Integrating Production Planning with Truck-Dispatching Decisions through Reinforcement Learning While Managing Uncertainty
Abstract
:1. Introduction
2. Method
2.1. Discrete Event Simulator
2.2. Agent–Environment Interaction
2.2.1. Definitions
2.2.2. Reward Function
2.3. Deep Double Q-Learning (DDQN)
Algorithm 1 Proposed learning algorithm. | |
Initialize the action-functions. and by assigning initial weights to and . | |
Set and . | |
Initialize the DES, with the trucks at their initial locations (e.g., queueing them at the shovel). | |
Repeat for each episode: | |
Given the current truck-shovel allocation, the DES simulates the supply material being transferred from mining facies to the processors or waste dump by the trucks. | |
Once the truck dumps the material, a new allocation must be provided. | |
At this point, the agent collects the information about the state . | |
Sample | |
If | |
The truck-agent acts randomly | |
Else: | |
The truck-agent acts greedily | |
Taking action , observe and a new state . | |
Store the tuple in the memory buffer | |
Sample a batch of experiences , of size , from : | |
For each transition sampled, calculate the respective from Equation (7). | |
Perform gradient descent on according to Equation (8): | |
(8) | |
. | |
. | |
If : | |
. | |
. | |
If : | |
. | |
. |
3. Case Study at a Copper—Gold Mining Complex
3.1. Description and Implementation Aspects
3.2. Results and Comparisons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. State Definition
Attribute in Consideration | Representation | |
---|---|---|
Shovel related attributes | Destination policy of the block being currently extracted | 1-hot-encoded vector (3-dimensional) |
Destination policy of next 2 blocks | 1-hot-encoded (6 dimensional in total) | |
Shovel capacity | 1 value divided by the largest capacity | |
Variable indicating if the shovel is currently in maintenance | 1 value (0 or 1) | |
Current distance to destination | 1 value divided by a large number | |
Number of trucks associated | 1 value divided by a large number | |
Approximated queue sizes | 1 value divided by a large number | |
Approximated waiting times | 1 value divided by a large | |
Number of attributes per shovel | 15 | |
Destination related attributes | % target processed | 1 value |
Amount of material received at crushers | 2 values divided by a large number | |
Distance to each shovel | 4 values dived by a large number | |
Approximated queue sizes | 1 value divided by a large number | |
Approximated waiting times | 1 value divided by a large number | |
Number of attributes per destination | 9 | |
Truck related attributes | Truck capacity | 1 value divided by the largest capacity |
Current number of trucks currently in operation. | 1 value divided by the total number of trucks | |
The last shovel visited | 1-hot-encoded (4 values) | |
Number of attributes of each truck | ||
Total of attributes | 102 |
Appendix A.2. Neural Network Parameters
Neural Network | Input layer = 102 nodes with ReLU activation function; Hidden layer 306 nodes with ReLU activation function; Output layer: 4 nodes without activation function. |
Gradient descent | Adam optimization, with learning rate = 2 × 10−4. |
DDQN parameters | 10,000 episodes of training. |
References
- Chaowasakoo, P.; Seppälä, H.; Koivo, H.; Zhou, Q. Digitalization of Mine Operations: Scenarios to Benefit in Real-Time Truck Dispatching. Int. J. Min. Sci. Technol. 2017, 27, 229–236. [Google Scholar] [CrossRef]
- Alarie, S.; Gamache, M. Overview of Solution Strategies Used in Truck Dispatching Systems for Open Pit Mines. Int. J. Surf. Min. Reclam. Environ. 2002, 16, 59–76. [Google Scholar] [CrossRef]
- Munirathinarn, M.; Yingling, J.C. A Review of Computer-Based Truck Dispatching Strategies for Surface Mining Operations. Int. J. Surf. Min. Reclam. Environ. 1994, 8, 1–15. [Google Scholar] [CrossRef]
- Niemann-Delius, C.; Fedurek, B. Computer-Aided Simulation of Loading and Transportation in Medium and Small Scale Surface Mines. In Mine Planning and Equipment Selection 2004; Hardygora, M., Paszkowska, G., Sikora, M., Eds.; CRC Press: London, UK, 2004; pp. 579–584. [Google Scholar]
- Blom, M.; Pearce, A.R.; Stuckey, P.J. Short-Term Planning for Open Pit Mines: A Review. Int. J. Min. Reclam. Environ. 2018, 0930, 1–22. [Google Scholar] [CrossRef]
- Afrapoli, A.M.; Askari-Nasab, H. Mining Fleet Management Systems: A Review of Models and Algorithms. Int. J. Min. Reclam. Environ. 2019, 33, 42–60. [Google Scholar] [CrossRef]
- Temeng, V.A.; Otuonye, F.O.; Frendewey, J.O. Real-Time Truck Dispatching Using a Transportation Algorithm. Int. J. Surf. Min. Reclam. Environ. 1997, 11, 203–207. [Google Scholar] [CrossRef]
- Li, Z. A Methodology for the Optimum Control of Shovel and Truck Operations in Open-Pit Mining. Min. Sci. Technol. 1990, 10, 337–340. [Google Scholar] [CrossRef]
- Ta, C.H.; Kresta, J.V.; Forbes, J.F.; Marquez, H.J. A Stochastic Optimization Approach to Mine Truck Allocation. Int. J. Surf. Min. Reclam. Environ. 2005, 19, 162–175. [Google Scholar] [CrossRef]
- Upadhyay, S.P.; Askari-Nasab, H. Truck-Shovel Allocation Optimisation: A Goal Programming Approach. Min. Technol. 2016, 125, 82–92. [Google Scholar] [CrossRef]
- Afrapoli, A.M.; Tabesh, M.; Askari-Nasab, H. A Transportation Problem-Based Stochastic Integer Programming Model to Dispatch Surface Mining Trucks under Uncertainty. In Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection—MPES 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 255–264. Available online: https://www.springerprofessional.de/en/a-transportation-problem-based-stochastic-integer-programming-mo/16498454 (accessed on 15 May 2021).
