Rietveld Study of the Changes of Phase Composition, Crystal Structure, and Morphology of BiFeO3 by Partial Substitution of Bismuth with Rare-Earth Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Yu, J.; Chu, J. Progress and prospect for high temperature single phased magnetic ferroelectrics. Chin. Sci. Bull. 2008, 53, 2097–2112. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V.D.; Mukhin, A.A.; Loidl, A. On the room temperature multiferroic BiFeO3: Magnetic, dielectric and thermal properties. Eur. Phys. J. B 2010, 75, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Glazer, A.M. The classification of tilted octahedra in perovskites. Acta Cryst. 1972, B28, 3384–3392. [Google Scholar] [CrossRef]
- Palewicz, A.; Przeniosło, R.; Sosnowska, I.; Hewat, A.W. Atomic displacements in BiFeO3 as a function of temperature: Neutron diffraction study. Acta Cryst. 2007, B63, 537–544. [Google Scholar] [CrossRef]
- Bernardo, M.S.; Jardiel, T.; Peiteado, M.; Caballero, A.C.; Villegas, M. Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J. Eur. Ceram. Soc. 2011, 31, 3047–3053. [Google Scholar] [CrossRef] [Green Version]
- Skorikov, V.M.; Kargin, Y.F.; Egorysheva, A.V.; Volkov, V.V.; Gospodinov, M.M. Growth of sillenite-structure single crystals. Inorg. Mater. 2005, 41, S24–S46. [Google Scholar] [CrossRef]
- Nuraini, U.; Suasmoro, S. Crystal structure and phase transformation of BiFeO3 multiferroics on the temperature variation, 2nd International Symposium on Frontier of Applied Physics (ISFAP 2016). IOP Conf. Ser. J. Phys. Conf. Ser. 2017, 817, 012059. [Google Scholar] [CrossRef] [Green Version]
- Lahmar, A.; Zhao, K.; Habouti, S.; Dietze, M.; Solterbeck, C.H.; Es-Souni, M. Off-stoichiometry effects on BiFeO3 thin films. Solid State Ion. 2011, 202, 1–5. [Google Scholar] [CrossRef]
- Meera, A.V.; Ajesh, G.R.; Gnanasekaran, T. Studies on the thermal stability of BiFeO3 and the phase diagram of Bi-Fe-O system. J. Alloy. Compd. 2019, 790, 1108–1118. [Google Scholar] [CrossRef]
- Volkova, L.M.; Marinin, D.V. Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry. J. Supercond. Nov. Magn. 2011, 24, 2161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Sua, Y.; Wang, X.; Wang, Y.; Wang, Z. Effect of Eu substitution on the crystal structure and multiferroic properties of BiFeO3. J. Alloy. Compd. 2010, 507, 157–161. [Google Scholar] [CrossRef]
- Arnold, D.C. Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Karpinsky, D.V.; Silibin, M.V.; Trukhanov, S.V.; Trukhanov, A.V.; Zhaludkevich, A.L.; Latushka, S.I.; Zhaludkevich, D.V.; Khomchenko, V.A.; Alikin, D.O.; Abramov, A.S.; et al. Peculiarities of the crystal structure evolution of BiFeO3–BaTiO3 ceramics across structural phase transitions. Nanomaterials 2020, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Reyes, A.; Esparza, H.; Camacho, H.; Fuentes, L. BiFeO3: A review on synthesis, doping and crystal structure. Integr. Ferroelectr. 2011, 126, 47–59. [Google Scholar] [CrossRef]
- Pugaczowa-Michalska, M.; Kaczkowski, J. Bonding analysis of BiFeO3. Substituted by Gd3+. Acta Phys. Pol. A 2015, 127, 362–364. [Google Scholar] [CrossRef]
- Jiang, Z.; Peng, A.; Liuy, M.; Liu, G.; Zhang, G. The structure and magnetic properties of Eu-doped BiFeO3 prepared by a solid-phase sintering method. Mod. Phys. Lett. B 2019, 33, 1950094-1–1950094-8. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, P.; Varshney, D. Structural and ferroic properties of La, Nd, and Dy doped BiFeO3 ceramics. J. Ceram. 2015, 869071. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Narayan, B.; Kumar, M.; Singh, A.K.; Dhiman, S.; Kumar, S. Effect of Nd3+ substitution on structural, ferroelectric, magnetic and electrical properties of BiFeO3–PbTiO3 binary system. SN Appl. Sci. 2019, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Haiyang, D.; Zhenping, C.; Tao, L.; Yong, L. Microstructure and properties of Sm-substituted BiFeO3 ceramics. J. Rare Earths 2012, 30, 1123–1128. [Google Scholar] [CrossRef]
- Suresh, P.; Babu, P.D.; Srinath, S. Effect of Ho substitution on structure and magnetic properties of BiFeO3. J. Appl. Phys. 2014, 115, 17D905. [Google Scholar] [CrossRef]
- Suresh, P.; Srinath, S. Effect of La substitution on structure and magnetic properties of sol-gel prepared BiFeO3. J. Appl. Phys. 2013, 113, 17D920. [Google Scholar] [CrossRef]
- Kan, D.; Long, C.J.; Steinmetz, C.; Lofland, S.E.; Takeuchi, I. Combinatorial search of structural transitions: Systematic investigation of morphotropic phase boundaries in chemically substituted BiFeO3. J. Mater. Res. 2012, 27, 2691–2704. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, P.; Chen, L.; Wang, J. Systematic variations in structural and electronic properties of BiFeO3 by A-site substitution. Appl. Phys. Lett. 2010, 96, 012905. [Google Scholar] [CrossRef]
- Jain, S.R.; Adiga, K.C.; Pai Verenekar, V.R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixture. Combust. Flame 1981, 40, 71–79. [Google Scholar] [CrossRef]
- Bruker AXS. EVA 2, DIFFRACplus Evaluation Package. 2009. Available online: https://www.bruker.com/content/bruker/int/en/products-and-solutions/diffractometers-and-scattering-systems/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html (accessed on 8 May 2020).
- Bruker AXS. TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual; Bruker AXS: Karlsruhe, Germany, 2008; Available online: http://algol.fis.uc.pt/jap/TOPAS%204-2%20Users%20Manual.pdf (accessed on 8 May 2020).
- Moreau, J.M.; Michel, C.; Gerson, R.; James, W.J. Ferroelectric BiFeO3 X-ray and neutron diffraction study. Phys. Chem. Solids 1971, 32, 1315–1320. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 1992, 25, 109–120. [Google Scholar] [CrossRef]
- Balzar, D. Voigt-Function Model in Diffraction. In International Union of Crystallography; Snyder, R.L., Bunge, H.J., Fiala, J., Eds.; Oxford University Press: New York, NY, USA, 1999; ISBN 9780198501893. [Google Scholar]
- Brown, I.D. The Chemical Bond in Inorganic Chemistry—The Bond Valence Model. IUCr Monographs on Crystallography 12; Oxford University Press: New York, NY, USA, 2002; Available online: https://www.amazon.com/Chemical-Bond-Inorganic-Chemistry-Crystallography/dp/0199298815 (accessed on 8 May 2020).
- Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- De la Flor, G.; Orobengoa, D.; Tasci, E.; Perez-Mato, J.M.; Aroyo, M.I. Comparison of structures applying the tools available at the bilbao crystallographic server. J. Appl. Cryst. 2016, 49, 653–664. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die gesetze der krystallochemie. Die Nat. 1926, 21, 477–485. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
Sample | O atom % | Bi atom % | Fe atom % | RE atom % |
---|---|---|---|---|
Theoretical | 60 | 20 | 20 | |
Experimental | 60 | 18.1 | 20.2 | |
Theoretical | 60 | 18 | 20 | 2 |
Experimental | ||||
La | 60 | 17.0 | 19.6 | 2.00 |
Ce | 60 | 16.5 | 21.0 | 1.72 |
Nd | 60 | 16.3 | 20.8 | 1.48 |
Eu | 60 | 16.0 | 19.8 | 1.98 |
Gd | 60 | 16.2 | 20.3 | 1.91 |
Ho | 60 | 16.2 | 20.9 | 2.36 |
Y | 60 | 16.3 | 21.3 | 1.46 |
Sample | Bi | La0.1 | Ce0.1 | Nd0.1 | Eu0.1 | Gd0.1 | Yo0.1 | Ho0.1 | |
---|---|---|---|---|---|---|---|---|---|
a | Å | 5.5785 (2) | 5.5772 (4) | 5.5771 (1) | 5.5719 (1) | 5.5661 (2) | 5.5653 (2) | 5.5629 (3) | 5.5624 (3) |
c | Å | 13.8696 (5) | 13.8102 (1) | 13.8152 (2) | 13.8062 (2) | 13.8027 (6) | 13.8015 (6) | 13.8166 (9) | 13.8133 (8) |
V | Å3 | 373.791 (3) | 372.018 (6) | 372.14 (1) | 371.21 (1) | 370.33 (3) | 370.19 (3) | 370.29 (5) | 370.13 (5) |
Bi,RE (6a) | Biocc | 1.0 | 0.86 (2) | 0.86 (2) | 0.83 (2) | 0.79 (2) | 0.84 (2) | 0.88 (1) | 0.87 (2) |
Beq | 1.30 (1) | 0.9 (1) | 0.9 (1) | 0.71 (8) | 0.6 (1) | 0.5 (1) | 0.94 (7) | 1.0 (1) | |
Fe (6a) | (z) | 0.2206 (1) | 0.2230 (1) | 0.2231 (2) | 0.2228 (2) | 0.2229 (2) | 0.2229 (2) | 0.2224 (2) | 0.2225 (2) |
Beq | 1.41 (4) | 0.5 (1) | 0.5 (1) | 0.5 (1) | 0.5 (1) | 0.6 (1) | 0.7 (1) | 0.7 (1) | |
O (18b) | (x) | 0.446 (1) | 0.441 (1) | 0.441 (1) | 0.442 (1) | 0.444 (2) | 0.450 (2) | 0.441 (1) | 0.441 (1) |
(y) | 0.021 (1) | 0.013 (1) | 0.011 (1) | 0.015 (1) | 0.021 (2) | 0.027 (2) | 0.019 (1) | 0.019 (1) | |
(z) | 0.9504 (3) | 0.9538 (4) | 0.9531 (5) | 0.9538 (4) | 0.9540 (5) | 0.9544 (5) | 0.9498 (4) | 0.9508 (4) | |
Beq | 1.3 (1) | 1.1 (2) | 1.0 (2) | 1.5 (2) | 1.7 (3) | 2.1 (3) | 1.51 (2) | 1.93 (2) | |
Rwp | 4.37 | 5.30 | 5.64 | 5.35 | 6.09 | 6.07 | 4.14 | 4.19 | |
Rexp | 2.58 | 2.53 | 2.52 | 2.58 | 2.56 | 2.45 | 2.41 | 2.44 | |
GOF | 1.69 | 2.10 | 2.24 | 2.07 | 2.38 | 2.47 | 1.72 | 1.72 | |
RBragg | 1.55 | 1.29 | 1.32 | 1.12 | 2.13 | 2.53 | 1.16 | 1.23 | |
(Bi,RE)FeO3 (Pnma) | wt % | - | - | - | - | - | - | 14.9 (8) | 16.1 (7) |
Biocc | 0.66 (2) | 0.68 (3) | |||||||
Impurity phase: | |||||||||
Bi2Fe4O9 | |||||||||
Bi25FeO39 | wt % | 2.55 | 2.26 | 3.32 | 3.30 | 1.02 | 1.48 | 1.47 | 1.28 |
Impurity phase: | 0.71 | - | - | - | - | - | - | - |
Bond Length Distances (Å) | Bi | La0.1 | Ce0.1 | Nd0.1 | Eu0.1 | Gd0.1 | Y0.1 | Ho0.1 |
---|---|---|---|---|---|---|---|---|
A–O1 x3 | 2.246 (4) | 2.302 (6) | 2.300 (6) | 2.293 (6) | 2.276 (7) | 2.257 (7) | 2.243 (6) | 2.253 (6) |
A–O1 x3 | 2.531 (6) | 2.508 (8) | 2.514 (9) | 2.507 (8) | 2.499 (10) | 2.514 (10) | 2.499 (8) | 2.496 (8) |
A–O1 x3 | 3.222 (6) | 3.217 (8) | 3.214 (9) | 3.214 (8) | 3.216 (10) | 3.200 (11) | 3.240 (8) | 3.236 (9) |
Average | 2.666 (2) | 2.675 (2) | 2.676 (3) | 2.671 (2) | 2.665 (3) | 2.657 (3) | 2.661 (2) | 2.662 (3) |
A–O1 x3 * | 3.465 (6) | 3.402 (7) | 3.406 (7) | 3.405 (7) | 3.416 (8) | 3.424 (8) | 3.465 (7) | 3.451 (7) |
Fe–O1 x3 | 1.953 (5) | 1.927 (7) | 1.914 (8) | 1.934 (7) | 1.960 (8) | 1.987 (8) | 1.931 (7) | 1.936 (8) |
Fe–O1 x3 | 2.115 (4) | 2.129 (6) | 2.142 (6) | 2.119 (6) | 2.096 (7) | 2.067 (7) | 2.141 (6) | 2.132 (6) |
Average | 2.034 (2) | 2.028 (3) | 2.028 (3) | 2.027 (3) | 2.028 (3) | 2.027 (3) | 2.036 (3) | 2.034 (3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kireva, M.; Tumbalev, V.; Kostov-Kytin, V.; Tzvetkov, P.; Kovacheva, D. Rietveld Study of the Changes of Phase Composition, Crystal Structure, and Morphology of BiFeO3 by Partial Substitution of Bismuth with Rare-Earth Ions. Minerals 2021, 11, 278. https://doi.org/10.3390/min11030278
Kireva M, Tumbalev V, Kostov-Kytin V, Tzvetkov P, Kovacheva D. Rietveld Study of the Changes of Phase Composition, Crystal Structure, and Morphology of BiFeO3 by Partial Substitution of Bismuth with Rare-Earth Ions. Minerals. 2021; 11(3):278. https://doi.org/10.3390/min11030278
Chicago/Turabian StyleKireva, Maria, Ventsislav Tumbalev, Vladislav Kostov-Kytin, Peter Tzvetkov, and Daniela Kovacheva. 2021. "Rietveld Study of the Changes of Phase Composition, Crystal Structure, and Morphology of BiFeO3 by Partial Substitution of Bismuth with Rare-Earth Ions" Minerals 11, no. 3: 278. https://doi.org/10.3390/min11030278
APA StyleKireva, M., Tumbalev, V., Kostov-Kytin, V., Tzvetkov, P., & Kovacheva, D. (2021). Rietveld Study of the Changes of Phase Composition, Crystal Structure, and Morphology of BiFeO3 by Partial Substitution of Bismuth with Rare-Earth Ions. Minerals, 11(3), 278. https://doi.org/10.3390/min11030278