Ore Minerals and Metal Distribution in Tailings of Sediment-Hosted Stratiform Copper Deposits from Poland and Kazakhstan
Abstract
:1. Introduction
2. Copper Deposits in Poland and Kazakhstan
2.1. Sedimentary-Hosted Stratiform Copper Deposits (SSC) in Poland, Lower Silesia
2.2. Sedimentary-Hosted Stratiform Copper Deposits (SSC) in Zhezkazgan, Kazakhstan
3. Tailings
3.1. Tailings in Poland
3.2. Tailings in Kazakhstan
4. Materials and Methods
4.1. Sampling and Sample Preparation
4.2. Mineralogy
4.3. Geochemistry
5. Results
5.1. Mineralogical Study
5.1.1. Mineralogical Characteristics of Technogenic Sediments of ZM
5.1.2. Mineralogical Characteristics of Technogenic Sediments of OS
5.2. Geochemical Characteristics
5.2.1. Geochemistry of Minerals by SEM-EDS
5.2.2. Geochemistry of Deposits from ZM and OS
6. Statistical Correlation
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jowitt, S.; Mudd, G.M.; Thompson, J.F. Future Availability of Non-renewable Metal Resources and the Influence of Environmental, Social, and Governance Conflicts on Metal Production. Commun. Earth Environ. Nat. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Arndt, N.T.; Fontboté, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.H.; Wood, D.G. Future Global Mineral Resources. Geochem. Perspect. 2017, 6, 1–166. [Google Scholar] [CrossRef] [Green Version]
- Singer, D.A. Future copper resources. Ore Geol. Rev. 2017, 86, 271–279. [Google Scholar] [CrossRef]
- van Dieren, W. Depletion of Natural Resources. In Taking Nature into Account; Van Dieren, W., Ed.; Springer: New York, NY, USA, 1995; pp. 187–206. [Google Scholar]
- Hayes, T.S.; Cox, D.P.; Piatak, N.M.; Seal, R.R. II Sediment-hosted stratabound copper deposit model. US Geol. Surv. 2015. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.P.; Lindsey, D.A.; Singer, D.A.; Moring, B.C.; Diggles, M.F. Sediment-Hosted Copper Deposits of the World: Deposit Models and Database. Open file Report USGS 03-107, Version 1.3; revised 2007; Uinted States Geological Survey: Reston, VA, USA, 2003. Available online: http//pubs.usgs.gov/of03-07/ (accessed on 1 July 2021).
- Zientek, M.L.; Oszczepalski, S.; Parks, H.L.; Bliss, J.D.; Borg, G.; Box, S.E.; Denning, P.D.; Hayes, T.S.; Spieth, V.; Taylor, C.D. Assessment of Undiscovered Copper Resources Associated with the Permian Kupferschiefer, Southern Permian Basin, Europe; U.S. Geological Survey: Reston, VA, USA, 2015; pp. 1–94.
- Blengini, G.A.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H.M. (Eds.) Recovery of Critical and Other Raw Materials from Mining Waste and Landfills; EU Science Hub Luxembourg, Publications Office of the European Union: Luxembourg, 2019; Available online: https://ec.europa.eu/jrc (accessed on 22 May 2021).
- USGS. Mineral Commodity Summaries 2018; U.S. Geological Survey: Reston, VA, USA, 2018; pp. 1–200.
