004 | 0.004 | 0.004 | 0.003 | 0.004 | 0.004 | 0.005 | 0.004 |
Mg | 2.436 | 2.420 | 2.435 | 2.467 | 2.458 | 2.461 | 2.459 | 2.444 |
Ʃoct | 3.018 | 3.000 | 3.018 | 3.040 | 3.019 | 3.033 | 3.020 | 3.031 |
Ca | 0.002 | 0.005 | 0.000 | bdl | bdl | bdl | bdl | bdl |
Ba | 0.017 | 0.018 | 0.013 | 0.018 | 0.020 | 0.015 | 0.019 | 0.019 |
Na | 0.040 | 0.047 | 0.041 | 0.048 | 0.043 | 0.050 | 0.047 | 0.046 |
K | 0.921 | 0.931 | 0.928 | 0.884 | 0.913 | 0.901 | 0.912 | 0.897 |
Ʃ K | 0.982 | 1.000 | 0.982 | 0.960 | 0.981 | 0.967 | 0.980 | 0.969 |
F | 0.310 | 0.308 | 0.313 | 0.273 | 0.339 | 0.315 | 0.318 | 0.316 |
Cl | 0.023 | 0.027 | 0.024 | 0.027 | 0.023 | 0.021 | 0.025 | 0.024 |
No. of Specimen | Т | Т 700 °С, 72 h | Т 800 °С, 72 h | Т 900 °С, 72 h | Т 1000 °С, 72 h | |||
SiO2 | 40.19 | 40.14 | 40.24 | 39.97 | 40.73 | |||
TiO2 | 0.72 | 0.74 | 0.56 | 0.64 | 0.79 | |||
Cr2O3 | 0.05 | 0.04 | 0.04 | <0.01 | 0.05 | |||
Al2O3 | 15.98 | 15.47 | 16.68 | 16.31 | 15.36 | |||
FeO | 0.04 | 0.05 | 0.05 | 0.06 | 0.03 | |||
MgO | 26.58 | 27.12 | 27.00 | 27.00 | 26.98 | |||
BaO | 0.07 | 0.13 | 0.10 | 0.20 | 0.10 | |||
Na2O | 1.08 | 0.88 | 1.24 | 1.08 | 0.81 | |||
K2O | 8.83 | 9.32 | 8.79 | 9.01 | 9.34 | |||
Rb2O | <0.04 | <0.04 | 0.06 | <0.04 | <0.04 | |||
F | 1.29 | 1.56 | 1.25 | 1.26 | 1.76 | |||
Cl | 0.04 | 0.05 | 0.04 | 0.08 | 0.07 | |||
Total | 94.35 | 94.92 | 95.53 | 95.10 | 95.32 | |||
Si | 2.854 | 2.838 | 2.815 | 2.813 | 2.877 | |||
IVAl | 1.146 | 1.162 | 1.185 | 1.187 | 1.123 | |||
Ti | 0.038 | 0.039 | 0.029 | 0.034 | 0.042 | |||
Fe2+ | 0.002 | 0.003 | 0.003 | 0.003 | 0.002 | |||
VIAl | 0.192 | 0.127 | 0.191 | 0.166 | 0.156 | |||
Mg | 2.813 | 2.858 | 2.816 | 2.832 | 2.840 | |||
Ʃoct | 3.049 | 3.030 | 3.042 | 3.037 | 3.043 | |||
Ba | 0.002 | 0.004 | 0.003 | 0.005 | 0.003 | |||
Na | 0.149 | 0.120 | 0.169 | 0.148 | 0.111 | |||
K | 0.800 | 0.841 | 0.784 | 0.809 | 0.841 | |||
ƩK | 0.951 | 0.970 | 0.958 | 0.963 | 0.957 | |||
F | 0.290 | 0.348 | 0.276 | 0.281 | 0.394 | |||
Cl | 0.005 | 0.006 | 0.005 | 0.009 | 0.008 |
№ | А (Initial) | А 700 °С, 72 h | А 800 °С, 72 h | А 900 °С, 72 h | А 1000 °С, 72 h | Т (Initial) | Т 700 °С, 72 h | Т 800 °С, 72 h | Т 900 °С, 72 h | Т 1000 °С, 72 h |
---|---|---|---|---|---|---|---|---|---|---|
