Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
- (i)
- if P1b < 335 MPa, then P = P1b;
- (ii)
- if P1b < 399 MPa, then P = (P1b + P1c)/2;
- (iii)
- if P1c < 415 MPa, then P = P1c;
- (iv)
- if P1d < 470 MPa, then P = P1c;
- (v)
- if XPae > 0.22, then P = (P1c + P1d)/2;
- (vi)
- if ΔPdb > 350 MPa, then P = P1e;
- (vii)
- if ΔPdb > 210 MPa, then P = P1d;
- (viii)
- if ΔPdb < 75 MPa, then P = P1c;
- (ix)
- if XPae > −0.2, then P = (P1b + P1c)/2;
- (x)
- if XPae > 0.05, then P = (P1c + P1d)/2;
- (xi)
- if none of the above conditions are satisfied, then P = P1a.
+ 13.756 × NaA + 27.594 × K (R2 = 0.951)
2.549 × Ca + 1.371 × NaA + 1.257 × K (R2 = 0.988);
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, S.; Tiepolo, M.; Vannucci, R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 2002, 417, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Forbes, W.C.; Starmer, R.J. Kaersutite is a possible source of alkali olivine basalts. Nature 1974, 250, 209–210. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Della Ventura, G.; Mottana, A. Amphibole: Crystal Chemistry, Occurrence, and Health Issues; Rosso, J.J., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 2007; Volume 67, pp. 1–545. [Google Scholar]
- Jackson, C.R.M.; Parman, S.W.; Kelley, S.P.; Cooper, R.F. Noble gas transport into the mantle facilitated by high solubility in amphibole. Nat. Geosci. 2013, 6, 562–565. [Google Scholar] [CrossRef]
- McCanta, M.C.; Treiman, A.H.; Dyar, M.D.; Alexander, C.M.O.; Rumble, D., III; Essene, E.J. The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin of an amphibole-and biotite-bearing R chondrite. Geochim. Cosmochim. Acta 2008, 72, 5757–5780. [Google Scholar] [CrossRef]
- Rutherford, M.J.; Hill, P.M. Magma ascent rates from amphibole breakdown; an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J. Geophys. Res. 1993, 98, 19667–19685. [Google Scholar] [CrossRef]
- Smith, D.J. Clinopyroxene precursors to amphibole sponge in arc crust. Nat. Comm. 2014, 5, 4329. [Google Scholar] [CrossRef] [Green Version]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. IMA Report—Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Blundy, J.D. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 1994, 116, 433–447. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A. Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contrib. Mineral. Petrol. 2012, 163, 877–895. [Google Scholar] [CrossRef]
- Zhang, J.; Humphreys, M.C.S.; Cooper, G.F.; Davidson, J.P.; Macpherson, C.G. Magma mush chemistry at subduction zones, revealed by new melt major element inversion from calcic amphiboles. Am. Miner. 2017, 102, 1353–1367. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.C.; Rutherford, M.J. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 1989, 17, 837–841. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am. Mineral. 1988, 73, 714–726. [Google Scholar]
- Beattie, P. Olivine-melt and orthopyroxene-melt equilibria. Contrib. Mineral. Petrol. 1993, 115, 103–111. [Google Scholar] [CrossRef]
- Putirka, K.D.; Mikaelian, H.; Ryerson, F.; Shaw, H. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineral. 2003, 88, 1542–1554. [Google Scholar] [CrossRef]
- Putirka, K.D. Igneous thermometers and barometers based on plagioclase+ liquid equilibria: Tests of some existing models and new calibrations. Am. Mineral. 2005, 90, 336–346. [Google Scholar] [CrossRef]
- Rutherford, M.J.; Devine, J.D. Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma. J. Petrol. 2003, 44, 1433–1454. [Google Scholar] [CrossRef] [Green Version]
- Ridolfi, F.; Puerini, M.; Renzulli, A.; Menna, M.; Toulkeridis, T. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. J. Volcanol. Geotherm. Res. 2008, 176, 94–106. [Google Scholar] [CrossRef]
