Aqua Traiana, a Roman Infrastructure Embedded in the Present: The Mineralogical Perspective
Abstract
:1. Introduction
Brief Geological Setting
2. Materials and Methods
2.1. Samples
2.2. Experimental Methods
3. Results and Discussion
3.1. Mortars
3.2. Bricks and Cocciopesto
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Botticelli, M.; Mignardi, S.; De Vito, C.; Liao, Y.; Montanari, D.; Shakarna, M.; Nigro, L.; Medeghini, L. Variability in pottery production at Khalet al-Jam’a necropolis, Bethlehem (West Bank): From the Early-Middle Bronze to the Iron Age. Ceram. Int. 2020, 46, 16405–16415. [Google Scholar] [CrossRef]
- Rispoli, C.; Esposito, R.; Guerriero, L.; Cappelletti, P. Ancient Roman mortars from Villa del Capo di Sorrento: A multi-analytical approach to define microstructural and compositional features. Minerals 2021, 11, 469. [Google Scholar] [CrossRef]
- Botticelli, M.; Maras, A.; Candeias, A. μ-Raman as a fundamental tool in the origin of natural or synthetic cinnabar: Preliminary data. J. Raman Spectrosc. 2020, 51, 1470–1479. [Google Scholar] [CrossRef]
- Bandiera, M.; Verità, M.; Lehuédé, P.; Vilarigues, M. The technology of copper-based red glass sectilia from the 2nd century AD Lucius Verus Villa in Rome. Minerals 2020, 10, 875. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Trindade, M.J.; Blanco-Rotea, R.; Garcia, R.B.; Mosquera, D.F.; Burbidge, C.; Prudêncio, M.I.; Dias, M.I. Chemical and mineralogical characterization of historic mortars from the Santa Eulalia de Bóveda temple, NW Spain. J. Archaeol. Sci. 2010, 37, 2346–2351. [Google Scholar] [CrossRef]
- Sánchez-Pardo, J.C.; Blanco-Rotea, R.; Sanjurjo-Sánchez, J.; Barrientos-Rodríguez, V. Reusing stones in medieval churches: A multidisciplinary approach to San Martiño de Armental (NW Spain). Archaeol. Anthropol. Sci. 2019, 11, 2073–2096. [Google Scholar] [CrossRef]
- Ricca, M.; Paladini, G.; Rovella, N.; Ruffolo, S.A.; Randazzo, L.; Crupi, V.; Fazio, B.; Majolino, D.; Venuti, V.; Galli, G.; et al. Archaeometric characterisation of decorated pottery from the archaeological site of Villa dei Quintili (Rome, Italy): Preliminary study. Geosciences 2019, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Maltoni, S.; Silvestri, A. A mosaic of colors: Investigating production technologies of Roman glass tesserae from Northeastern Italy. Minerals 2018, 8, 255. [Google Scholar] [CrossRef] [Green Version]
- Rahim, N.S.A. Analytical study and conservation of archaeological terra sigillata ware from Roman period, Tripoli, Libya. Sci. Cult. 2016, 2, 19–27. [Google Scholar] [CrossRef]
- Maritan, L. Archaeo-ceramic 2.0: Investigating ancient ceramics using modern technological approaches. Archaeol. Anthropol. Sci. 2019, 11, 5085–5093. [Google Scholar] [CrossRef]
- Jackson, M.; Marra, F. Roman stone masonry: Volcanic foundations of the ancient city. Am. J. Archaeol. 2006, 110, 403–436. [Google Scholar] [CrossRef]