- White, J.W.; Olson, J.P. Computer-Based Dispatching in Mines with Concurrent Operating Objectives. Min. Eng. 1986, 38, 1045–1054. [Google Scholar]
- Soumis, F.; Ethier, J.; Elbrond, J. Truck Dispatching in an Open Pit Mine. Int. J. Surf. Min. Reclam. Environ. 1989, 3, 115–119. [Google Scholar] [CrossRef]
- Elbrond, J.; Soumis, F. Towards Integrated Production Planning and Truck Dispatching in Open Pit Mines. Int. J. Surf. Min. Reclam. Environ. 1987, 1, 1–6. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, UK, 2018. [Google Scholar]
- Del Castillo, M.F.; Dimitrakopoulos, R. Dynamically Optimizing the Strategic Plan of Mining Complexes under Supply Uncertainty. Resour. Policy 2019, 60, 83–93. [Google Scholar] [CrossRef]
- Montiel, L.; Dimitrakopoulos, R. Simultaneous Stochastic Optimization of Production Scheduling at Twin Creeks Mining Complex, Nevada. Min. Eng. 2018, 70, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, R.; Dimitrakopoulos, R. Global Optimization of Open Pit Mining Complexes with Uncertainty. Appl. Soft Comput. J. 2016, 40, 292–304. [Google Scholar] [CrossRef]
- Pimentel, B.S.; Mateus, G.R.; Almeida, F.A. Mathematical Models for Optimizing the Global Mining Supply Chain. In Intelligent Systems in Operations: Methods, Models and Applications in the Supply Chain; Nag, B., Ed.; IGI Global: Hershey, PA, USA, 2010; pp. 133–163. [Google Scholar]
- Levinson, Z.; Dimitrakopoulos, R. Adaptive Simultaneous Stochastic Optimization of a Gold Mining Complex: A Case Study. J. S. African Inst. Min. Metall. 2020, 120, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Saliba, Z.; Dimitrakopoulos, R. Simultaneous stochastic optimization of an open pit gold mining complex with supply and market uncertainty. Min. Technol. 2019, 128, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Both, C.; Dimitrakopoulos, R. Joint Stochastic Short-Term Production Scheduling and Fleet Management Optimization for Mining Complexes. Optim. Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Whittle, J. The Global Optimiser Works—What Next? In Advances in Applied Strategic Mine Planning; Dimitrakopoulos, R., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 31–37. [Google Scholar]
- Whittle, G. Global asset optimization. In Orebody Modelling and Strategic Mine Planning: Uncertainty and Risk Management Models; Dimitrakopoulos, R., Ed.; Society of Mining: Carlton, Australia, 2007; pp. 331–336. [Google Scholar]
- Hoerger, S.; Hoffman, L.; Seymour, F. Mine Planning at Newmont’s Nevada Operations. Min. Eng. 1999, 51, 26–30. [Google Scholar]
- Chanda, E. Network Linear Programming Optimisation of an Integrated Mining and Metallurgical Complex. Orebody Modelling and Strategic Mine Planning; Dimitrakopoulos, R., Ed.; AusIMM: Carlton, Australia, 2007; pp. 149–155. [Google Scholar]
- Stone, P.; Froyland, G.; Menabde, M.; Law, B.; Pasyar, R.; Monkhouse, P. Blasor–Blended Iron Ore Mine Planning Optimization at Yandi, Western Australia. In Orebody Modelling and Strategic Mine Planning: Uncertainty and Risk Management Models; Dimitrakopoulos, R., Ed.; Spectrum Series 14; AusIMM: Carlton, Australia, 2007; Volume 14, pp. 133–136. [Google Scholar]
