Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms
Abstract
:1. Introduction to Oil Sands Tailings
1.1. Tailings Generation
1.2. Tailings Treatment and Anticipated Landforms
Fluid Fine Tailings (FFT) Treatment Method 1 | Operator | Deposition Method | Anticipated Landform | References |
---|---|---|---|---|
Untreated FFT | Syncrude Mildred Lake (Base Mine Lake (BML)) | Deep in-pit disposal | End pit lake | [39] |
Permanent Aquatic Storage Structure (PASS) (FFT + coagulant + in-line flocculation) | Suncor Base Plant (Upper Pit Lake (UPL) and Lake Miwasin) 3 | [40] | ||
Thickened tailings (TT) (FFT + mechanical thickener + flocculant) | Imperial Kearl | Deep in-pit disposal or thin lifts | Terrestrial deposit with wetland 3 | [4,31,41,42] |
Fort Hills operated by Suncor | ||||
CNUL Muskeg River Mine and Jackpine Mine | ||||
Thickened tailings (TT) (FFT + in-line flocculation) | Imperial Kearl | Deep in-pit disposal or thin lifts | [4,31,39,40,43] | |
Suncor - Tailings Reduction Operation (TRO) 4 | ||||
Syncrude Aurora North and Mildred Lake | ||||
Centrifugation (FFT + flocculant/coagulant 2 + centrifuge) | Syncrude Mildred Lake | Deep in-pit disposal or thin lifts | [39,42] | |
CNUL Jackpine Mine | ||||
Composite tailings (CT) (FFT + coarse tailings sand + coagulant 2) | Syncrude Aurora North and Mildred Lake | In-pit disposal | [39,41,43] | |
CNUL Muskeg River Mine | ||||
Non-segregating tailings (NST) (TT + coarse tailings sand + coagulant) | CNRL Horizon - NST or enhanced NST (eNST) 5 | In-pit disposal | [44] |
1.2.1. End Pit Lakes
1.2.2. Capped Soft Deposits
1.3. Tailings Water Chemistry and Mineralogy
Company | Imperial | CNRL | Operated by Suncor | Suncor | ||||
---|---|---|---|---|---|---|---|---|
Tailings Deposit | Kearl West External Tailings Area (WETA) [31] | Horizon External Tailings Facility (ETF)/DDA1 [44] | Fort Hills Out of Pit Tailings Area (OPTA) [45] | Pond 2/3 [40] | Ponds: Average of 7 1 [40] | DDA1 [40] | Mine Dump 9 [40] | DDA3 2 [40] |
Type of Tailings Deposited 3 | FFT, FTT, CST | FFT, NST/eNST, FTT, CST | FFT, FTT, CST, TT | FTT | FFT, Historical CT | TRO | Co-Disposal: TRO from DDA1 and Overburden | PASS |
Conductivity (µS/cm) | 4043 | 1738 | 3800 4 | 3342 4 | 4100 4 | 5800 4 | 4100 4 | |
pH | 8.1 | 8.14 | 7.9 | 8.1 | 8.4 | 8.5 | 8.6 | 8.1 |
Carbonate (mg/L) | <1 | 0 | 11 | 25 | 21 | 25 | 1 | |
Bicarbonate (mg/L) | 300 | 1326 | 524 | 951 | 743 | 884 | 570 | 685 |
Chloride (mg/L) | 24 | 767 | 114 | 638 | 533 | 731 | 890 | 594 |
Sulfate (mg/L) | 270 | 364 | 215 | 251 | 249 | 1100 | 615 | |
Calcium (mg/L) | 33.7 | 15.2 | 20.5 | 12 | 23 | 15 | 26 | 28 |
Magnesium (mg/L) | 14 | 11.6 | 7.6 | 10 | 14 | 11 | 18 | 14 |
Sodium (mg/L) | 193 | 947 | 331 | 730 | 649 | 842 | 1240 | 858 |
Potassium (mg/L) | 11 | 20.1 | 15.2 | 13 | 13 | 12 | 13 | 16 |
Total suspended solids (mg/L) | 61.3 | 260 | 1588 | 211 | 8942 | 5400 | 4 | 13 |
Total dissolved solids (mg/L) | 716 | 2631 | 1235 | 2003 | 1861 | 2320 | 3600 | 2469 |
Naphthenic acid fraction compounds (mg/L) 5 |
Company | Syncrude | Athabasca River | ||||||