- Kiss, B.; Harangi, S.; Ntaflos, T.; Mason, P.R.D.; Pál-Molnár, E. Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: A case study from Ciomadul volcano (SE Carpathians). Contrib. Mineral. Petrol. 2014, 167, 986. [Google Scholar] [CrossRef]
- Bédard, J.H. Trace element partitioning between silicate melts and orthopyroxene: Parameterizations of D variations. Chem. Geol. 2007, 244, 263–303. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Lee, C.-T.A.; Luffi, P.; Plank, T.; Dalton, H.; Leeman, W.P. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Plan. Sci. Lett. 2009, 279, 20–33. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Acosta-Vigil, A. On the stability of magmatic cordierite and new thermobarometric equations for cordierite-saturated liquids. Contrib. Mineral. Petrol. 2014, 167, 996. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Perugini, D.; Cesare, B.; Braga, R.; Del Moro, S. Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part I: Petrography and Thermobarometry. Lithos 2016, 244, 218–232. [Google Scholar] [CrossRef]
- Gorini, A.; Ridolfi, F.; Piscaglia, F.; Taussi, M.; Renzulli, A. Application and reliability of calcic amphibole thermobarometry as inferred from calc-alkaline products of active geothermal areas in the Andes. J. Volcanol. Geotherm. Res. 2018, 358, 58–76. [Google Scholar] [CrossRef]
- Almeev, R.R.; Holtz, F.; Ariskin, A.A.; Limura, J.-I. Storage conditions of Bezymianny Volcano parental magmas: Results of phase equilibria experiments at 100 and 700 MPa. Contrib. Mineral. Petrol. 2013, 166, 1389–1414. [Google Scholar] [CrossRef]
- Blatter, D.L.; Sisson, T.W.; Hankins, W.B. Crystallization of oxidized, moderately hydrous arc basalt at mid to lower-crustal pressures: Implications for andesite genesis. Contrib. Mineral. Petrol. 2013, 166, 861–886. [Google Scholar] [CrossRef]
- Krawczynski, M.J.; Grove, T.L.; Behrens, H. Amphibole stability in primitive arc magmas: Effects of temperature, H2O content, and oxygen fugacity. Contrib. Mineral. Petrol. 2012, 164, 317–339. [Google Scholar] [CrossRef]
- Innocenti, S.; del Marmol, M.-A.; Voight, B.; Andreastuti, S.; Furman, T. Textural and mineral chemistry constraints on evolution of Merapi Volcano, Indonesia. J. Volcanol. Geotherm. Res. 2013, 261, 20–37. [Google Scholar] [CrossRef]
- Trua, T.; Marani, M.; Barca, D. Lower crustal differentiation processes beneath a back-arc spreading ridge (Marsili seamount, Southern Tyrrhenian Sea). Lithos 2014, 190–191, 349–362. [Google Scholar] [CrossRef]
- Burns, D.H.; de Silva, S.L.; Tepley, F., III; Schmitt, A.K.; Loewen, M.W. Recording the transition from flare-up to steady-state arc magmatism at the Purico–Chascon volcanic complex, northern Chile. Earth Plan. Sci. Lett. 2015, 422, 75–86. [Google Scholar] [CrossRef]
- Harangi, S.; Novák, A.; Kiss, B.; Seghedi, I.; Lukács, R.; Szarka, L.; Wesztergom, V.; Metwaly, M.; Gribovszki, K. Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul volcano (SE Carpathians). J. Volcanol. Geotherm. Res. 2015, 290, 82–96. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Simonov, V.A.; Koulakov, I.Y.; Kotlyarov, A.V. Migration of fluids and melts in subduction zones and general aspects of thermophysical modeling in geology. Rus. Geol. Geophys. 2017, 58, 571–585. [Google Scholar] [CrossRef]
- Mata, J.; Martins, S.; Mattielli, N.; Madeira, J.; Faria, B.; Ramalho, R.S.; Silva, P.; Moreira, M.; Caldeira, R.; Moreira, M.; et al. The 2014-15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity. Lithos 2017, 288–289, 91–107. [Google Scholar] [CrossRef]
- Nagasaki, S.; Ishibashi, H.; Suwa, Y.; Yasuda, A.; Hokanishi, N.; Ohkura, T.; Takemura, K. Magma reservoir conditions beneath Tsurumi volcano, SW Japan: Evidence from amphibole thermobarometry and seismicity. Lithos 2017, 278–281, 153–165. [Google Scholar] [CrossRef]
- Stechern, A.; Just, T.; Holtz, F.; Blume-Oeste, M.; Namur, O. Decoding magma plumbing and geochemical evolution beneath the Lastarria volcanic complex (Northern Chile)—Evidence for multiple magma storage regions. J. Volcanol. Geotherm. Res. 2017, 338, 25–45. [Google Scholar] [CrossRef]
- Erdmann, S.; Martel, M.; Pichavant, M.; Kushnir, A. Amphibole as an archivist of magmatic crystallization conditions: Problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib. Mineral. Petrol. 2014, 167, 1016. [Google Scholar] [CrossRef] [Green Version]
- Putirka, K.D. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 2016, 101, 841–858. [Google Scholar] [CrossRef]
- Ridolfi, F.; Zanetti, A.; Renzulli, A.; Perugini, D.; Holtz, F.; Oberti, R. AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from Electron Micro-Probe analyses. Am. Mineral. 2018, 103, 1112–1125. [Google Scholar] [CrossRef]
- Andujar, J.; Scaillet, B.; Pichavant, M.; Druitt, T.H. Differentiation conditions of a basaltic magmafrom santorini, and its bearing on theproduction of andesite in arc settings. J. Petrol. 2015, 56, 765–794. [Google Scholar] [CrossRef] [Green Version]
- Riker, J.M.; Blundy, J.D.; Rust, A.C.; Botcharnikov, R.E.; Humphreys, M.C.S. Experimental phase equilibria of a Mount St. Helens rhyodacite: A framework for interpreting crystallization paths in degassing silicic magmas. Contrib. Mineral. Petrol. 2015, 170, 6. [Google Scholar] [CrossRef] [Green Version]
- Iacovino, K.; Oppenheimer, C.; Scaillet, B.; Kyle, P. Storage and evolution of mafic and intermediate alkaline magmas beneath Ross Island, Antarctica. J. Petrol. 2016, 57, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Ulmer, P.; Kägi, R.; Müntener, O. Experimentally derived intermediate to silicarich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: An evaluation ofphase relationships, compositions, liquid linesof descent and oxygen fugacity. J. Petrol. 2018, 59, 11–58. [Google Scholar] [CrossRef] [Green Version]
- Hirschmann, M.M.; Ghiorso, M.S.; Davis, F.A.; Gordon, S.M.; Mukherjee, S.; Grove, T.L.; Krawczynski, M.; Medard, E.; Till, C.B. Library of Experimental Phase Relations (LEPR): A database and Web portal for experimental magmatic phase equilibria Data. G3 2008, 9, 3. [Google Scholar] [CrossRef]
- Costa, F.; Andreastuti, S.; Bouvet de Maisonneuve, C.; Pallister, J.S. Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J. Volcanol. Geotherm. Res. 2013, 261, 209–235. [Google Scholar] [CrossRef]
- Adam, J.; Green, T.H. The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chem. Geol. 1994, 117, 219–233. [Google Scholar] [CrossRef]
- Gardner, J.E.; Carey, S.; Sigurdsson, H.; Rutherford, M.J. Influence of magma composition on the eruptive activity of Mount St. Helens, Washington. Geology 1995, 23, 523–526. [Google Scholar] [CrossRef]
- Moore, G.; Carmichael, I.E.S. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth. Contrib. Mineral. Petrol. 1998, 130, 304–319. [Google Scholar] [CrossRef]
- Martel, C.; Pichavant, M.; Holtz, F.; Scaillet, B.; Bourdier, J.L.; Traineau, H. Effects of fO2 and H2O on andesite phase relation between 2 and 4 kbar. J. Geophys. Res. 1999, 104, 29453–29470. [Google Scholar] [CrossRef] [Green Version]
- Scaillet, B.; Evans, B.W. The 15 June 1991 eruption of Mount Pinatubo; I, Phase equilibria and pre-eruption P–T–fO2–fH2 conditions of the dacite magmas. J. Petrol. 1999, 40, 381–411. [Google Scholar] [CrossRef]
- Dalpé, C.; Baker, D.R. Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earthelement-partitioning between calcic amphibole and basaltic melt: The effects of pressure and oxygen fugacity. Contrib. Mineral. Petrol. 2000, 140, 233–250. [Google Scholar]
- Kaszuba, J.P.; Wendlandt, R.F. Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks. J. Petrol. 2000, 41, 363–386. [Google Scholar] [CrossRef] [Green Version]
- Pichavant, M.; Martel, C.; Bourdier, J.L.; Scaillet, B. Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelee‘ (Martinique, Lesser Antilles Arc). J. Geophys. Res. 2002, 107, 2093. [Google Scholar] [CrossRef]