- Sitek, P.; Wikarek, J.; Rutczyńska-Wdowiak, K. Capacitated Vehicle Routing Problem with Pick-Up, Alternative Delivery and Time Windows (CVRPPADTW): A Hybrid Approach. In Distributed Computing and Artificial Intelligence, Proceedings of the 16th International Conference, Special Sessions, Avila, Spain, 26–28 June 2019; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Gola, A.; Kłosowski, G. Development of Computer-Controlled Material Handling Model by Means of Fuzzy Logic and Genetic Algorithms. Neurocomputing 2019, 338, 381–392. [Google Scholar] [CrossRef]
- Bocewicz, G.; Nielsen, P.; Banaszak, Z. Declarative Modeling of a Milk-Run Vehicle Routing Problem for Split and Merge Supply Streams Scheduling. In Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology—ISAT 2018; Świątek, J., Borzemski, L., Wilimowska, Z., Eds.; Springer: Cham, Switzerland, 2019; pp. 157–172. [Google Scholar]
- Pillac, V.; Gendreau, M.; Guéret, C.; Medaglia, A.L. A Review of Dynamic Vehicle Routing Problems. Eur. J. Oper. Res. 2013, 225, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gendreau, M.; Potvin, J.-Y. Dynamic Vehicle Routing and Dispatching. In Fleet Management and Logistics; Crainic, T.G., Laporte, G., Eds.; Springer US: Boston, MA, USA, 1998; pp. 115–126. [Google Scholar]
- Secomandi, N.; Margot, F. Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands. Oper. Res. 2009, 57, 214–230. [Google Scholar] [CrossRef] [Green Version]
- Azi, N.; Gendreau, M.; Potvin, J.-Y. A Dynamic Vehicle Routing Problem with Multiple Delivery Routes. Ann. Oper. Res. 2012, 199, 103–112. [Google Scholar] [CrossRef]
- Torkamani, E.; Askari-Nasab, H. A Linkage of Truck-and-Shovel Operations to Short-Term Mine Plans Using Discrete-Event Simulation. Int. J. Min. Miner. Eng. 2015, 6, 97–118. [Google Scholar] [CrossRef]
- Matamoros, M.E.V.; Dimitrakopoulos, R. Stochastic Short-Term Mine Production Schedule Accounting for Fleet Allocation, Operational Considerations and Blending Restrictions. Eur. J. Oper. Res. 2016, 255, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Quigley, M.; Dimitrakopoulos, R. Incorporating Geological and Equipment Performance Uncertainty While Optimising Short-Term Mine Production Schedules. Int. J. Min. Reclam. Environ. 2019, 34, 362–383. [Google Scholar] [CrossRef]
- Bodon, P.; Fricke, C.; Sandeman, T.; Stanford, C. Combining Optimisation and Simulation to Model a Supply Chain from Pit to Port. Adv. Appl. Strateg. Mine Plan. 2018, 251–267. [Google Scholar] [CrossRef]
- Hashemi, A.S.; Sattarvand, J. Application of ARENA Simulation Software for Evaluation of Open Pit Mining Transportation Systems—A Case Study. In Proceedings of the 12th International Symposium Continuous Surface Mining—Aachen 2014; Niemann-Delius, C., Ed.; Springer: Cham, Switzerland, 2015; pp. 213–224. Available online: https://link.springer.com/chapter/10.1007/978-3-319-12301-1_20 (accessed on 15 May 2021).