- Oszczepalski, S.; Speczik, S.; Zieliński, K.; Chmielewski, A. The Kupferschiefer Deposits and Prospects in SW Poland: Past, Present and Future. Minerals 2019, 9, 592. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, R.V.; Carriere, J.J.; Laramee, R.M.; Garson, D.F. Global distribution of sediment-hosted stratiform copper deposits and occurrences. Geol. Surv. Can. 1995, 2915b, 256. [Google Scholar]
- Gustafson, L.B.; Neil, W. Sediment-hosted stratiform deposits of copper, lead and zinc. In Economic Geology 75th Anniversary Volume; Skinner, B.J., Ed.; Economic Geology Publ. Company: New Haven, CT, USA, 1981; pp. 139–178. [Google Scholar]
- Cox, D.P. Descriptive model of sediment-hosted copper. In Mineral Deposit Models; Cox, D.P., Singer, D.A., Eds.; U.S. Geological Survey: Reston, VA, USA, 1986; 379p. [Google Scholar]
- Hitzman, M.W.; Selley, D.; Bull, S. Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits through Earth History. Econ. Geol. 2010, 105, 627–639. [Google Scholar] [CrossRef]
- Oszczepalski, S. Origin of the Kupferschiefer polymetallic mineralization in Poland. Miner. Depos. 1999, 34, 599–613. [Google Scholar] [CrossRef]
- Satpaev, K.I. Izbrannye Trudy. Dzhezkazganskij Mednorudnyj Rajon; Alma-Ata Publ. Nauka: Moscow, Russian, 1967; 290p. (In Russian) [Google Scholar]
- Satpaeva, M.K. Rudy Dzhezkazgana i Uslovija Ihformirovanija; Alma-Ata Publ. Nauka: Moscow, Russian, 1985; 208p. (In Russian) [Google Scholar]
- Baibatsha, A.; Bekbotayeva, A.A.; Muszynski, A. Lithology of Copper Sediment-Hosted Zhezkazgan deposit. Intern. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 19052–19059. [Google Scholar]
- Duda, R.; Witczak, S. Modelling of the transport of contaminants from the Żelazny Most flotation tailings dam. Miner. Resour. Manag. 2003, 19, 69–88. [Google Scholar]
- Dold, B.; Fontbote, L. A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem. Geol. 2002, 189, 135–163. [Google Scholar] [CrossRef]
- Wrzosek, K.; Stasierski, J.; Dmytrow, M.; Stefanek, P. The issue of dam stability in the current assessment of the technical condition and the planned extension of OUOW Żelazny Most. Mar. Eng. Geotech. 2015, 3, 508–517. (In Polish) [Google Scholar]
- Korzec, A.; Swidzinski, W. Dynamic response of Zelazny Most tailings dam to mining induced extreme seismic event occurred in 2016. MATEC Web Conf. 2019, 262, 1001. [Google Scholar] [CrossRef]
- Matlakowska, R.; Sklodowska, A. Biodegradation of Kupferschiefer black shale organic matter (Fore-Siudetic Monocline, Poland) by indigenous microorganisms. Chemosphere 2011, 83, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Zielnica, K. The nature of sediments in the Żelazny Most tailings storage, with particular emphasis on minerals with potential economic value. Master’s Thesis, Institute of Geology, Adam Mickiewicz University in Poznań, Poznań, Poland, 2008. Unpublished work (In Polish). [Google Scholar]
- Baibatsha, А. Mineralogia Hvostov Jezkazgano Bogatitelnoi Fabriki; Satbaeva Univ.: Almaty, Kazakhstan, 2018; pp. 1–160. (In Russian) [Google Scholar]
- Żylińska-Dusza, R.; Jaworski, A.; Lewiński, J.; Mizera, A. Copper Industry Monograph; Cuprum: Wroclaw, Poland, 1996; pp. 753–783. (In Polish) [Google Scholar]
- Widerlund, A.; Ebena, G.; Landin, J. Potential biogeochemical and ecological development of a flooded tailings impoudment at the Kristineberg Zn-Cu mine, northern Sweden. Sci. Environ. 2004, 333, 249–266. [Google Scholar]
- Yun, Y. The new mineral exploration strategies of selected major mineral-rich countries. Miner. Resour. Manag. 2021, 37, 5–20. [Google Scholar]
- Mudd, G.M.; Jowitt, S.M. Growing global copper resources, reserves and production: Discovery is not the only control on supply. Econ. Geol. 2018, 113, 1235–1267. [Google Scholar] [CrossRef]
- Meinert, L.D.; Robinson, G.R.; Nassar, N.T. Mineral resources: Reserves, peak production and the future. Resources 2016, 5, 14. [Google Scholar] [CrossRef]
- Holmström, H.; Liungberg, J.; Ekström, M.; Öhlander, B. Secondary copper enrichment in tailings at the Laver mine, northern Sweden. Environ. Geol. 1999, 38, 327–342. [Google Scholar] [CrossRef]
- Han, B.; Altansukh, B.; Haga, K.; Stevanović, Z.; Jonović, R.; Avramoowić, L.; Urosevic, D.; Takasaki, Y.; Masuda, N.; Ishiyama, D.; et al. Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction. J. Hazard. Mater. 2018, 352, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Banaś, M.; Kijewski, P.; Salamon, W.; Pieczonka, J.; Piestrzyński, A. Accompanying elements in copper ore deposit. In KGHM Polska Miedź SA Monography; Cuprum Publ.: Wroclaw, Poland, 1996; pp. 214–228. [Google Scholar]
- Pieczonka, J.; Piestrzyński, A. Gold and other precious metals in copper deposit, Lubin-Sieroszowice district, SW Poland. In Gold in Poland; Archivum Mineralogiae Monograph: Warszawa, Poland, 2011; pp. 135–152. [Google Scholar]
- Pieczonka, J.; Piestrzyński, A.; Mucha, J.; Głuszek, A.; Kotarba, M.; Więcław, D. The red-bed-type precious metal deposit in the Sieroszowice-Polkowice cooper mining district, SW Poland. Ann. Soc. Geol. Pol. 2008, 78, 151–280. [Google Scholar]
- Vaughan, D.J.; Sweeney, M.G.; Friedrich, G.H.; Diedel, R.; Harańczyk, C. The Kupferschiefer: An overview with an appraisal of the different types of mineralization. Econ. Geol. 1989, 84, 1003–1027. [Google Scholar] [CrossRef]
- Jowett, E.C. Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotligendes brines during Triassic rifting. Econ. Geol. 1986, 81, 1823–1837. [Google Scholar] [CrossRef]
- Available online: www.pgi.gov.pl/mineraldeposits (accessed on 21 May 2021).