- Benjelloun, Y.; de Sigoyer, J.; Dessales, H.; Garambois, S.; Şahin, M. Construction history of the aqueduct of Nicaea (Iznik, NW Turkey) and its on-fault deformation viewed from archaeological and geophysical investigations. J. Archaeol. Sci. Rep. 2018, 21, 389–400. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N. Physico-chemical characterization of mortars as a tool in studying specific hydraulic components: Application to the study of ancient Naxos aqueduct. Appl. Phys. A 2011, 104, 335–348. [Google Scholar] [CrossRef]
- Figueiredo, M.O.; Veiga, J.P.; Silva, T.P. Materials and reconstruction techniques at the Aqueduct of Carthage since the Roman period. Hist. Constr. Guimares 2001, 1, 391–400. [Google Scholar]
- Maritan, L.; Mazzoli, C.; Sassi, R.; Speranza, F.; Zanco, A.; Zanovello, P. Trachyte from the Roman aqueducts of Padua and Este (north-east Italy): A provenance study based on petrography, chemistry and magnetic susceptibility. Eur. J. Miner. 2013, 25, 415–427. [Google Scholar] [CrossRef]
- Rizzo, G.; Ercoli, L.; Megna, B.; Parlapiano, M. Characterization of mortars from ancient and traditional water supply systems in Sicily. J. Therm. Anal. Calorim. 2008, 92, 323–330. [Google Scholar] [CrossRef]
- Medeghini, L.; Ferrini, V.; Di Nanni, F.; D’Uva, F.; Mignardi, S.; De Vito, C. Ceramic pipes of the Roman aqueduct from Raiano village (L’Aquila, Italy): A technological study. Constr. Build. Mater. 2019, 218, 618–627. [Google Scholar] [CrossRef]
- Dembskey, E.J. The Aqueducts of Ancient Rome. Ph.D. Thesis, University of South Africa, Pretoria, South Africa, 2009. [Google Scholar]
- Cifarelli, F.M.; Marcelli, M. L’Aqua Traiana: Infrastruttura della città antica e moderna. In Traiano: Costruire L’Impero, Creare L’Europa; Parisi Presicce, C., Milella, M., Pastor, S., Eds.; De Luca Editori d’Arte: Rome, Italy, 2017; pp. 221–226. [Google Scholar]
- O’Neill, E. L’Acquedotto di Traiano tra il ninfeo di S. Fiora e il Lago di Bracciano. Atlante Temat. Topogr. Antica 2014, 24, 197–214. [Google Scholar]
- Lancaster, L.C. Concrete Vaulted Construction in Imperial Rome: Innovations in Context; Cambridge University Press: New York, NY, USA, 2005; ISBN 9780511610516. [Google Scholar]
- Marra, F.; Sottili, G.; Gaeta, M.; Giaccio, B.; Jicha, B.; Masotta, M.; Palladino, D.M.; Deocampo, D.M. Major explosive activity in the Monti Sabatini Volcanic District (central Italy) over the 800–390 ka interval: Geochronological–geochemical overview and tephrostratigraphic implications. Quat. Sci. Rev. 2014, 94, 74–101. [Google Scholar] [CrossRef]
- Conticelli, S.; Peccerillo, A. Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: Petrogenesis and inferences on the evolution of the mantle sources. Lithos 1992, 28, 221–240. [Google Scholar] [CrossRef]
- Peccerillo, A. Multiple mantle metasomatism in central-southern Italy: Geochemical effects, timing and geodynamic implications. Geology 1999, 27, 315–318. [Google Scholar] [CrossRef]
- Conticelli, S.; D’Antonio, M.; Pinarelli, L.; Civetta, L. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and Southern Tuscany. Mineral. Petrol. 2002, 74, 189–222. [Google Scholar] [CrossRef]
- Conticelli, S.; Avanzinelli, R.; Ammannati, E.; Casalini, M. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean. Lithos 2015, 232, 174–196. [Google Scholar] [CrossRef]