- Jaoua, A.; Riopel, D.; Gamache, M. A Framework for Realistic Microscopic Modelling of Surface Mining Transportation Systems. Int. J. Min. Reclam. Environ. 2009, 23, 51–75. [Google Scholar] [CrossRef]
- Sturgul, J. Discrete Simulation and Animation for Mining Engineers; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Upadhyay, S.P.; Askari-Nasab, H. Simulation and Optimization Approach for Uncertainty-Based Short-Term Planning in Open Pit Mines. Int. J. Min. Sci. Technol. 2018, 28, 153–166. [Google Scholar] [CrossRef]
- Yuriy, G.; Vayenas, N. Discrete-Event Simulation of Mine Equipment Systems Combined with a Reliability Assessment Model Based on Genetic Algorithms. Int. J. Min. Reclam. Environ. 2008, 22, 70–83. [Google Scholar] [CrossRef]
- Law, A.M.; Kelton, W.D. Simulation Modeling and Analysis; McGraw-Hill.: New York, NY, USA, 1982. [Google Scholar]
- Jaoua, A.; Gamache, M.; Riopel, D. Specification of an Intelligent Simulation-Based Real Time Control Architecture: Application to Truck Control System. Comput. Ind. 2012, 63, 882–894. [Google Scholar] [CrossRef]
- Chaowasakoo, P.; Seppälä, H.; Koivo, H.; Zhou, Q. Improving Fleet Management in Mines: The Benefit of Heterogeneous Match Factor. Eur. J. Oper. Res. 2017, 261, 1052–1065. [Google Scholar] [CrossRef]
- Afrapoli, A.M.; Tabesh, M.; Askari-Nasab, H. A Multiple Objective Transportation Problem Approach to Dynamic Truck Dispatching in Surface Mines. Eur. J. Oper. Res. 2019, 276, 331–342. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; Balcan, M.F., Weinberger, K.Q., Eds.; Volume 48, pp. 1928–1937. [Google Scholar]
- Van Hasselt, H.; Guez, A.; Silver, D.; Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the 30th AAAI Conference, Shenzhen, China, 21 February 2016. [Google Scholar]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the Game of Go without Human Knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.; et al. Mastering Atari, Go, Chess and Shogi by Planning with Learned Model. Nature 2020, 588, 604–609. [Google Scholar] [CrossRef]
- Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef]
- Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhnevets, A.S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.; Schrittwieser, J.; et al. StarCraft II: A New Challenge for Reinforcement Learning.cs.LG. arXiv 2017, arXiv:1708.04782. [Google Scholar]
- Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.; et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nat. Cell Biol. 2019, 575, 350–354. [Google Scholar] [CrossRef]
- Paduraru, C.; Dimitrakopoulos, R. Responding to new information in a mining complex: Fast mechanisms using machine learning. Min. Technol. 2019, 128, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Dimitrakopoulos, R.; Maulen, M. Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex. J. Intell. Manuf. 2020, 31, 1795–1811. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. Artificial Intelligence Algorithms for Real-Time Production Planning with Incoming New Information in Mining Complexes. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 2020. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Applied Geostatistics Series; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Remy, N.; Boucher, A.; Wu, J. Applied Geostatistics with SGeMS: A User’s Guide; Cambridge University Press: Cambridge, UK, 2009; Volume 9780521514. [Google Scholar]
- Rossi, M.E.; Deutsch, C.V. Mineral Resource Estimation; Springer: Dordt, The Netherlands, 2014. [Google Scholar]
- Gómez-Hernández, J.J.; Srivastava, R.M. One Step at a Time: The Origins of Sequential Simulation and Beyond. Math. Geol. 2021, 53, 193–209. [Google Scholar] [CrossRef]
- Minniakhmetov, I.; Dimitrakopoulos, R. High-Order Data-Driven Spatial Simulation of Categorical Variables. Math. Geosci. 2021. [Google Scholar] [CrossRef]
- Lin, L.-J. Reinforcement Learning for Robots Using Neural Networks. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1993. [Google Scholar]
Equipment | Description |
---|---|
Trucks 12 in total | 6 of payload capacity of 200 tons 3 of payload capacity of 150 tons 3 of payload capacity of 250 tons |
Shovel 4 in total | 2 of bucket payload of 80 tons 1 of bucket payload of 60 tons 1 of bucket payload of 85 tons |
Mill | Capacity 80,000 ton/day, with 2 crushers. |
Leach Pad | Capacity 20,000 ton/day, with one crusher. |
Waste Dump | 1 Waste Dump with no limitation on capacity. |
Stochastic Variable | Probability Distribution |
---|---|
Loaded truck speed (km/h) | Normal (17, 4) |
Empty truck speed (km/h) | Normal (35, 6) |
Dumping + maneuver time (min) | Normal (1, 0.15) |
Shovel bucketing load time (min) | Normal (1.1, 0.2) |
Truck mean time between failures (h) | Poisson (36) |
Truck mean time to repair (h) | Poisson (5) |
Shovel mean time between failures (h) | Poisson (42) |
Shovel mean time to repair (h) | Poisson (4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, J.P.; Dimitrakopoulos, R. Integrating Production Planning with Truck-Dispatching Decisions through Reinforcement Learning While Managing Uncertainty. Minerals 2021, 11, 587. https://doi.org/10.3390/min11060587
de Carvalho JP, Dimitrakopoulos R. Integrating Production Planning with Truck-Dispatching Decisions through Reinforcement Learning While Managing Uncertainty. Minerals. 2021; 11(6):587. https://doi.org/10.3390/min11060587
Chicago/Turabian Stylede Carvalho, Joao Pedro, and Roussos Dimitrakopoulos. 2021. "Integrating Production Planning with Truck-Dispatching Decisions through Reinforcement Learning While Managing Uncertainty" Minerals 11, no. 6: 587. https://doi.org/10.3390/min11060587
APA Stylede Carvalho, J. P., & Dimitrakopoulos, R. (2021). Integrating Production Planning with Truck-Dispatching Decisions through Reinforcement Learning While Managing Uncertainty. Minerals, 11(6), 587. https://doi.org/10.3390/min11060587