a, Å | 5.3301 ± 0.0003 | 5.3322 ± 0.0005 | 5.3422 ± 0.0003 | 5.3373 ± 0.0005 | 5.3199 ± 0.0004 | 5.3229 ± 0.0008 | 5.3836 ± 0.0024 | 5.3188 ± 0.0010 | 5.3366 ± 0.0019 | 5.3186 ± 0.0017 |
b, Å | 9.2322 ± 0.0004 | 9.1994 ± 0.0025 | 9.2448 ± 0.0003 | 9.2203 ± 0.0014 | 9.2184 ± 0.0010 | 9.1876 ± 0.0047 | 9.2182 ± 0.0008 | 9.2114 ± 0.0015 | 9.2034 ± 0.0040 | 9.2112 ± 0.0057 |
c, Å | 10.2424 ± 0.0004 | 10.2549 ± 0.0008 | 10.2481 ± 0.0003 | 10.2639 ± 0.0007 | 10.2499 ± 0.0005 | 10.2593 ± 0.0017 | 10.2442 ± 0.0006 | 10.2421 ± 0.0013 | 10.2488 ± 0.0009 | 10.2538 ± 0.0014 |
β, ° | 100.0944 ± 0.0065 | 100.4084 ± 0.0156 | 100.1893 ± 0.0050 | 100.3785 ± 0.0146 | 99.8768 ± 0.0079 | 100.6716 ± 0.0265 | 100.4040 ± 0.0197 | 100.3047 ± 0.0334 | 100.2990 ± 0.0375 | 100.3638 ± 0.0457 |
V, Å3 | 496.2102 ± 0.0306 | 494.7522 ± 0.1319 | 498.1426 ± 0.0317 | 496.8366 ± 0.0885 | 495.2188 ± 0.0550 | 493.0516 ± 0.2382 | 500.0320 ± 0.2071 | 493.7001 ± 0.1113 | 495.2574 ± 0.3390 | 494.1426 ± 0.3101 |
T °C | t m | 40Ar, 10−9 cm3 STP | 40Ar/39Ar | ±1σ | 38Ar/39Ar | ±1σ | 37Ar/39Ar | ±1σ | 36Ar/39Ar | ±1σ | Ca/K | ∑39Ar (%) | Age, Ma | ±1σ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Original phlogopite from magnesial skarns of the Aldanian shield, crystal edge, specimen А phlogopite (10.26 mg) | ||||||||||||||
J = 0.003832 ± 0.000038; TFA = 1902 ± 21 Ma | ||||||||||||||
500 | 10 | 177.2 | 302.9 | 0.585 | 0.089 | 0.00199 | — | — | 0.279 | 0.0019 | — | 0.2 | 1665.3 | 19.7 |
600 | 10 | 717.6 | 288.4 | 0.290 | 0.030 | 0.00077 | — | — | 0.068 | 0.0010 | — | 1.0 | 1887.4 | 21.0 |
700 | 10 | 1774.5 | 279.0 | 0.127 | 0.023 | 0.00021 | — | — | 0.026 | 0.0004 | — | 3.2 | 1900.2 | 21.0 |
800 | 10 | 3598.8 | 276.0 | 0.066 | 0.020 | 0.00015 | — | — | 0.019 | 0.0002 | — | 7.5 | 1896.4 | 21.0 |
850 | 10 | 6761.3 | 280.6 | 0.067 | 0.021 | 0.00008 | — | — | 0.028 | 0.0002 | — | 15.6 | 1905.1 | 21.0 |
875 | 10 | 10748.5 | 276.0 | 0.058 | 0.019 | 0.00008 | — | — | 0.014 | 0.0002 | — | 28.7 | 1902.3 | 21.0 |
900 | 10 | 11469.8 | 273.4 | 0.047 | 0.017 | 0.00007 | — | — | 0.007 | 0.0001 | — | 42.8 | 1900.8 | 21.0 |
925 | 10 | 5093.1 | 273.5 | 0.061 | 0.017 | 0.00007 | — | — | 0.006 | 0.0002 | — | 49.0 | 1902.7 | 21.0 |
950 | 10 | 7743.3 | 273.9 | 0.058 | 0.017 | 0.00006 | — | — | 0.006 | 0.0001 | — | 58.5 | 1904.5 | 21.0 |
975 | 10 | 5243.9 | 274.9 | 0.081 | 0.017 | 0.00009 | — | — | 0.008 | 0.0003 | — | 64.9 | 1905.9 | 21.0 |