- Masotta, M.; Gaeta, M.; Gozzi, F.; Marra, F.; Palladino, D.M.; Sottili, G. H2O- and temperature-zoning in magma chambers: The example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos 2010, 118, 119–130. [Google Scholar] [CrossRef]
- Buttinelli, M.; De Rita, D.; Cremisini, C.; Cimarelli, C. Deep explosive focal depths during maar forming magmatic-hydrothermal eruption: Baccano Crater, Central Italy. Bull. Volcanol. 2011, 73, 899–915. [Google Scholar] [CrossRef]
- Sottili, G.; Palladino, D.M.; Marra, F.; Jicha, B.; Karner, D.B.; Renne, P. Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy. J. Volcanol. Geotherm. Res. 2010, 196, 20–30. [Google Scholar] [CrossRef]
- Marra, F.; Anzidei, M.; Benini, A.; D’Ambrosio, E.; Gaeta, M.; Ventura, G.; Cavallo, A. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes. J. Volcanol. Geotherm. Res. 2016, 328, 59–69. [Google Scholar] [CrossRef]
- Pecchioni, E.; Fratini, F.; Cantisani, E. Atlas of the Ancient Mortars in Thin Section under Optical Microscope; Nardini Editore: Firenze, Italy, 2017. [Google Scholar]
- Consiglio Nazionale delle Ricerche; Istituto Centrale del Restauro. Normal 12-83-Aggregati Artificiali di Clasti e Matrice Legante non Argillosa; COMAS Grafica: Rome, Italy, 1983. [Google Scholar]
- Whitbread, I.K. Greek Transport Amphorae: A Petrological and Archaeological Study; British School at Athens: Athens, Greece, 1995; Volume 4, ISBN 0-904887-13-8. [Google Scholar]
- Pouchou, J.L.; Pichoir, F. “PAP” ϕ(ρz) procedure for improved quantitative microanalysis. In Microbeam Analysis; Armstrong, J.T., Ed.; San Francisco Press Inc.: San Francisco, CA, USA, 1985. [Google Scholar]
- De Vito, C.; Medeghini, L.; Garruto, S.; Coletti, F.; De Luca, I.; Mignardi, S. Medieval glazed ceramic from Caesar’s Forum (Rome, Italy): Production technology. Ceram. Int. 2018, 44, 5055–5062. [Google Scholar] [CrossRef]
- Lifshin, E.; Gauvin, R. Minimizing Errors in Electron Microprobe Analysis. Microsc. Microanal. 2001, 7, 168–177. [Google Scholar] [CrossRef]
- Poole, D.M. Progress in the correction for the atomic number effects. In Quantitative Electron Probe Microanalysis; Heinrich, K.F.J., Ed.; National Bureau of Standards, Spec. Pub. 298: Washington, WA, USA, 1968; pp. 93–131. [Google Scholar]
- Moropoulou, A.; Bakolas, A.; Aggelakopoulou, E. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim. Acta 2004, 420, 135–140. [Google Scholar] [CrossRef]
- Chiari, G.; Santarelli, M.L.; Torraca, G. Caratterizzazione delle malte antiche mediante l’analisi di campioni non frazionati. Matariali Strutt. Probl. Conserv. 1992, 2, 111–137. [Google Scholar]
- Torraca, G. Lectures on Materials Science for Architectural Conservation; Getty Conservation Institute: Los Angeles, CA, USA, 2009; ISBN 978-0-9827668-3-5. [Google Scholar]
- Jackson, M.; Deocampo, D.; Marra, F.; Scheetz, B. Mid-Pleistocene pozzolanic volcanic ash in ancient Roman concretes. Geoarchaeology 2010, 25, 36–74. [Google Scholar] [CrossRef]