- Baibatsha, A.B.; Bekbotayev, A.T.; Bekbotayeva, A.A. Ore-bearing strata lithology of the Zhezkazgan copper sandstones deposit. In Proceedings of the 13th International Multidisciplinary Scientific Geo Conference SGEM, Albena, Bulgary, 16–22 June 2013; pp. 135–140. [Google Scholar]
- Bolodin, R.N.; Chechetkin, V.S.; Bogdanov, Y.V.; Narkelyun, L.F.; Trubachev, A.I. The Udokan cupriferous sandstone deposits (Eastern Siberia). Geol. Rudn. Mestorozhdenii 1994, 36, 3–30. (In Russian) [Google Scholar]
- Duczmal-Czernikiewicz, A. Mineralogy and Geochemistry of Post-Flotation Copper Ore from Old and New Polish Copper Belt; Bogucki Scientific Publ.: Poznań, Poland, 2013; 224p. (In Polish) [Google Scholar]
- Baibatsha, A.; Dyssembayeva, K.; Bekbotayeva, A.; Abdullayeva, T. Tails of enrichment factories of Djezkazgan copper sandstone deposit are a source to replenish the mineral resource of non-ferrous metals. In Proceedings of the 21st International Conference on Non-Ferrous Minerals & Metals, New Delhi, India, 7–8 July 2017. [Google Scholar]
- Baibatsha, A.; Dyussembayeva, K.; Bekbotayeva, A.; Abdullayeva, T. Tails of Zhezkazgan copper sandstone deposit is the source for replenishment of the raw material base. In Proceedings of the II International Conference on Applied Mineralogy & Advanced Materials & XIII International Conference on Applied Mineralogy, Bari, Italy, 5–9 June 2017; Volume 6. [Google Scholar]
- Duczmal-Czernikiewicz, A.; Diatta, J.; Rachwał, L. Mineralogical composition of post-flotation copper ore wastes and the possibility of their agricultural use. Pol. Geol. Inst. Biul. 2012, 448, 371–380. [Google Scholar]
- Mun, Y.; Strmić Palinkaš, S.; Forwick, M.; Junttila, J.; Bondo Pedersen, K.; Sternal, B.; Neufeld, K.; Tibljaš, D.; Kullerud, K. Stability of Cu-Sulfides in Submarine Tailing Disposals: A Case Study from Repparfjorden, Northern Norway. Minerals 2020, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Santander, M.; Valderrama, L. Recovery of pyrite from copper tailings by flotation. J. Mater. Res. Technol. 2019, 8, 4312–4317. [Google Scholar] [CrossRef]
- Babel, B.; Penz, M.; Schach, E.; Boehme, S.; Rudolph, M. Reprocessing of a Southern Chilean Zn Tailing by Flotation—A Case Study. Minerals 2018, 8, 295–313. [Google Scholar] [CrossRef] [Green Version]
- Büttner, P.; Osbahr, I.; Zimmermann, R.; Leißner, T.; Satge, L.; Gutzmer, J. Recovery potential of flotation tailings assessed by spatial modelling of automated mineralogy data. Miner. Eng. 2018, 116, 143–151. [Google Scholar] [CrossRef]
- Duczmal-Czernikiewicz, A.; Suchan, J. The accumulation of metals in post-flotation waste facilities in Lower Silesia. Pol. Geol. Inst. Biul. 2015, 465, 67–76. [Google Scholar] [CrossRef]
- Andersson, M.; Finne, T.E.L.; Jensen, K.; Eggen, O.A. Geochemistry of a copper mine tailings deposit in Repparfjorden, northern Norway. Sci. Total Environ. 2018, 644, 1219–1231. [Google Scholar] [CrossRef]