1000 | 10 | 4304.6 | 275.8 | 0.080 | 0.018 | 0.00013 | — | — | 0.013 | 0.0002 | — | 70.2 | 1903.9 | 21.0 |
1025 | 10 | 4698.4 | 277.9 | 0.088 | 0.019 | 0.00010 | — | — | 0.020 | 0.0003 | — | 75.9 | 1903.9 | 21.0 |
1050 | 10 | 2474.2 | 280.5 | 0.074 | 0.022 | 0.00023 | — | — | 0.029 | 0.0002 | — | 78.8 | 1902.7 | 21.0 |
1090 | 10 | 5907.2 | 278.8 | 0.073 | 0.021 | 0.00008 | — | — | 0.026 | 0.0002 | — | 85.9 | 1899.6 | 21.0 |
1130 | 10 | 11577.2 | 276.5 | 0.054 | 0.019 | 0.00012 | — | — | 0.016 | 0.0002 | — | 100.0 | 1902.7 | 21.0 |
Original phlogopite from Kuhi-Lal field (Tajikistan, SW Pamir) specimen T phlogopite (6.58 mg) | ||||||||||||||
J = 0.00974 ± 0.000245; TFA = 8.3 ± 0.5 Ma | ||||||||||||||
800 | 10 | 31.7 | 5.1 | 0.004 | 0.016 | 0.0003 | 0.0344 | 0.0063 | 0.017 | 0.0005 | 0.124 | 1.9 | 2.2 | 2.6 |
900 | 10 | 132.9 | 3.3 | 0.001 | 0.016 | 0.0001 | 0.0004 | 0.0008 | 0.009 | 0.0002 | 0.001 | 14.5 | 8.6 | 1.0 |
1000 | 10 | 7.5 | 1.8 | 0.003 | 0.014 | 0.0005 | 0.0144 | 0.0057 | 0.005 | 0.0007 | 0.052 | 15.9 | 6.8 | 3.5 |
1050 | 10 | 182.8 | 1.3 | 0.001 | 0.015 | 0.00002 | 0.00001 | 0.000002 | 0.003 | 0.0002 | 0.00003 | 60.9 | 8.0 | 0.8 |
1075 | 10 | 69.5 | 0.9 | 0.001 | 0.015 | 0.00005 | 0.00001 | 0.00001 | 0.002 | 0.0002 | 0.00004 | 83.6 | 8.2 | 1.0 |
1130 | 10 | 59.5 | 1.1 | 0.001 | 0.015 | 0.00003 | 0.0006 | 0.0008 | 0.002 | 0.0002 | 0.002 | 100.0 | 9.7 | 1.1 |
Original phlogopite from magnesial skarns of the Aldanian shield, crystal edge, specimen А phlogopite (0.16 mg) | ||||||||||||||
J = 0.004134 ± 0.000045; TFA = 1876 ± 13 Ma | ||||||||||||||
1130 | 10 | 3159.4 | 452.5 | 0.164 | 0.023 | 0.0004 | 0.001 | 0.005 | 0.034 | 0.0003 | 0.005 | 100.0 | 1876.0 | 12.7 |
Original phlogopite from magnesial skarns of the Aldanian shield, crystal centre, specimen А phlogopite (0.32 mg) | ||||||||||||||
J = 0.004125 ± 0.000045; TFA = 1875 ± 13 Ma | ||||||||||||||
1130 | 10 | 5375.3 | 448.0 | 0.059 | 0.019 | 0.0002 | 0.008 | 0.002 | 0.017 | 0.0001 | 0.027 | 100.0 | 1874.6 | 12.7 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 2 h 3 GPa 800 °C, specimen 2-34-15 A phlogopite (0.13 mg) | ||||||||||||||
J = 0.004421 ± 0.000051; TFA = 1872 ± 13 Ma | ||||||||||||||