- Jackson, M.; Marra, F.; Deocampo, D.; Vella, A.; Kosso, C.; Hay, R. Geological observations of excavated sand (harenae fossiciae) used as fine aggregate in Roman pozzolanic mortars. J. Rom. Archaeol. 2007, 20, 25–53. [Google Scholar] [CrossRef]
- Van Deman, E.B. Methods of determining the date of Roman concrete monuments. Am. J. Archaeol. 1912, 16, 230–251. [Google Scholar] [CrossRef] [Green Version]
- Moropoulou, A.; Bakolas, A.; Anagnostopoulou, S. Composite materials in ancient structures. Cem. Concr. Compos. 2005, 27, 295–300. [Google Scholar] [CrossRef]
- Freda, C.; Gaeta, M.; Giaccio, B.; Marra, F.; Palladino, D.M.; Scarlato, P.; Sottili, G. CO2-driven large mafic explosive eruptions: The Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bull. Volcanol. 2011, 73, 241–256. [Google Scholar] [CrossRef]
- Marra, F.; Danti, A.; Gaeta, M. The volcanic aggregate of ancient Roman mortars from the Capitoline Hill: Petrographic criteria for identification of Rome’s “pozzolans” and historical implications. J. Volcanol. Geotherm. Res. 2015, 308, 113–126. [Google Scholar] [CrossRef]
- Jackson, M.D.; Logan, J.M.; Scheetz, B.E.; Deocampo, D.M.; Cawood, C.G.; Marra, F.; Vitti, M.; Ungaro, L. Assessment of material characteristics of ancient concretes, Grande Aula, Markets of Trajan, Rome. J. Archaeol. Sci. 2009, 36, 2481–2492. [Google Scholar] [CrossRef]
- Bianchi, E.; Brune, P.; Jackson, M.; Marra, F.; Meneghini, R. Archaeological, structural, and compositional observations of the concrete architecture of the Basilica Ulpia and Trajan’s Forum. Comm. Hum. Litt. 2011, 128, 73–95. [Google Scholar]
- Campbell, L.S.; Charnock, J.; Dyer, A.; Hillier, S.; Chenery, S.; Stoppa, F.; Henderson, C.M.B.; Walcott, R.; Rumsey, M. Determination of zeolite-group mineral compositions by electron probe microanalysis. Mineral. Mag. 2016, 80, 781–807. [Google Scholar] [CrossRef] [Green Version]
- Izzo, F.; Arizzi, A.; Cappelletti, P.; Cultrone, G.; De Bonis, A.; Germinario, C.; Graziano, S.F.; Grifa, C.; Guarino, V.; Mercurio, M.; et al. The art of building in the Roman period (89 B.C.–79 A.D.): Mortars, plasters and mosaic floors from ancient Stabiae (Naples, Italy). Constr. Build. Mater. 2016, 117, 129–143. [Google Scholar] [CrossRef]
- Jackson, M.D.; Marra, F.; Hay, R.L.; Cawood, C.; Winkler, E.M. The judicious selection and preservation of tuff and travertine building stone in ancient Rome. Archaeometry 2005, 47, 485–510. [Google Scholar] [CrossRef]
- Giampaolo, C.; Godano, R.F.; Di Sabatino, B.; Barrese, E. The alteration of leucite-bearing rocks: A possible mechanism. Eur. J. Mineral. 1997, 9, 1277–1292. [Google Scholar] [CrossRef]
- Cappelletti, P.; Petrosino, P.; de Gennaro, M.; Colella, A.; Graziano, S.F.; D’Amore, M.; Mercurio, M.; Cerri, G.; de Gennaro, R.; Rapisardo, G.; et al. The “Tufo Giallo della Via Tiberina” (Sabatini Volcanic District, Central Italy): A complex system of lithification in a pyroclastic current deposit. Mineral. Petrol. 2015, 109, 85–101. [Google Scholar] [CrossRef]
- Hay, R.L.; Sheppard, R.A. Occurrence of zeolites in sedimentary rocks: An overview. Rev. Mineral. Geochem. 2001, 45, 217–234. [Google Scholar] [CrossRef]
- Cundari, A. Petrogenesis of leucite-bearing lavas in the Roman volcanic Region, Italy-The Sabatini lavas. Contrib. Mineral. Petrol. 1979, 70, 9–21. [Google Scholar] [CrossRef]
- Bear, A.N.; Giordano, G.; Giampaolo, C.; Cas, R.A.F. Volcanological constraints on the post-emplacement zeolitisation of ignimbrites and geoarchaeological implications for Etruscan tomb construction (6th–3rd century B.C.) in the Tufo Rosso a Scorie Nere, Vico Caldera, Central Italy. J. Volcanol. Geotherm. Res. 2009, 183, 183–200. [Google Scholar] [CrossRef]
- Del Bello, E.; Mollo, S.; Scarlato, P.; von Quadt, A.; Forni, F.; Bachmann, O. New petrological constraints on the last eruptive phase of the Sabatini Volcanic District (central Italy): Clues from mineralogy, geochemistry, and Sr–Nd isotopes. Lithos 2014, 205, 28–38. [Google Scholar] [CrossRef]
- Sottili, G.; Palladino, D.M.; Gaeta, M.; Masotta, M. Origins and energetics of maar volcanoes: Examples from the ultrapotassic Sabatini Volcanic District (Roman Province, Central Italy). Bull. Volcanol. 2012, 74, 163–186. [Google Scholar] [CrossRef]
- Marra, F.; Karner, D.B.; Freda, C.; Gaeta, M.; Renne, P. Large mafic eruptions at Alban Hills Volcanic District (Central Italy): Chronostratigraphy, petrography and eruptive behavior. J. Volcanol. Geotherm. Res. 2009, 179, 217–232. [Google Scholar] [CrossRef]
- Cappelletti, P.; Langella, A.; Colella, A.; De’ Gennaro, R.D.E. Mineralogical and technical features of zeolite deposits from northern Latium volcanic district. Period. Mineral. 1999, 68, 127–144. [Google Scholar]
- Lombardi, G.; Meucci, C. Il Tufo Giallo della Via Tiberina (Roma) utilizzato nei monumenti romani. Rend. Lincei 2006, 17, 263–287. [Google Scholar] [CrossRef]
- Jackson, M.D.; Mulcahy, S.R.; Chen, H.; Li, Y.; Li, Q.; Cappelletti, P.; Wenk, H.R. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete. Am. Mineral. 2017, 102, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.D.; Chae, S.R.; Mulcahy, S.R.; Meral, C.; Taylor, R.; Li, P.; Emwas, A.-H.; Moon, J.; Yoon, S.; Vola, G.; et al. Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am. Mineral. 2013, 98, 1669–1687. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.D.; Moon, J.; Gotti, E.; Taylor, R.; Chae, S.R.; Kunz, M.; Emwas, A.-H.; Meral, C.; Guttmann, P.; Levitz, P.; et al. Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete. J. Am. Ceram. Soc. 2013, 96, 2598–2606. [Google Scholar] [CrossRef]
- Cairoli, F.G. L’Edilizia Nell’Antichità; Carocci Editore: Rome, Italy, 2018. [Google Scholar]
Sample | Dating | Description |
---|---|---|
mortars | ||
TRA 2 | Trajan Age | Mortar between bricks |
TRA 5 | Trajan Age | Mortar between the bricks of the stairs near TRA 4 |
TRA 6 | Papal restoration | Mortar of the vault that covers the access stair |
TRA 8 | Trajan Age | Mortar between leucitite blocks (between the stair and the vault) |
TRA 11 | Trajan Age | Mortar in the junction between leucitite blocks and opus latericium |
TRA 12 | Trajan Age | Mortar of the vault, over sample TRA 11 |
TRA 14 | Trajan Age | Mortar of the vault |
TRA 19 | Trajan Age | Mortar of the vault |
TRA 21 | Trajan Age | Mortar between leucitite blocks in the well |
TRA 23 | Trajan Age | Mortar between the bricks |
TRA 24 | Trajan Age | Mortar between leucitite blocks in the well |
TRA 25 | Trajan Age | Mortar of the vault |
TRA 34 | Papal restoration | Plaster on the wall |
TRA 35 | Papal restoration | Mortar of the vault over TRA 34 |
cocciopesto | ||
TRA 29 | Trajan Age | Cocciopesto from the wall |
TRA 33 | Trajan Age | Cocciopesto from the floor |
brick | ||
TRA 3 | Trajan Age | Brick near TRA 2 |
TRA 4 | Trajan Age | Brick of the stairs |
TRA 20 | Trajan Age | Brick from the floor of the well |
TRA 26 | Trajan Age | Bipedal brick from the floor |
Sample | Anl | Cpx | Bt | Cal | Fsp | Clays | Lct | Qtz | Cbz | Pl | Amp |
---|---|---|---|---|---|---|---|---|---|---|---|
TRA 2 | +++ | ++ | + | - | ++ | + | - | t | t | - | - |
TRA 5 | +++ | ++++ | t | - | + | t | - | - | - | t | - |
TRA 6 | - | + | + | ++++ | + | - | + | t | - | - | - |
TRA 8 | ++++ | ++++ | t | - | t | - | - | - | - | - | - |
TRA 11 | +++ | ++++ | ++ | - | t | t | - | - | - | - | - |
TRA 12 | +++ | ++ | t | - | ++++ | t | t | - | - | - | - |
TRA 14 | ++++ | + | ++ | - | +++ | t | - | - | - | + | - |
TRA 19 | +++ | ++ | t | - | ++++ | t | - | - | - | - | - |
TRA 21 | ++ | t | t | - | ++++ | t | - | - | - | - | - |
TRA 23 | +++ | ++++ | t | - | ++ | t | - | - | tr | - | - |
TRA 24 | ++ | t | t | - | ++++ | t | - | - | - | - | t |
TRA 25 | +++ | ++ | + | - | + | + | - | - | - | +++ | - |
TRA 34 | t | + | t | ++++ | + | - | - | - | - | - | - |
TRA 35 | ++ | ++ | t | +++ | +++ | - | - | - | - | - | - |
Oxide | wt% * | apfu | |
---|---|---|---|
SiO2 | 44.66 | Si | 1.680 |
Al2O3 | 7.64 | Al | 0.339 |
MgO | 10.10 | Mg | 0.567 |
Cr2O3 | 0.00 | Cr+3 | 0.000 |
TiO2 | 1.37 | Ti | 0.039 |
FeO | 11.27 | Fe+2 | 0.086 |
Fe2O3 | 0.00 | Fe+3 | 0.268 |
MnO | 0.27 | Mn | 0.009 |
CaO | 24.02 | Ca | 0.968 |
Na2O | 0.53 | Na | 0.038 |
K2O | 0.13 | K | 0.006 |
Total | 100 | Cat. Sum | 4.000 |
TRA 23 | TRA21 | TRA11 | TRA 23 | TRA21 | TRA11 | ||
---|---|---|---|---|---|---|---|
Oxide | wt % | Element | apfu | ||||
SiO2 | 46.807 | 51.835 | 55.020 | Si | 7.962 | 8.959 | 8.971 |
Al2O3 | 21.280 | 15.019 | 16.684 | Al | 4.272 | 3.063 | 3.210 |
Z-site | 12.234 | 12.022 | 12.182 | ||||
CaO | 6.553 | 5.336 | 4.707 | Ca | 1.196 | 0.989 | 0.823 |
Na2O | 0.166 | 0.271 | 0.205 | Na | 0.027 | 0.045 | 0.032 |
K2O | 2.023 | 2.411 | 2.350 | K | 0.440 | 0.532 | 0.489 |
MgO | 0.888 | 0.726 | 0.582 | Mg | 0.225 | 0.187 | 0.142 |
Total | 77.717 | 75.598 | 79.548 | X-site | 1.888 | 1.754 | 1.487 |
Sample | Porosity | Matrix | Inclusions | |
---|---|---|---|---|
TRA 3 | 5% Meso–macrovesicles | 90% non calcareous brown-green activity | 5% Equant–elongated; angular–subrounded; open spaced; not aligned | Predominant: quartz (0.1–0.3 mm), feldspars (0.2–0.3 mm) Common: pyroxene (0.3–1.2 mm) Frequent: iron oxide nodules (0.2–1 mm) |
TRA 4 | 10% Micro–macrovesicles Macrovughs | 85% non calcareous brown-green activity | 5% Equant–elongated; angular–subrounded; open-spaced; not aligned | Predominant: quartz (0.1–0.2 mm) Common: pyroxene (0.5–1.2 mm) Few: iron oxide nodules (0.2–1 mm), quartz (0.3–1.2 mm) Very rare: siliceous rock fragments (1 mm) |
TRA 20 | 5% Meso–microvesicles | 90% non calcareous brown-green activity | 5% Equant–elongated; angular–subrounded; open-spaced; not aligned | Predominant: quartz (0.1 mm), feldspars (0.2–0.3 mm) Dominant: pyroxene (0.4–1.3 mm) Few: quartz (0.5–1 mm) Very rare: volcanic rock fragments (5 mm) |
TRA 26 | 5% Meso–microvesicles | 55% non calcareous red-brown activity | 40% Equant–elongated; angular–subrounded; open-spaced; not aligned | Predominant: quartz (0.1–0.3 mm), Few: quartz (0.6–1.3 mm) Rare: pyroxene (0.3–0.5 mm), iron oxide nodules (0.3–0.8 mm) |
TRA 29 * | 5% Microvesicles | 90% non calcareous brown-green activity | 5% Equant–elongated; angular–subangular; single-spaced; not aligned | Predominant: quartz (0.1–0.3 mm), Common: pyroxene (0.7–0.8 mm) Few: quartz (0.7 mm) Very rare: fragments of siliceous rocks (1.0 mm), iron oxide nodules (0.3–0.5 mm) |
5% Microvesicles | 90% non calcareous brown-green activity | 5% Equant–elongated; angular–subangular; single-spaced; not aligned | Predominant: quartz (0.1–0.3 mm), Common: pyroxene (0.6 mm) Very rare: iron oxide nodules (0.3–0.5 mm) | |
Sample | Porosity | Matrix | Inclusions | |
TRA 33 * | 3% Microvesicles | 92% non calcareous brown-green activity | 5% Equant–elongated; angular–subangular; single-spaced; not aligned | Predominant: quartz (0.1–0.3 mm), Few: quartz (0.7–1.3 mm), pyroxene (0.5–0.7 mm) Very rare: iron oxide nodules (0.3–0.7 mm) |
3% Microvesicles meso–macrovughs | 87% non calcareous brown-green activity | 10% Equant–elongated; angular–subangular; single-spaced; not aligned | Predominant: quartz (0.1–0.3 mm), Common: pyroxene (0.5–1.2 mm) Few: quartz (0.2–0.8 mm), pyroxene (0.4–0.6 mm) | |
5% Microvesicles meso–macrovughs | 90% non calcareous brown-green activity | 5% Equant–elongated; angular–subangular; single-spaced; not aligned | Predominant: quartz (0.1–0.3 mm), Few: quartz (0.5 mm), pyroxene (0.5–0.6 mm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botticelli, M.; Calzolari, L.; De Vito, C.; Mignardi, S.; Medeghini, L. Aqua Traiana, a Roman Infrastructure Embedded in the Present: The Mineralogical Perspective. Minerals 2021, 11, 703. https://doi.org/10.3390/min11070703
Botticelli M, Calzolari L, De Vito C, Mignardi S, Medeghini L. Aqua Traiana, a Roman Infrastructure Embedded in the Present: The Mineralogical Perspective. Minerals. 2021; 11(7):703. https://doi.org/10.3390/min11070703
Chicago/Turabian StyleBotticelli, Michela, Laura Calzolari, Caterina De Vito, Silvano Mignardi, and Laura Medeghini. 2021. "Aqua Traiana, a Roman Infrastructure Embedded in the Present: The Mineralogical Perspective" Minerals 11, no. 7: 703. https://doi.org/10.3390/min11070703
APA StyleBotticelli, M., Calzolari, L., De Vito, C., Mignardi, S., & Medeghini, L. (2021). Aqua Traiana, a Roman Infrastructure Embedded in the Present: The Mineralogical Perspective. Minerals, 11(7), 703. https://doi.org/10.3390/min11070703