- Liungberg, J.; Öhlander, B. The geochemical dynamics of oxidizing mine tailings at Laver, northern Sweden. J. Geochem. Explor. 2001, 74, 57–72. [Google Scholar] [CrossRef]
- Peryt, T.M. Zechstein in the vicinity of the Fore-Sudetic Block. Geol. Q. 1981, 25, 75–91. [Google Scholar]
- Speczik, S.; Oszczepalski, S.; Chmielewski, A. Future of copper exploration in Poland. In Proceedings of the 13th SGA Biennial Meeting, Nancy, France, 24–27 August 2015. [Google Scholar]
- Kucha, H. Geochemistry of the Kupferschiefer, Poland. Geol. Rundsch. 1990, 79, 387–399. [Google Scholar] [CrossRef]
- Alderton, D.H.M.; Selby, D.; Kucha, H.; Blundell, D. A multistage origin for Kupferschiefer mineralization. Ore Geol. Rev. 2016, 79, 535–543. [Google Scholar]
- Kamoa-Kakula Project. Available online: https://www.ivanhoemines.com/projects/kamoa-kakula-project (accessed on 22 May 2021).
- Sverdrup, H.U.; Ragnarsdottir, K.V.; Koca, D. On modelling the global copper mining rates, market supply, copper price and the end of copper reserves. Resour. Conserv. Recycl. 2014, 87, 158–174. [Google Scholar] [CrossRef]
Parameter | Tailing | Cu | Pb | Zn | Ni | Co | Mo | Ag |
---|---|---|---|---|---|---|---|---|
Min. | ZM | 1410 | 259 | 46 | 8 | 8 | 5 | 4.1 |
OS | 700 | 250 | 150 | 30 | 20 | 0.3 | 0.2 | |
Max. | ZM | 6250 | 714 | 225 | 23 | 22 | 13 | 16 |
OS | 3000 | 1500 | 2500 | 70 | 50 | 2.5 | 0.5 | |
Aver. | ZM | 2389.1 | 365.9 | 93.4 | 10.7 | 11.3 | 8.3 | 5.9 |
OS | 1820.0 | 611.4 | 762.9 | 40.9 | 28.0 | 1.5 | 0.3 | |
Median | ZM | 2110 | 354 | 81 | 10 | 11 | 8 | 53 |
OS | 1500 | 500 | 700 | 30 | 30 | 1.5 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duczmal-Czernikiewicz, A.; Baibatsha, A.; Bekbotayeva, A.; Omarova, G.; Baisalova, A. Ore Minerals and Metal Distribution in Tailings of Sediment-Hosted Stratiform Copper Deposits from Poland and Kazakhstan. Minerals 2021, 11, 752. https://doi.org/10.3390/min11070752
Duczmal-Czernikiewicz A, Baibatsha A, Bekbotayeva A, Omarova G, Baisalova A. Ore Minerals and Metal Distribution in Tailings of Sediment-Hosted Stratiform Copper Deposits from Poland and Kazakhstan. Minerals. 2021; 11(7):752. https://doi.org/10.3390/min11070752
Chicago/Turabian StyleDuczmal-Czernikiewicz, Agata, Adilkhan Baibatsha, Alma Bekbotayeva, Gulnara Omarova, and Akmaral Baisalova. 2021. "Ore Minerals and Metal Distribution in Tailings of Sediment-Hosted Stratiform Copper Deposits from Poland and Kazakhstan" Minerals 11, no. 7: 752. https://doi.org/10.3390/min11070752
APA StyleDuczmal-Czernikiewicz, A., Baibatsha, A., Bekbotayeva, A., Omarova, G., & Baisalova, A. (2021). Ore Minerals and Metal Distribution in Tailings of Sediment-Hosted Stratiform Copper Deposits from Poland and Kazakhstan. Minerals, 11(7), 752. https://doi.org/10.3390/min11070752