---|---|---|---|---|---|---|---|---|
Tailings Deposit | Aurora Settling Basin [43] | Aurora East Pits (AEPs): Average of 2 1 [43] | Mildred Lake Settling Basin (MLSB) [39] | Ponds: Average of 3 2 [39] | BML [39] | Deep Cake Deposit [39] | Fort McMurray Station: Average Monthly 2019 Data 3 [66] | Old Fort Station: Average Monthly 2019 Data [66] |
Type of Tailings Deposited 4 | FFT, CST | FFT, CT, CST | FFT, FTT, CST | FFT, CT, CST | FFT | Centrifuge Cake | N/A | N/A |
Conductivity (µS/cm) | 3400 | 3600 | 3200 | 4167 | 2600 | 4400 | 332 | 320 |
pH | 8.26 | 8.30 | 7.96 | 8.48 | 8.48 | 8.51 | 7.98 | 7.78 |
Carbonate (mg/L) | 10 | 5 | 10 | 21 | 16 | 16 | ||
Bicarbonate (mg/L) | 670 | 675 | 680 | 933 | 740 | 750 | 168 | 150 |
Chloride (mg/L) | 440 | 430 | 410 | 593 | 390 | 490 | 4.6 | 15.1 |
Sulfate (mg/L) | 550 | 605 | 435 | 452 | 160 | 850 | 34.4 | 27.9 |
Calcium (mg/L) | 44 | 54 | 22 | 9 | 27 | 30 | 42.2 | 37.8 |
Magnesium (mg/L) | 25 | 27 | 12 | 7 | 13 | 26 | 11.3 | 10.3 |
Sodium (mg/L) | 725 | 725 | 685 | 950 | 580 | 850 | 13.7 | 18.2 |
Potassium (mg/L) | 26 | 28 | 12 | 12 | 9.5 | 15 | 2.3 | 1.8 |
Total suspended solids (mg/L) | 300 | 300 | 350 | 30 | ||||
Total dissolved solids (mg/L) | 2300 | 2400 | 1900 | 2750 | 1700 | 2600 | 191.8 | 184.2 |
Naphthenic acid fraction compounds (mg/L) 5 | 55 | 49 | 31 |
2. Mechanisms of Geochemical Change Expected for Tailings Landforms
2.1. Consolidation
2.1.1. Consolidation Behavior of Different Types of Tailings
2.1.2. Long-Term Consolidation and Settlement in Tailings Landforms
2.2. Chemical Mass Loading via Pore Water Fluxes
2.2.1. Wet Reclamation Scenarios
2.2.2. Dry Reclamation Scenarios
2.3. Biogeochemical Cycling
2.3.1. Oxic Conditions
2.3.2. Nitrate-Reducing Conditions
2.3.3. Iron-Reducing Conditions
2.3.4. Sulfate-Reducing Conditions
2.3.5. Methanogenesis
2.3.6. Bioconsolidation
2.3.7. Acid Rock Drainage
2.4. Polymer Degradation
2.4.1. Biodegradation
2.4.2. Photolytic Degradation
2.4.3. Mechanical Degradation
2.4.4. Other Degradation Mechanisms
2.5. Surface Water and Groundwater Interactions
2.5.1. Seepage and Contaminant Transport
2.5.2. Desalination via Fresh Water Flushing
3. Long-Term Geochemical Behavior of Tailings Landforms—Implications and Knowledge Gaps
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Government of Alberta. Oil Sands: Facts and Stats. 2021. Available online: https://www.alberta.ca/oil-sands-facts-and-statistics.aspx (accessed on 19 May 2021).
- Chalaturnyk, R.J.; Scott, J.D.; Özüm, B. Management of oil sands tailings. Pet. Sci. Technol. 2002, 20, 1025–1046. [Google Scholar] [CrossRef]
- Kasperski, K.L.; Mikula, R.J. Waste streams of mined oil sands: Characteristics and remediation. Elements 2011, 7, 387–392. [Google Scholar] [CrossRef]
- Alberta Energy Regulator (AER). State of Fluid Tailings Management for Mineable Oil Sands, 2019; Alberta Energy Regulator: Calgary, AB, Canada, 2020; Available online: https://static.aer.ca/prd/2020-09/2019-State-Fluid-Tailings-Management-Mineable-OilSands.pdf (accessed on 14 January 2021).
- Government of Alberta. Oil Sands Information Portal. 2021. Available online: http://osip.alberta.ca/map/ (accessed on 19 May 2021).
- Canada’s Oil Sands Innovation Alliance (COSIA). Water Performance Goals. Available online: https://staging.cosia.ca/performance-goals/water#water-perf-miningn.d. (accessed on 12 June 2021).
- Headley, J.V.; McMartin, D.W. A review of the occurrence and fate of naphthenic acids in aquatic environments. J. Environ. Sci. Health A 2004, 39, 1989–2010. [Google Scholar] [CrossRef] [PubMed]
- Marentette, J.R.; Frank, R.A.; Bartlett, A.J.; Gillis, P.L.; Hewitt, L.M.; Peru, K.M.; Headley, J.V.; Brunswick, P.; Shang, D.; Parrott, J.L. Toxicity of naphthenic acid fraction components extracted from fresh and aged oil sands process-affected waters, and commercial naphthenic acid mixtures, to fathead minnow (Pimephales promelas) embryos. Aquat. Toxicol. 2015, 164, 108–117. [Google Scholar] [CrossRef]
- Morandi, G.D.; Wiseman, S.B.; Pereira, A.; Mankidy, R.; Gault, I.G.M.; Martin, J.W.; Giesy, J.P. Effects-directed analysis of dissolved organic compounds in oil sands process-affected water. Environ. Sci. Technol. 2015, 49, 12395–12404. [Google Scholar] [CrossRef]
- Holowenko, F.M.; MacKinnon, M.D.; Fedorak, P.M. Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Can. J. Microbiol. 2000, 46, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Fedorak, P.M.; Coy, D.L.; Dudas, M.J.; Simpson, M.J.; Renneberg, A.J.; MacKinnon, M.D. Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. J. Environ. Eng. Sci. 2003, 2, 199–211. [Google Scholar] [CrossRef]
- Siddique, T.; Fedorak, P.M.; Foght, J.M. Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ. Sci. Technol. 2006, 40, 5459–5464. [Google Scholar] [CrossRef]
- Siddique, T.; Fedorak, P.M.; Mackinnon, M.D.; Foght, J.M. Metabolism of BTEX and naphtha compounds to methane in oil sands tailings. Environ. Sci. Technol. 2007, 41, 2350–2356. [Google Scholar] [CrossRef]
- Siddique, T.; Penner, T.; Semple, K.; Foght, J.M. Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ. Sci. Technol. 2011, 45, 5892–5899. [Google Scholar] [CrossRef]
- Burkus, Z.; Wheler, J.; Pletcher, S. GHG Emissions from oil sands tailings ponds: Overview and modelling based on fermentable substrates. In Part I: Review of Tailings Pond Facts and Practices; Alberta Environment and Sustainable Resource Development: Edmonton, AB, Canada, 2014; Available online: https://open.alberta.ca/dataset/9a7c1413-f02b-4b88-a277-ec571ae884f3/resource/f87efbea-5739-4dfa-993e-8ad854417c31/download/2014-ghg-emissions-from-oil-sands-tailings-ponds-overview-and-modelling-based-on-fermentable-sub.pdf (accessed on 14 May 2021).
- Holden, A.A.; Donahue, R.B.; Ulrich, A.C. Geochemical interactions between process-affected water from oil sands tailings ponds and North Alberta surficial sediments. J. Contam. Hydrol. 2011, 119, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.K.; Forrest, D. Oil Sands Mining Reclamation Challenge Dialogue—Report and Appendices. In Oil Sands Research and Information Network; University of Alberta, School of Energy and the Environment: Edmonton, AB, Canada, 2010. [Google Scholar]
- Chow, D.L.; Nasr, T.N.; Chow, R.S.; Sawatzky, R.P. Recovery techniques for Canada’s heavy oil and bitumen resources. J. Can. Petrol. Technol. 2008, 47, 12–17. [Google Scholar]
- Clark, K.A.; Pasternack, D.S. Hot water separation of bitumen from Alberta bituminous sand. Ind. Eng. Chem. 1932, 24, 1410–1416. [Google Scholar] [CrossRef]
- Bakhtiari, M.T. Development of a Tailings Management Simulation and Technology Evaluation Tool. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2015. [Google Scholar]
- Headley, J.V.; Peru, K.M.; Barrow, M.P. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil—A review. Mass Spectrom. Rev. 2016, 35, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.C.; Mackinnon, M.D.; Fedorak, P.M. Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids. