Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland
Abstract
:1. Introduction
2. Regional Geological Setting
3. Materials and Methods
4. Rutile Mineral Chemistry, Occurrence, and Zr-in-Rutile (ZIR) Geothermometry
5. Results
5.1. Mineralogy and Petrography of the Albian Sands
5.2. Results of Electron Backscattered Diffraction Analysis (EBSD)
5.3. Mineral Chemistry of Examined Rutile (EPMA)
5.4. Estimation of Rutile Crystallization Temperature Using ZIR Geothermometer
6. Discussion
6.1. Geochemistry and Temperatures
6.2. Source Areas and the Paleogeography
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maystrenko, Y.; Bayer, U.; Brink, H.-J.; Littke, R. The Central European Basin System—An Overview. In Dynamics of Complex Intracontinental Basins; Littke, R., Bayer, U., Gajewski, D., Nelskamp, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 15–34. [Google Scholar]
- Mazur, S.; Scheck-Wenderoth, M. Constraints on the tectonic evolution of the Central European Basin System revealed by seismic reflection profiles from Northern Germany. Geol. en Mijnbouw/Netherlands J. Geosci. 2005, 84, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.L.; Nielsen, S.B.; Lykke-Andersen, H. The post-Triassic evolution of the Sorgenfrei-Tornquist Zone—Results from thermo-mechanical modelling. Tectonophysics 2000, 328, 245–267. [Google Scholar] [CrossRef]
- Haq, B.U. Cretaceous eustasy revisited. Glob. Planet. Change 2014, 113, 44–58. [Google Scholar] [CrossRef]
- Ziegler, P. Geological Atlas of Western and Central Europe, 2nd ed.; Shell Internationale Petroleum Maatschappij, B.V.: Hague, The Netherlands, 1990. [Google Scholar]
- Jaskowiak-Schoeneichowa, M.; Krassowska, A. Paleomiąższości, litofacje i paleotektonika epikontynentalnej kredy górnej w Polsce. Geol. Q. 1988, 32, 177–198. [Google Scholar]
- Dadlez, R.; Marek, S. Development of the Permian and Mesozoic basins. Pract. Inst. Geol. 1997, 153, 403–409. [Google Scholar]
- Marek, S. Paleomiąższości, litofacje i paleotektonika epikontynentalenej kredy dolnej w Polsce. Geol. Q. 1988, 32, 157–176. [Google Scholar]
- Świdrowska, J.; Hakenberg, M.; Poluhtovič, B.; Seghedi, A.; Višnâkov, I. Evolution of the Mesozoic basins on the south western edge of the East European Craton (Poland, Ukraine, Moldova, Romania). Stud. Geol. Pol. 2008, 130, 3–130. [Google Scholar]
- Naidin, D.P.; Sasonova, I.G.; Pojarkova, Z.N.; Djalilov, M.R.; Papulov, G.N.; Senkovsky, Y.; Benjamovsky, V.N.; Kopaevich, L.F. Cretaceous transgressions and regressions on the Russian Platform, in Crimea and Central Asia. Cretac. Res. 1980, 1, 375–387. [Google Scholar] [CrossRef]
- Crittenden, S. The “Albian Transgression” in the Southern North Sea Basin. J. Pet. Geol. 1987, 10, 395–414. [Google Scholar] [CrossRef]
- Hakenberg, M.; Świdrowska, J. Cretaceous basin evolution in the Lublin area along the Teisseyre-Tornquist Zone (SE Poland). Ann. Soc. Geol. Pol. 2001, 71, 1–20. [Google Scholar]
- Samsonowicz, J. Szkic geologiczny okolic Rachowa nad Wisłą oraz transgresje albu i cenomanu w bróździe północno-europcjskiej. Spraw. Pol. Inst. Geol. 1925, 3, 45–118. [Google Scholar]
- Pasternak, S.I.; Gawrilishin, V.I.; Ginda, V.A.; Kotsyubinsky, S.P.; Senkovsky, Y. Stratigraphy and fauna of the Cretaceous deposits of the west of the Ukraine (without the Carpathians). Nauk. Dumka Kiev. 1968, 1–272. [Google Scholar]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral - an example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Fleming, E.J.; Flowerdew, M.J.; Smyth, H.R.; Scott, R.A.; Morton, A.C.; Omma, J.E.; Frei, D.; Whitehouse, M.J. Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Mar. Pet. Geol. 2016, 78, 516–535. [Google Scholar] [CrossRef]
- Dill, H.G.; Škoda, R. Provenance analysis of heavy minerals in beach sands (Falkland Islands/Islas Malvinas)—A view to mineral deposits and the geodynamics of the South Atlantic Ocean. J. S. Am. Earth Sci. 2017, 78, 17–37. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S. Heavy minerals for junior woodchucks. Minerals 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Mange, M.A.; Wright, D.T. Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2007; ISBN 9780444517531. [Google Scholar]
- Ziegler, P. Evolution of the Arctic-North Atlantic and the Western Tethys: A visual presentation of a series of Paleogeographic-Paleotectonic maps. AAPG Mem. 1988, 43, 164–196. [Google Scholar]
- Oszczypko, N.; Salata, D. Provenance analyses of the Late Cretaceous—Palaeocene deposits of the Magura Basin (Polish Western Carpathians)—evidence from a study of the heavy minerals. Acta Geol. Pol. 2005, 55, 237–267. [Google Scholar]
- van Hinsberg, V.J.; Henry, D.J.; Marschall, H.R. Tourmaline: An ideal indicator of its host environment. Can. Mineral. 2011, 49, 1–16. [Google Scholar] [CrossRef]
- Li, R.; Li, S.; Jin, F.; Wan, Y.; Zhang, S. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: Constraints from trace elements, mineral chemistry and SHRIMP dating of zircons. Sediment. Geol. 2004, 166, 245–264. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Stability of Detrital Heavy Minerals During Burial Diagenesis. In Heavy Minerals in Use, Developments in SedimentologyDevelopments in Sedimentology; Mange, M.A., Wright, D.T., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2007; Volume 58, pp. 215–245. ISBN 9780444517531. [Google Scholar]
- Kotowski, J.; Nejbert, K.; Olszewska-Nejbert, D. Tourmalines as a tool in provenance studies of terrigenous material in Extra-Carpathian Albian (Uppermost Lower Cretaceous) sands of Miechów Synclinorium, Southern Poland. Minerals 2020, 10, 917. [Google Scholar] [CrossRef]
- Hubert, J.F. A Zircon-Tourmaline-Rutile Maturity Index and the Interdependence of the Composition of Heavy Mineral Assemblages with the Gross Composition and Texture of Sandstones. SEPM J. Sediment. Res. 1962, 32, 440–450. [Google Scholar] [CrossRef]
- Garzanti, E.; Vermeesch, P.; Vezzoli, G.; Andò, S.; Botti, E.; Limonta, M.; Dinis, P.A.; Hahn, A.; Baudet, D.; De Grave, J.; et al. Congo River sand and the equatorial quartz factory. Earth-Science Rev. 2019, 197, 102918. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.C.; Chenery, S. Detrital Rutile Geochemistry and Thermometry as Guides to Provenance of Jurassic-Paleocene Sandstones of the Norwegian Sea. J. Sediment. Res. 2009, 79, 540–553. [Google Scholar] [CrossRef] [Green Version]
- Meinhold, G.; Anders, B.; Kostopoulos, D.; Reischmann, T. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece. Sediment. Geol. 2008, 203, 98–111. [Google Scholar] [CrossRef]
- Zack, T.; von Eynatten, H.; Kronz, A. Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Zack, T.; Moraes, R.; Kronz, A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib. to Mineral. Petrol. 2004, 148, 471–488. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Triebold, S.; von Eynatten, H.; Luvizotto, G.L.; Zack, T. Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge, Germany. Chem. Geol. 2007, 244, 421–436. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, Y.; Wörner, G.; Kronz, A.; Simon, K.; Hou, Z. Detrital rutile geochemistry and thermometry from the Dabie orogen: Implications for source-sediment links in a UHPM terrane. J. Asian Earth Sci. 2014, 89, 123–140. [Google Scholar] [CrossRef]
- Hakenberg, M. Alb i cenoman w niecce miechowskiej. Stud. Geol. Pol. 1986, 86, 57–85. [Google Scholar]
- Niemczycka, T. Dokumentacja Wynikowa Otworu Strukturalno-Paramerytrycznego Potok-IG-1; (unpublished, PIG archive); 1973. [Google Scholar]
- Żelichowski, A.; Rek, E. Dokumentacja wynikowa otworu: Oporowego Tomaszów Lubelski IG-1; (unpublished, PIG archive); 1966. [Google Scholar]
- Gurba, L. Dokumentacja wynikowa otworu wiertniczego Piaski IG-2; (unpublished, PIG archive); 1984. [Google Scholar]
- Lendzion, K.; Wierzbowski, A. Dokumentacja wynikowa wiercenia Łuków IG-1; (unpublished, PIG archive); 1966. [Google Scholar]
- Dadlez, R.; Marek, S.; Pokorski, J. Geological Map of Poland without Cainozoic Deposits; Państwowy Instytut Geologiczny: Warszawa, Poland, 2000; ISBN 83-86986-45-x. [Google Scholar]
- Marcinowski, R.; Radwański, A. The Mid-Cretaceous transgression onto the Central Polish Uplands (marginal part of the Central European Basin). Zitteliana 1983, 10, 65–95. [Google Scholar]
- Marcinowski, R. The transgressive Cretaceous (Upper Albian through Turonian) deposits of the Polish Jura Chain. Acta Geol. Pol. 1974, 24, 117–220. [Google Scholar]
- Marcinowski, R.; Wiedmann, J. The Albian ammonites of Poland. Palaentologia Pol. 1990, 50, 1–94. [Google Scholar]
- Hakenberg, M. Alb i cenoman między Małogoszczem a Staniewicami w południowo-zachodnim obrzeżeniu Gór Świętokrzyskich. Stud. Geol. Pol. 1969, 26, 7–126. [Google Scholar]
- Rosenblum, S.; Brownfield, I.K. Magnetic Susceptibilities of Minerals; U.S. Department of the Interior, USGS: Reston, VA, USA, 2000. [Google Scholar]
- Von Eynatten, H.; Tolosana-Delgado, R.; Triebold, S.; Zack, T. Interactions between grain size and composition of sediments: Two examples. In Proceedings of the Proceed. 2nd CoDaWork, Gaborone, Botswana, 19–21 October 2005; Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada: Girona, Spain, 2005. [Google Scholar]
- Triebold, S.; von Eynatten, H.; Zack, T. A recipe for the use of rutile in sedimentary provenance analysis. Sediment. Geol. 2012, 282, 268–275. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H.F.W. Heavy Minerals in Colour, 1st ed.; Springer-Science+Business Media: London, UK, 1992; ISBN 9789401050197. [Google Scholar]
- Pouchou, L.L.; Pichoir, F. “PAP” (phi-rho-z) Procedure for Improved Quantitative Microanalysis. In Microbeam Analysis; Armstrong, J.T., Ed.; San Francisco Press: San Francisco, CA, USA, 1985; pp. 104–106. [Google Scholar]
- Schwartz, A.J.; Kumar, M.; Adams, B.L.; Field, D.P. Electron backscatter diffraction in materials science. Electron Backscatter Diffr. Mater. Sci. 2009, 1–403. [Google Scholar] [CrossRef]
- Plavsa, D.; Reddy, S.M.; Agangi, A.; Clark, C.; Kylander-Clark, A.R.C.; Tiddy, C.J. Microstructural, trace element and geochronological characterization of TiO2 polymorphs and implications for mineral exploration. Chem. Geol. 2018, 476, 130–149. [Google Scholar] [CrossRef]
- El Goresy, A.; Dubrovinsky, L.; Gillet, P.; Graup, G.; Chen, M. Akaogiite: An ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater, Germany. Am. Mineral. 2010, 95, 892–895. [Google Scholar] [CrossRef]
- Tschauner, O.; Ma, C.; Lanzirotti, A.; Newville, M.G. Riesite, a new high pressure polymorph of TiO2 from the ries impact structure. Minerals 2020, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Science Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Zack, T.; Kooijman, E. Petrology and geochronology of rutile. Rev. Mineral. Geochem. 2017, 83, 443–467. [Google Scholar] [CrossRef]
- Angiboust, S.; Harlov, D. Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results. Am. Mineral. 2017, 102, 1696–1708. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T.; Triebold, S.; Von Eynatten, H. Rutile occurrence and trace element behavior in medium-grade metasedimentary rocks: Example from the Erzgebirge, Germany. Mineral. Petrol. 2009, 97, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Willner, A.P. Pressure-temperature evolution of a low-pressure amphibolite facies terrane in central Bushmanland (Namaqua Mobile Belt; South Africa). Commun. Geol. Surv. Namibia 1995, 10, 5–19. [Google Scholar]
- Ayers, J.C.; Watson, E.B. Rutile solubility and mobility in supercritical aqueous fluids. Contrib. Mineral. Petrol. 1993, 114, 321–330. [Google Scholar] [CrossRef]
- Shulaker, D.Z.; Schmitt, A.K.; Zack, T.; Bindeman, I. In-situ oxygen isotope and trace element geothermometry of rutilated quartz from Alpine fissures. Am. Mineral. 2015, 100, 915–925. [Google Scholar] [CrossRef]
- Zack, T.; Luvizottow, G.L. Application of rutile thermometry to eclogites. Mineral. Petrol. 2006, 88, 69–85. [Google Scholar] [CrossRef]
- Kooijman, E.; Smit, M.A.; Mezger, K.; Berndt, J. Trace element systematics in granulite facies rutile: Implications for Zr geothermometry and provenance studies. J. Metamorph. Geol. 2012, 30, 397–412. [Google Scholar] [CrossRef]
- Win, M.M.; Enami, M.; Kato, T.; Thu, Y.K. A mechanism for Nb incorporation in rutile and application of Zr-in-rutile thermometry: A case study from granulite facies paragneisses of the Mogok metamorphic belt, Myanmar. Mineral. Mag. 2017, 81, 1503–1521. [Google Scholar] [CrossRef]
- Graham, J.; Morris, R.C. Tungsten- and antimony-substituted rutile. Mineral. Mag. 1973, 39, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Majzlan, J.; Bolanz, R.; Göttlicher, J.; Mikuš, T.; Milovská, S. Incorporation mechanism of tungsten in W-Fe-Cr-V-bearing rutile. Am. Mineral. 2021, 106, 609–619. [Google Scholar] [CrossRef]
- Usuki, T.; Iizuka, Y.; Hirajima, T.; Svojtka, M.; Lee, H.Y.; Jahn, B.M. Significance of Zr-in-Rutile thermometry for deducing the decompression P-T path of a garnet-clinopyroxene granulite in the moldanubian zone of the Bohemian Massif. J. Petrol. 2017, 58, 1173–1198. [Google Scholar] [CrossRef]
- Pape, J.; Mezger, K.; Robyr, M. A systematic evaluation of the Zr-in-rutile thermometer in ultra-high temperature (UHT) rocks. Contrib. to Mineral. Petrol. 2016, 171, 1–20. [Google Scholar] [CrossRef]
- Kohn, M.J. A refined zirconium-in-rutile thermometer. Am. Mineral. 2020, 105, 963–971. [Google Scholar] [CrossRef]
- Zack, T.; Kronz, A.; Foley, S.F.; Rivers, T. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol. 2002, 184, 97–122. [Google Scholar] [CrossRef]
- Molina, J.F.; Poli, S. Carbonate stability and fluid composition in subducted oceanic crust: An experimental study on H2O-CO2-bearing basalts. Earth Planet. Sci. Lett. 2000, 176, 295–310. [Google Scholar] [CrossRef]
- Poli, S. The amphibolite-eclogite transformation; an experimental study on basalt. Am. J. Sci. 1993, 293, 1061–1107. [Google Scholar] [CrossRef]
- Molina, J.F.; Poli, S. Singular equilibria in paragonite blueschists, amphibolites and eclogites. J. Petrol. 1998, 39, 1325–1346. [Google Scholar] [CrossRef]
- Meyer, M.; John, T.; Brandt, S.; Klemd, R. Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos 2011, 126, 388–401. [Google Scholar] [CrossRef]
- Triebold, S.; Luvizotto, G.L.; Tolosana-Delgado, R.; Zack, T.; von Eynatten, H. Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks. Contrib. to Mineral. Petrol. 2011, 161, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.C.; Horton, J.W.; Chou, I.M.; Belkin, H.E. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A. Am. Mineral. 2006, 91, 604–608. [Google Scholar] [CrossRef]
- Tuschel, D. Raman Spectroscopy and Polymorphism. Spectroscopy 2019, 34, 10–21. [Google Scholar] [CrossRef]
- Liu, Y.C.; Deng, L.P.; Gu, X.F.; Groppo, C.; Rolfo, F. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature metamorphism in eclogites from the Dabie orogen, central China. Gondwana Res. 2015, 27, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.L.; Adam, J.; Green, T.H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol. 2005, 218, 339–359. [Google Scholar] [CrossRef]
- Tual, L.; Möller, C.; Whitehouse, M.J. Tracking the prograde P–T path of Precambrian eclogite using Ti-in-quartz and Zr-in-rutile geothermobarometry. Contrib. to Mineral. Petrol. 2018, 173, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rösel, D.; Zack, T.; Möller, A. Interpretation and significance of combined trace element and U–Pb isotopic data of detrital rutile: A case study from late Ordovician sedimentary rocks of Saxo-Thuringia, Germany. Int. J. Earth Sci. 2019, 108, 1–25. [Google Scholar] [CrossRef]
- Cox, T.F.; Cox, M.A.A. Multidimensional Scaling, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2000; ISBN 9781584880943. [Google Scholar]
- Hounslow, M.W.; Morton, A.C. Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates: Comparison with heavy mineral analysis. Sediment. Geol. 2004, 171, 13–36. [Google Scholar] [CrossRef]
- Vermeesch, P. Multi-sample comparison of detrital age distributions. Chem. Geol. 2013, 341, 140–146. [Google Scholar] [CrossRef]
- Vermeesch, P.; Resentini, A.; Garzanti, E. An R package for statistical provenance analysis. Sediment. Geol. 2016, 336, 14–25. [Google Scholar] [CrossRef]
- Lancaster, P.J.; Daly, J.S.; Storey, C.D.; Morton, A.C. Interrogating the provenance of large river systems: Multi-proxy in situ analyses in the Millstone Grit, Yorkshire. J. Geol. Soc. 2017, 174, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Narkiewicz, M. Geologiczna historia Polski; Wydawnictwo Uniwersytetu Warszawskiego: Warszawa, Poland, 2020; ISBN 9788323542582. [Google Scholar]
- Hancock, J.M.; Kauffman, E.G. The great transgressions of the Late Cretaceous. J. Geol. Soc. London. 1979, 136, 175–186. [Google Scholar] [CrossRef]
- Hakenberg, M.; Jurkiewicz, H.; Woiński, J. Profile kredy środkowej w północnej części niecki miechowskiej. Geol. Q. 1973, 17, 763–786. [Google Scholar]
- Krassowska, A. Kreda między Zamościem, Tomaszowem Lubelskim a Kryłowem. Biul. Państwowego Inst. Geol. 1976, 291, 51–101. [Google Scholar]
- Olszewska-Nejbert, D.; Kotowski, J.; Nejbert, K. Psilonichnus upsilon Frey, Curran and Pemberton, 1984 burrows and their environmental significance in transgressive Albian (Lower Cretaceous) sands of Glanów-Stroniczki, Cracow Upland, southern Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 538. [Google Scholar] [CrossRef]
- Hakenberg, M.; Świdrowska, J. Evolution of the Holy Cross Segment of the Mid-Polish Trough during the Cretaceous. Geol. Q. 1998, 42, 239–262. [Google Scholar]
- Jaskowiak-Schoeneichowa, M. Paläogeographie des Alb und Cenoman in Polen. In Aspekte der Kreide Europas; Wiedman, J., Ed.; E. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 1979; pp. 463–471. [Google Scholar]
- Walaszczyk, I. Turonian through Santonian deposits of the Central Polish Uplands; their facies developement, inoceramid paleontology and stratigraphy. Acta Geol. Pol. 1992, 42, 1–122. [Google Scholar]
- Olszewska-Nejbert, D. Development of the Turonian Conulus Lagerstätte in the Wielkanoc quarry, Miechów Upland (South Poland). Ann. Soc. Geol. Pol. 2005, 75, 199–210. [Google Scholar]
- Biernacka, J.; Jozefiak, M.; Józefiak, M. The eastern Sudetic Island in the early-to-middle Turonian: Evidence from heavy minerals in the Jerzmanowice sandstones, SW Poland. Acta Geol. Pol. 2009, 59, 545–565. [Google Scholar]
- Krassowska, A. Charakterystyka osadów kredy na obszarze Lubelskiego Zagłębia Węglowego. Geol. Q. 1981, 25, 703–716. [Google Scholar]
- Świdrowska, J. Kreda w regionie lubelskim—Sedymentacja i jej tektoniczne uwarunkowania. Biul. Państwowego Inst. Geol. 2007, 422, 63–78. [Google Scholar]
- Kotowski, J.; Nejbert, K.; Olszewska-Nejbert, D. Monazite and tourmaline from the Albian (Lower Cretaceous) sands from the Miechów Synclinorium (southern Poland) as a Tool in Provenance Study. In Proceedings of the 9th European Conference on Mineralogy and Spectroscopy, Prague, Czech Republic, 11–13 September 2019. [Google Scholar]
- Mazur, S.; Aleksandrowski, P.; Kryza, R.; Oberc-Dziedzic, T. The Variscan Orogen in Poland. Geol. Q. 2006, 50, 89–118. [Google Scholar]
- Klomínský, J.; Jarchovský, T.; Rajpoot, G.S. Atlas of plutonic rocks and orthogneisses in the Bohemian Massif; Czech Geological Survey: Prague, Czech Republic, 2010; ISBN 9788070757512. [Google Scholar]
- Kryza, R.; Sveshnikov, K.I.; Charnley, N.; Montel, J.M. Monazite in precambrian granites of the Ukrainian Shield: Selected aspects of geochemistry and chemical age dating. Mineral. Soc. Pol. Spec. Pap. 2004, 24, 255–258. [Google Scholar]
- Čopjaková, R.; Buriánek, D.; Škoda, R.; Houzar, S. Tourmalinites in the metamorphic complex of the Svratka Unit (Bohemian Massif): A study of compositional growth of tourmaline and genetic relations. J. Geosci. 2009, 54, 221–243. [Google Scholar] [CrossRef] [Green Version]
- Buriánek, D.; Dolníček, Z.; Novák, M. Textural and compositional evidence for a polyphase saturation of tourmaline in granitic rocks from the Třebíč Pluton (Bohemian Massif). J. Geosci. 2016, 61, 309–334. [Google Scholar] [CrossRef]
- Jastrzębski, M.; Budzyń, B.; Stawikowski, W. Cambro-Ordovician vs Devono-Carboniferous geodynamic evolution of the Bohemian Massif: Evidence from P-T-t studies in the Orlica-Śnieżnik Dome, SW Poland. Geol. Mag. 2019, 156, 447–470. [Google Scholar] [CrossRef]
- Kowal-Linka, M.; Stawikowski, W. Garnet and tourmaline as provenance indicators of terrigenous material in epicontinental carbonates (Middle Triassic, S Poland). Sediment. Geol. 2013, 291, 27–47. [Google Scholar] [CrossRef]
- Salata, D. Heavy minerals as detritus provenance indicators for the Jurassic pre-Callovian palaeokarst infill from the Czatkowice Quarry (Kraków—Wieluń Upland, Poland). Geol. Q. 2013, 57, 537–550. [Google Scholar] [CrossRef]
- Nawrocki, J.; Poprawa, P. Development of Trans-European Suture Zone in Poland: From Ediacaran rifting to Early Palaeozoic accretion. Geol. Q. 2006, 50, 59–76. [Google Scholar]
- Otava, J.; Sulovský, P.; Krejčí, O. The results of study of the detrital garnets from the Cretaceous sediments of the Rača Unit of the Magura Group (Outher Carpathians). Geol. Výzkumy na Moravě a ve Slezsku 1998, 5, 29–31. [Google Scholar]
- Bogdanova, S.V.; Gorbatschev, R.; Garetsky, R.G. EUROPE|East European Craton. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–18. ISBN 978-0-12-409548-9. [Google Scholar]
- Shumlyanskyy, L.; Ellam, R.M.; Mitrokhin, O. The origin of basic rocks of the Korosten AMCG complex, Ukrainian shield: Implication of Nd and Sr isotope data. Lithos 2006, 90, 214–222. [Google Scholar] [CrossRef]
- Savko, K.A.; Samsonov, A.V.; Larionov, A.N.; Korish, E.K.; Bazikov, N.S. An Archaean Tonalite–Trondhjemite–Granodiorite Association of the Kursk Block (Voronezh Massif): Composition, Age, and Correlation with the Ukrainian Shield. Dokl. Earth Sci. 2018, 478, 115–119. [Google Scholar] [CrossRef]
- Bibikova, E.V.; Claesson, S.; Fedotova, A.A.; Stepanyuk, L.M.; Shumlyansky, L.V.; Kirnozova, T.I.; Fugzan, M.M.; Il’insky, L.S. Isotope-geochronological (U-Th-Pb, Lu-Hf) study of the zircons from the archean magmatic and metasedimentary rocks of the Podolia domain, Ukrainian shield. Geochem. Int. 2013, 51, 87–108. [Google Scholar] [CrossRef]
- Force, E.R. The provenance of rutile. J. Sediment. Petrol. 1980, 50, 485–488. [Google Scholar]
- Białowolska, A.; Bakun-Czubarow, N.; Fedoryshyn, Y. Neoproterozoic flood basalts of the upper beds of the Volhynian Series (East European Craton). Geol. Q. 2002, 46, 37–57. [Google Scholar]
- Pinto, A.J.; Sanchez-Pastor, N.; Callegari, I.; Pracejus, B.; Scharf, A. Challenges to rutile-based geoscientific tools: Low-temperature polymorphic TiO2 transformations and corresponding reactive pathways. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Claesson, S.; Bogdanova, S.V.; Bibikova, E.V.; Gorbatschev, R. Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics 2001, 339, 1–18. [Google Scholar] [CrossRef]
- Corfu, F.; Andersen, T.B.; Gasser, D. The scandinavian caledonides: Main features, conceptual advances and critical questions. Geol. Soc. Spec. Publ. 2014, 390, 9–43. [Google Scholar] [CrossRef]
- Burton, K.W.; Boyle, A.P.; Kirk, W.L.; Mason, R. Pressure, temperature and structural evolution of the Sulitjelma fold-nappe, central Scandinavian Caledonides. Geol. Soc. Spec. Publ. 1989, 43, 391–411. [Google Scholar] [CrossRef]
- Fossen, H.; Dallmeyer, R.D. 40Ar/39Ar muscovite dates from the nappe region of southwestern Norway: Dating extensional deformation in the Scandinavian Caledonides. Tectonophysics 1998, 285, 119–133. [Google Scholar] [CrossRef]
- Engvik, A.K.; Grenne, T.; Lutro, O.J.; Meyer, G.B. Metamorphic constraints on the caledonian upper allochthon of Central Norway: The gula complex staurolite-garnet-kyanite mica schist. Geol. Soc. Spec. Publ. 2014, 390, 563–581. [Google Scholar] [CrossRef]
- Krogh, E.J. Compatible P-T conditions for eclogites and surrounding gneisses in the Kristiansund area, western Norway. Contrib. Mineral. Petrol. 1981, 75, 387–393. [Google Scholar] [CrossRef]
- Gee, D.G.; Sturt, B.A. The Caledonide Orogen: Scandinavia and Related Areas; Wiley: Hoboken, NJ, USA, 1985. [Google Scholar]
- Dobrzhinetskaya, L.F.; Eide, E.A.; Larsen, R.B.; Sturt, B.A.; Trønnes, R.G.; Smith, D.C.; Taylor, W.R.; Posukhova, T.V. Microdiamond in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology 1995, 23, 597–600. [Google Scholar] [CrossRef]
- Morton, A.C.; Whitham, A.G.; Fanning, C.M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 2005, 182, 3–28. [Google Scholar] [CrossRef]
- Rudowski, S. Mikroformy strefy brzegowej Bałtyku w Polsce. Acta Geol. Pol. 1962, 12, 541–579. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Bluck, B.J.; Ward, J.D.; Cartwright, J.; Swart, R. The Orange River, southern Africa: An extreme example of a wave-dominated sediment dispersal system in the South Atlantic Ocean. J. Geol. Soc. 2007, 164, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Garzanti, E.; Andò, S.; Vezzoli, G.; Lustrino, M.; Boni, M.; Vermeesch, P. Petrology of the Namib Sand Sea: Long-distance transport and compositional variability in the wind-displaced Orange Delta. Earth Sci. Rev. 2012, 112, 173–189. [Google Scholar] [CrossRef]
- Hori, K.; Saito, Y.; Zhao, Q.; Wang, P. Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sediment. Geol. 2002, 146, 249–264. [Google Scholar] [CrossRef]
- van Rijn, L.C.; Walstra, D.-J.R.; van Ormondt, M. Unified View of Sediment Transport by Currents and Waves. IV: Application of Morphodynamic Model. J. Hydraul. Eng. 2007, 133, 776–793. [Google Scholar] [CrossRef]
- Bian, C.; Jiang, W.; Greatbatch, R.J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea. J. Geophys. Res. Ocean 2013, 118, 5908–5923. [Google Scholar] [CrossRef] [Green Version]
- Corbett, I.B. A review of diamondiferous marine deposits of western southern Africa. Africa Geosci. Rev. 1996, 3, 157–174. [Google Scholar]
- Rosen, S.D. Assessing Present and Future Mediterranean Sea Level Rise Impact on Israel’S Coast and Mitigation Ways Against Beach and Cliff Erosion. Coast. Eng. Proc. 2011, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Kuhrts, C.; Fennel, W.; Seifert, T. Model studies of transport of sedimentary material in the western Baltic. J. Mar. Syst. 2004, 52, 167–190. [Google Scholar] [CrossRef]
- Stella, M.; Ostrowski, R.; Szmytkiewicz, P.; Kapiński, J.; Marcinkowski, T. Driving forces of sandy sediment transport beyond the surf zone. Oceanologia 2019, 61, 50–59. [Google Scholar] [CrossRef]
- Vinogradov, A.P. Atlas of Lithological and Paleogeographic Maps of the Russian Platform and its Geosynclinal Framing. Part 2. Mesozoic and Cenozoic; Vinogradov, A.P., Ed.; Academy of Sciences of the Soviet Union: Moscow, Russia; Saint Petersburg, Russia, 1961. [Google Scholar]
- Baraboshkin, E.J.; Alekseev, A.S.; Kopaevich, L.F. Cretaceous palaeogeography of the North-Eastern Peri-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 196, 177–208. [Google Scholar] [CrossRef]
Sample | Type of Locality | Locality | Latitude | Longitude | |
---|---|---|---|---|---|
KRZ | outcrop | western zone/group | Korzkiew | 50°09′42.5″ N | 19°52′46.7″ E |
GLA | outcrop | Glanów-Stroniczki | 50°18′59.9″ N | 19°47′32.7″ E | |
PRZ | outcrop | Przychody | 50°30′22.0″ N | 19°43′42.6″ E | |
LEL | outcrop | Lelów | 50°41′48.4″ N | 19°36′18.9″ E | |
MO | outcrop | central zone/group | Mokrzesz | 50°48′09.5″ N | 19°23′34.4″ E |
GCH | outcrop | Chełmo Mount | 51°03′27.2″ N | 19°44′38.3″ E | |
BOL | outcrop | Bolmin | 50°48′36.5″ N | 20°20′37.1″ E | |
PO | borehole | Potok IG-1 | 50°45′43.17″ N | 22°19′13.17″ E | |
KOP | outcrop | eastern zone/group | Kopiec (Annopol) | 50°54′27.0″ N | 21°50′28.1″ E |
TL | borehole | Tomaszów Lubelski IG-1 | 50°24′59.98″ N | 23°34′38.64″ E | |
PK | borehole | Piaski IG-2 | 51°09′25.35″ N | 22°55′03.64″ E | |
LK | borehole | Łuków IG-1 | 51°56′32.99″ N | 22°34′33.79″ E |
No. | Formulae | Error of Temperature Estimation in [°C] | References for the Calibration |
---|---|---|---|
1 | ±50 °C | [31] | |
2 | ±20 °C | [32] | |
3 | ±30 °C | [65] * | |
4 | ±15 °C | [69] * | |
5 | ±30 °C | [65] * | |
6 | ±30 °C | [65] * | |
7 | ±15 °C | [69] * |
Sample | GLA | GLA | KRZ | PRZ | PRZ | LEL | LEL | MO | MO | PO |
No. | 44219 | 44220 | 102/1 | 68/1 | 52/1 | 44203 | 34/1 | 72/1 | 77/1 | 44223 |
Comment | WG | WG | WG | WG | WG | WG | WG | CG | CG | CG |
in wt.% | ||||||||||
Ti | 59.00 | 59.22 | 59.53 | 58.49 | 59.05 | 59.35 | 59.59 | 58.77 | 58.71 | 59.10 |
Σtrace.elements | 1.09 | 1.17 | 0.95 | 2.07 | 1.26 | 0.40 | 0.35 | 0.78 | 1.04 | 1.04 |
O | 39.87 | 40.07 | 40.12 | 39.99 | 40.02 | 39.80 | 39.94 | 39.60 | 39.66 | 39.88 |
Total | 99.96 | 100.45 | 100.61 | 100.54 | 100.32 | 99.56 | 99.88 | 99.14 | 99.41 | 100.02 |
in ppm | ||||||||||
Nb | 2158 | 1303 | 3146 | 1610 | 30 | 170 | 809 | 1460 | 1260 | 3710 |
Si | b.d.l. | 32 | b.d.l. | b.d.l. | 0 | 100 | 35 | 130 | 120 | 130 |
Zr | 4660 | 2508 | 432 | 3880 | 150 | 40 | 269 | 2020 | 3910 | 2040 |
Al | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 320 |
V | 3104 | 5566 | 688 | 13,330 | 10,640 | 1320 | 620 | 2520 | 3240 | 170 |
Cr | 876 | 1618 | 924 | 1330 | 510 | 80 | 269 | 1010 | 1540 | 130 |
Mn | b.d.l. | b.d.l. | b.d.l. | 0 | b.d.l. | b.d.l. | 0 | 0 | b.d.l. | 40 |
Fe | 151 | 628 | 4349 | 550 | 1280 | 2320 | 1506 | 650 | 330 | 3860 |
Source lithology * | P | P | P | P | M | M | P | P | P | P |
Temperature [°C] ** | 938 | 856 | 673 | 912 | 589 | 503 | 634 | 829 | 913 | 831 |
Sample | BOL | BOL | GCH | TL | TL | PK | PK | LK | LK | KOP |
No. | 50/1 | 49/1 | 69/1 | 42/1 | 44227 | 44205 | 44209 | 61/1 | 48/1 | 44211 |
Comment | CG | CG | CG | EG | EG | EG | EG | EG | EG | EG |
in wt.% | ||||||||||
Ti | 59.10 | 59.65 | 59.42 | 59.61 | 59.07 | 60.10 | 59.33 | 59.43 | 59.30 | 59.33 |
Σtrace.elements | 1.06 | 0.78 | 0.54 | 0.39 | 0.35 | 0.25 | 0.61 | 0.56 | 0.64 | 1.16 |
O | 39.88 | 40.11 | 39.88 | 39.99 | 39.58 | 40.25 | 39.89 | 39.91 | 39.87 | 40.01 |
Total | 100.03 | 100.54 | 99.83 | 99.98 | 98.99 | 100.59 | 99.82 | 99.90 | 99.82 | 100.50 |
in ppm | ||||||||||
Nb | 4967 | 1566 | 1356 | 505 | 276 | 186 | 958 | 2022 | 1966 | 1380 |
Si | 31 | b.d.l. | 62 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 49 | b.d.l. | 50 |
Zr | 124 | 178 | 61 | 96 | 144 | 57 | 82 | 160 | 45 | 80 |
Al | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 |
V | 357 | 382 | 0 | 1503 | 43 | 242 | 217 | 319 | 0 | 280 |
Cr | 682 | b.d.l. | 208 | 935 | 640 | 910 | 3264 | 258 | 2404 | 410 |
Mn | 0 | 34 | b.d.l. | 0 | 0 | b.d.l. | b.d.l. | 0 | 37 | b.d.l. |
Fe | 4428 | 5632 | 3736 | 821 | 2376 | 1123 | 1551 | 2835 | 1957 | 9360 |
Source lithology * | P | P | P | M | M | M | M | P | P | P |
Temperature [°C] ** | 576 | 602 | 529 | 558 | 586 | 525 | 548 | 594 | 510 | 546 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotowski, J.; Nejbert, K.; Olszewska-Nejbert, D. Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland. Minerals 2021, 11, 553. https://doi.org/10.3390/min11060553
Kotowski J, Nejbert K, Olszewska-Nejbert D. Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland. Minerals. 2021; 11(6):553. https://doi.org/10.3390/min11060553
Chicago/Turabian StyleKotowski, Jakub, Krzysztof Nejbert, and Danuta Olszewska-Nejbert. 2021. "Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland" Minerals 11, no. 6: 553. https://doi.org/10.3390/min11060553
APA StyleKotowski, J., Nejbert, K., & Olszewska-Nejbert, D. (2021). Rutile Mineral Chemistry and Zr-in-Rutile Thermometry in Provenance Study of Albian (Uppermost Lower Cretaceous) Terrigenous Quartz Sands and Sandstones in Southern Extra-Carpathian Poland. Minerals, 11(6), 553. https://doi.org/10.3390/min11060553