1130 | 10 | 2483.4 | 421.5 | 0.205 | 0.022 | 0.0003 | 1.050 | 0.440 | 0.031 | 0.0003 | 3.778 | 100.0 | 1872.4 | 13.5 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 2 h 3 GPa 900 °C, specimen 2-35-15 A phlogopite (0.18 mg) | ||||||||||||||
J = 0.004417 ± 0.000051; TFA = 1869 ± 13 Ma | ||||||||||||||
1130 | 10 | 2838.5 | 425.5 | 0.228 | 0.026 | 0.0001 | 1.481 | 0.273 | 0.047 | 0.0005 | 5.331 | 100.0 | 1869.4 | 13.5 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 2 h 3 GPa 850 °C, specimen 2-10-15 A phlogopite (4.46 mg) | ||||||||||||||
J = 0.004168 ± 0.000046; TFA = 1896 ± 13 Ma | ||||||||||||||
1130 | 10 | 69801.7 | 469.4 | 0.068 | 0.031 | 0.0001 | 0.944 | 0.140 | 0.078 | 0.0001 | 3.40 | 100.0 | 1896.0 | 13.0 |
Phlogopite from Kuhi-Lal field (Tajikistan, SW Pamir) after laboratory experiment 2 h 3 GPa 850 °C, specimen 2-10-15 T phlogopite (5.8 mg) | ||||||||||||||
J = 0.004149 ± 0.000045; TFA = 10.0 ± 0.2 Ma | ||||||||||||||
500 | 10 | 153.3 | 329.6 | 1.321 | 0.225 | 0.0033 | 0.013 | 0.045 | 1.085 | 0.0059 | 0.05 | 0.2 | 67.1 | 8.6 |
800 | 10 | 484.5 | 43.4 | 0.010 | 0.042 | 0.0001 | 0.017 | 0.003 | 0.141 | 0.0002 | 0.06 | 5.7 | 13.6 | 0.5 |
900 | 10 | 588.3 | 12.9 | 0.002 | 0.023 | 0.00005 | 0.305 | 0.085 | 0.039 | 0.0001 | 1.10 | 27.8 | 10.4 | 0.3 |
975 | 10 | 399.8 | 10.1 | 0.002 | 0.021 | 0.0000 | 0.547 | 0.151 | 0.030 | 0.0001 | 1.97 | 47.0 | 9.3 | 0.2 |
1050 | 10 | 418.5 | 8.5 | 0.002 | 0.020 | 0.0001 | 0.359 | 0.112 | 0.024 | 0.0001 | 1.29 | 70.8 | 9.9 | 0.2 |
1130 | 10 | 404.9 | 6.7 | 0.001 | 0.019 | 0.00002 | 0.0001 | 0.0006 | 0.019 | 0.0001 | 0.0003 | 100.0 | 9.4 | 0.2 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 2 h 3 GPa 1000 °C, specimen 2-7-15 A phlogopite (2.53 mg) | ||||||||||||||
J = 0.004158 ± 0.000045; TFA = 1872 ± 13 Ma | ||||||||||||||
1130 | 10 | 32022.3 | 449.6 | 0.078 | 0.023 | 0.0001 | 0.990 | 0.138 | 0.038 | 0.0001 | 3.56 | 100.0 | 1871.7 | 12.6 |
Phlogopite from Kuhi-Lal field (Tajikistan, SW Pamir) after laboratory experiment 2 h 3 GPa 1000 °C, specimen 2-7-15 T phlogopite (1.98 mg) | ||||||||||||||
J = 0.004141 ± 0.000045; TFA = 10.6 ± 0.2 Ma | ||||||||||||||
500 | 10 | 129.7 | 522.8 | 6.012 | 0.391 | 0.0091 | 24.977 | 10.297 | 1.760 | 0.0219 | 89.92 | 0.4 | 20.5 | 18.2 |
700 | 10 | 399.5 | 271.9 | 0.468 | 0.193 | 0.0011 | 7.404 | 1.659 | 0.914 | 0.0020 | 26.66 | 2.8 | 12.8 | 2.5 |