- Costa, F.; Scaillet, B.; Pichavant, M. Petrological and experimental constraints on the pre-eruption compositions of Holocene dacite from Volca‘n San Pedro (36S, Chilean Andes) and importance of sulphur in silicic subduction-related magmas. J. Petrol. 2004, 45, 855–881. [Google Scholar] [CrossRef]
- Nekvasil, H.; Dondolini, A.; Horn, J.; Filiberto, J.; Long, H.; Lindsley, D.H. The origin and evolution of silica-saturated alkalic suites: An experimental study. J. Petrol. 2004, 45, 693–721. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Holtz, F.; Beherens, H.; Botcharnikov, R.; Nakada, S. Experimental petrology of the 1991–1995 Unzen Dacite, Japan. Part II: Cl/OH partitioning between hornblende and melt and its implications for the origin of oscillatory zoning of hornblende phenocrysts. J. Petrol. 2005, 42, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Caricchi, L.; Ulmer, P.; Peccerillo, A. A high-pressure experimental study on the evolution of the silicic magmatism of the Main Ethiopian Rift. Lithos 2006, 91, 46–58. [Google Scholar] [CrossRef]
- Adam, J.; Oberti, R.; Ca´mara, F.; Green, T.H. An electron microprobe, LAM-ICP-MS and single-crystal X-ray structure refinement study of the effect of pressure, melt-H2O concentration and fO2 on experimentally produced basaltic amphiboles. Eur. J. Mineral. 2007, 19, 641–655. [Google Scholar] [CrossRef]
- McCanta, M.C.; Rutherford, M.J.; Hammer, J.E. Pre-eruptive and syn-eruptive conditions in the Black Butte, California dacite: Insight into crystallization kinetics in a silicic magma system. J. Volcanol. Geotherm. Res. 2007, 160, 263–284. [Google Scholar] [CrossRef]
- Irving, A.J.; Green, D.H. Phase relationships of hydrous alkali magmas at high pressures: Production of nepheline hawaiitic to mugearitic liquids by amphibole-dominated fractional crystallization within the lithospheric mantle. J. Petrol. 2008, 49, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, M.J.; Devine, J.D. Magmatic conditions and processes in the storage zone of the 2004–2006 Mount St. Helens Dacite. In A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006; US Geological Survey Professional Paper, 2007–2008; Sherrod, D.R., Scott, W.E., Stauffer, P.H., Eds.; US Geological Survey: Reston, VA, USA, 2008; Chapter 31; p. 24. [Google Scholar]
- Mercer, C.; Johnston, A.D. Experimental studies of the P–T–H2O near-liquidus phase relations of basaltic andesite from North Sister Volcano, High Oregon Cascades: Constraints on lower-crustal mineral assemblages. Contrib. Mineral. Petrol. 2008, 155, 571–592. [Google Scholar] [CrossRef]
- Freise, M.; Holtz, F.; Nowak, M.; Scoates, J.S.; Strauss, H. Differentiation and crystallization conditions of basalts from the Kerguelen large igneous province: An experimental study. Contrib. Mineral. Petrol. 2009, 158, 505–527. [Google Scholar] [CrossRef]
- Pietranik, A.; Holtz, F.; Koepke, J.; Puziewicz, J. Crystallization of quartz dioritic magmas at 2 and 1 kbar: Experimental results. Mineral. Petrol. 2009, 97, 1–21. [Google Scholar] [CrossRef]
- Pilet, S.; Ulmer, P.; Villiger, S. Liquid line of descent of a basanitic liquid at 1.5 Gpa: Constraints on the formation of metasomatic veins. Contrib. Mineral. Petrol. 2010, 159, 621–643. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ridolfi, F. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals 2021, 11, 324. https://doi.org/10.3390/min11030324
Ridolfi F. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals. 2021; 11(3):324. https://doi.org/10.3390/min11030324
Chicago/Turabian StyleRidolfi, Filippo. 2021. "Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry" Minerals 11, no. 3: 324. https://doi.org/10.3390/min11030324
APA StyleRidolfi, F. (2021). Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals, 11(3), 324. https://doi.org/10.3390/min11030324