1000 | 10 | 1334.8 | 34.9 | 0.003 | 0.037 | 0.00003 | 0.001 | 0.0004 | 0.113 | 0.0001 | 0.004 | 66.0 | 11.7 | 0.2 |
1130 | 10 | 367.2 | 17.9 | 0.004 | 0.026 | 0.0001 | 0.237 | 0.128 | 0.057 | 0.0002 | 0.85 | 100.0 | 8.5 | 0.4 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 72 h 3 GPa 700 °C, specimen 4-36-18 А (5.28 mg) | ||||||||||||||
J = 0.006802 ± 0.000120; TFA = 1874 ± 21 Ma | ||||||||||||||
500 | 10 | 159.6 | 532.0 | 2.517 | 0.303 | 0.00491 | 3.007 | 0.648 | 1.1783 | 0.0073 | 10.824 | 0.2 | 1463.4 | 19.8 |
600 | 10 | 461.7 | 324.0 | 0.200 | 0.066 | 0.00095 | 0.704 | 0.085 | 0.2563 | 0.0006 | 2.536 | 1.4 | 1784.3 | 20.0 |
700 | 10 | 866.3 | 293.9 | 0.256 | 0.044 | 0.00045 | 0.128 | 0.101 | 0.1119 | 0.0009 | 0.460 | 3.9 | 1840.8 | 20.4 |
800 | 10 | 1587.0 | 281.0 | 0.086 | 0.028 | 0.00019 | 0.279 | 0.045 | 0.0500 | 0.0003 | 1.003 | 8.6 | 1864.5 | 20.5 |
900 | 10 | 8037.0 | 275.9 | 0.064 | 0.021 | 0.00010 | 0.013 | 0.010 | 0.0223 | 0.0002 | 0.045 | 32.8 | 1877.8 | 20.6 |
950 | 10 | 6254.9 | 272.3 | 0.051 | 0.018 | 0.00009 | 0.028 | 0.013 | 0.0113 | 0.0001 | 0.100 | 51.8 | 1876.6 | 20.6 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 72 h 3 GPa 800 °C, specimen 4-35-18 А (6.95 mg) | ||||||||||||||
J = 0.006864 ± 0.000123; TFA = 1857 ± 21 Ma | ||||||||||||||
500 | 10 | 273.8 | 538.3 | 2.037 | 0.263 | 0.00338 | 3.883 | 0.708 | 1.2570 | 0.0060 | 13.978 | 0.4 | 1377.2 | 18.7 |
600 | 10 | 618.7 | 306.2 | 0.290 | 0.071 | 0.00074 | 0.351 | 0.127 | 0.2735 | 0.0010 | 1.263 | 2.0 | 1686.5 | 19.7 |
700 | 10 | 966.0 | 298.3 | 0.146 | 0.047 | 0.00059 | 0.858 | 0.131 | 0.1724 | 0.0005 | 3.090 | 4.6 | 1790.4 | 20.4 |
800 | 10 | 1568.1 | 285.6 | 0.087 | 0.033 | 0.00020 | 0.001 | 0.000 | 0.0948 | 0.0003 | 0.005 | 9.0 | 1837.0 | 20.7 |
900 | 10 | 5805.9 | 278.4 | 0.053 | 0.026 | 0.00006 | 0.092 | 0.009 | 0.0548 | 0.0001 | 0.331 | 25.7 | 1857.3 | 20.8 |
950 | 10 | 5159.0 | 271.5 | 0.075 | 0.021 | 0.00009 | 0.065 | 0.020 | 0.0263 | 0.0002 | 0.232 | 41.0 | 1864.3 | 20.8 |
975 | 10 | 6338.4 | 270.6 | 0.038 | 0.019 | 0.00005 | 0.0003 | 0.0001 | 0.0209 | 0.0001 | 0.001 | 59.8 | 1867.3 | 20.8 |
1000 | 10 | 1107.4 | 269.9 | 0.131 | 0.023 | 0.00036 | 0.419 | 0.065 | 0.0245 | 0.0005 | 1.508 | 63.1 | 1859.4 | 20.8 |
1050 | 10 | 4853.9 | 271.1 | 0.057 | 0.020 | 0.00009 | 0.010 | 0.014 | 0.0227 | 0.0002 | 0.035 | 77.4 | 1867.0 | 20.8 |
1075 | 10 | 2012.1 | 271.0 | 0.073 | 0.019 | 0.00024 | 0.0410 | 0.0650 | 0.0242 | 0.0002 | 0.1475 | 83.4 | 1864.8 | 20.8 |
1130 | 10 | 5602.6 | 270.0 | 0.068 | 0.019 | 0.00007 | 0.0471 | 0.0164 | 0.0192 | 0.0002 | 0.170 | 100.0 | 1866.7 | 20.8 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 72 h 3 GPa 900 °C, specimen 4-33-18 А (4.02 mg) | ||||||||||||||
J = 0.006876 ± 0.000123; TFA = 1876±21 Ma | ||||||||||||||
500 | 10 | 84.2 | 430.0 | 1.796 | 0.234 | 0.00646 | 1.684 | 1.417 | 0.9816 | 0.0120 | 6.061 | 0.3 | 1216.1 | 26.6 |
600 | 10 | 553.4 | 283.2 | 0.229 | 0.068 | 0.00074 | 0.267 | 0.105 | 0.2406 | 0.0009 | 0.962 | 3.2 | 1622.8 | 19.2 |
700 | 10 | 665.9 | 293.0 | 0.210 | 0.047 | 0.00101 | 1.083 | 0.098 | 0.1525 | 0.0014 | 3.899 | 6.5 | 1795.1 | 20.4 |
800 | 10 | 1043.2 | 285.4 | 0.184 | 0.033 | 0.00045 | 0.229 | 0.085 | 0.0899 | 0.0008 | 0.826 | 11.9 | 1844.5 | 20.7 |
900 | 10 | 3589.8 | 280.1 | 0.064 | 0.025 | 0.00017 | 0.084 | 0.019 | 0.0414 | 0.0002 | 0.303 | 30.8 | 1884.3 | 20.9 |
950 | 10 | 3285.9 | 277.0 | 0.065 | 0.021 | 0.00020 | 0.037 | 0.030 | 0.0271 | 0.0001 | 0.134 | 48.4 | 1889.3 | 20.9 |
1000 | 10 | 3560.2 | 278.2 | 0.043 | 0.021 | 0.00011 | 0.029 | 0.022 | 0.0282 | 0.0002 | 0.103 | 67.2 | 1892.8 | 21.0 |
1050 | 10 | 2251.4 | 279.3 | 0.062 | 0.020 | 0.00016 | 0.004 | 0.034 | 0.0333 | 0.0003 | 0.014 | 79.1 | 1891.4 | 21.0 |
1130 | 10 | 3925.3 | 277.9 | 0.095 | 0.020 | 0.00007 | 0.043 | 0.016 | 0.0253 | 0.0001 | 0.156 | 100.0 | 1895.2 | 21.0 |
Phlogopite from magnesial skarns of the Aldanian shield after laboratory experiment 72 h 3 GPa 1000 °C, specimen 4-30-18 А (10.07 mg) | ||||||||||||||
J = 0.006855 ± 0.000122; TFA = 1537 ± 18 Ma | ||||||||||||||
500 | 10 | 506.1 | 621.0 | 0.812 | 0.207 | 0.00245 | 1.378 | 0.370 | 0.9393 | 0.0017 | 4.961 | 0.7 | 2183.5 | 22.6 |
600 | 10 | 762.5 | 144.8 | 0.066 | 0.037 | 0.00033 | 0.320 | 0.053 | 0.0957 | 0.0004 | 1.151 | 5.3 | 1059.3 | 14.3 |
700 | 10 | 703.8 | 145.9 | 0.076 | 0.036 | 0.00045 | 0.017 | 0.075 | 0.0983 | 0.0005 | 0.063 | 9.6 | 1061.5 | 14.3 |
800 | 10 | 540.3 | 142.2 | 0.066 | 0.035 | 0.00060 | 0.135 | 0.060 | 0.0939 | 0.0004 | 0.485 | 12.9 | 1044.9 | 14.1 |
850 | 10 | 423.0 | 185.6 | 0.142 | 0.036 | 0.00083 | 0.600 | 0.097 | 0.1093 | 0.0008 | 2.159 | 14.9 | 1295.8 | 16.5 |
900 | 10 | 913.8 | 232.4 | 0.109 | 0.044 | 0.00052 | 0.001 | 0.001 | 0.1363 | 0.0005 | 0.002 | 18.4 | 1516.0 | 18.3 |
950 | 10 | 1973.5 | 232.5 | 0.054 | 0.037 | 0.00019 | 0.097 | 0.035 | 0.1089 | 0.0002 | 0.350 | 25.8 | 1559.3 | 18.6 |
1000 | 10 | 3700.5 | 213.6 | 0.052 | 0.028 | 0.00012 | 0.031 | 0.019 | 0.0665 | 0.0002 | 0.110 | 41.1 | 1525.6 | 18.3 |
1050 | 10 | 5167.6 | 217.5 | 0.053 | 0.026 | 0.00007 | 0.027 | 0.008 | 0.0505 | 0.0002 | 0.097 | 61.9 | 1570.9 | 18.7 |
1130 | 10 | 9887.9 | 228.3 | 0.082 | 0.022 | 0.00003 | 0.0001 | 0.0001 | 0.0351 | 0.0001 | 0.0002 | 100.0 | 1648.8 | 19.2 |
Phlogopite from Kuhi-Lal field (Tajikistan, SW Pamir) after laboratory experiment 72 h 3 GPa 700 °C, specimen 4-36-18 Т (6.35 mg) | ||||||||||||||
J = 0.006785 ± 0.000120; TFA = 9.4±0.2 Ma | ||||||||||||||
950 | 10 | 677.0 | 8.7 | 0.002 | 0.020 | 0.00002 | 0.058 | 0.012 | 0.0269 | 0.00003 | 0.207 | 58.5 | 9.5 | 0.2 |
1025 | 10 | 162.3 | 4.2 | 0.002 | 0.017 | 0.00004 | 0.0005 | 0.000 | 0.0119 | 0.0001 | 0.002 | 87.4 | 9.0 | 0.3 |
1130 | 10 | 109.6 | 6.5 | 0.003 | 0.019 | 0.00007 | 0.196 | 0.019 | 0.0194 | 0.0001 | 0.707 | 100.0 | 9.9 | 0.4 |
Phlogopite from Kuhi-Lal field (Tajikistan, SW Pamir) after laboratory experiment 72 h 3 GPa 800 °C, specimen 4-35-18 Т (15.53 mg) | ||||||||||||||
J = 0.006832 ± 0.000121; TFA = 7.3 ± 0.2 Ma | ||||||||||||||
900 | 10 | 1284.1 | 36.2 | 0.007 | 0.038 | 0.00006 | 0.013 | 0.004 | 0.1217 | 0.0001 | 0.045 | 13.4 | 2.5 | 0.2 |
1000 | 10 | 2913.8 | 37.3 | 0.010 | 0.039 | 0.00002 | 0.014 | 0.005 | 0.1246 | 0.0001 | 0.050 | 42.8 | 6.1 | 0.2 |
1130 | 10 | 1312.3 | 8.6 | 0.002 | 0.021 | 0.00001 | 0.017 | 0.002 | 0.0267 | 0.00001 | 0.062 | 100.0 | 9.1 | 0.2 |
Phlogopite from Kuhi-Lal field (Tajikistan, SW Pamir) after laboratory experiment 72 h 3 GPa 900 °C, specimen 4-33-18 Т (12.11 mg) | ||||||||||||||
J = 0.006881 ± 0.000123; TFA = 14.7 ± 0.4 Ma | ||||||||||||||
700 | 10 | 1294.5 | 499.2 | 0.265 | 0.343 | 0.00086 | 0.702 | 0.128 | 1.6894 | 0.0010 | 2.527 | 1.1 | 0.1 | 1.9 |
800 | 10 | 1050.6 | 207.9 | 0.085 | 0.151 | 0.00042 | 0.305 | 0.078 | 0.6984 | 0.0005 | 1.098 | 3.2 | 18.5 | 1.4 |
900 | 10 | 1688.7 | 33.8 | 0.004 | 0.036 | 0.00004 | 0.005 | 0.005 | 0.1119 | 0.0001 | 0.017 | 23.8 | 8.8 | 0.3 |
1000 | 10 | 2688.0 | 40.2 | 0.006 | 0.040 | 0.00003 | 0.014 | 0.003 | 0.1323 | 0.0001 | 0.049 | 51.5 | 13.9 | 0.5 |
1130 | 10 | 1896.5 | 16.2 | 0.004 | 0.025 | 0.00002 | 0.024 | 0.002 | 0.0498 | 0.0001 | 0.087 | 100.0 | 17.8 | 0.5 |
Phlogopite from Kuhi-Lal field (Tajikistan, SW Pamir) after laboratory experiment: 72 h 3 GPa 1000 °C, specimen 4-30-18 Т (20.3 mg) | ||||||||||||||
J = 0.006844 ± 0.000122; TFA = 55.9 ± 1.0 Ma | ||||||||||||||
500 | 10 | 122.9 | 150.7 | 0.271 | 0.106 | 0.00203 | 0.024 | 0.375 | 0.4568 | 0.0019 | 0.085 | 0.2 | 184.5 | 6.5 |
600 | 10 | 472.0 | 64.4 | 0.019 | 0.050 | 0.00007 | 0.137 | 0.034 | 0.1782 | 0.0003 | 0.493 | 2.5 | 139.7 | 2.6 |
700 | 10 | 422.7 | 67.0 | 0.025 | 0.053 | 0.00013 | 0.079 | 0.039 | 0.1871 | 0.0004 | 0.283 | 4.4 | 139.1 | 2.7 |
800 | 10 | 223.8 | 69.7 | 0.045 | 0.056 | 0.00079 | 0.059 | 0.112 | 0.2030 | 0.0006 | 0.211 | 5.4 | 115.8 | 2.9 |
900 | 10 | 771.8 | 68.1 | 0.020 | 0.053 | 0.00017 | 0.032 | 0.019 | 0.1966 | 0.0002 | 0.116 | 8.8 | 119.5 | 2.2 |
1000 | 10 | 1225.2 | 31.3 | 0.005 | 0.032 | 0.00003 | 0.046 | 0.006 | 0.0888 | 0.0001 | 0.164 | 20.7 | 61.8 | 1.1 |
1130 | 10 | 5612.7 | 21.6 | 0.004 | 0.027 | 0.00001 | 0.023 | 0.001 | 0.0601 | 0.0001 | 0.083 | 100.0 | 46.5 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yudin, D.; Murzintsev, N.; Travin, A.; Alifirova, T.; Zhimulev, E.; Novikova, S. Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40Ar/39Ar Dating, Laboratory Experiment, Numerical Simulation. Minerals 2021, 11, 192. https://doi.org/10.3390/min11020192
Yudin D, Murzintsev N, Travin A, Alifirova T, Zhimulev E, Novikova S. Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40Ar/39Ar Dating, Laboratory Experiment, Numerical Simulation. Minerals. 2021; 11(2):192. https://doi.org/10.3390/min11020192
Chicago/Turabian StyleYudin, Denis, Nikolay Murzintsev, Alexey Travin, Taisiya Alifirova, Egor Zhimulev, and Sofya Novikova. 2021. "Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40Ar/39Ar Dating, Laboratory Experiment, Numerical Simulation" Minerals 11, no. 2: 192. https://doi.org/10.3390/min11020192
APA StyleYudin, D., Murzintsev, N., Travin, A., Alifirova, T., Zhimulev, E., & Novikova, S. (2021). Studying the Stability of the K/Ar Isotopic System of Phlogopites in Conditions of High T, P: 40Ar/39Ar Dating, Laboratory Experiment, Numerical Simulation. Minerals, 11(2), 192. https://doi.org/10.3390/min11020192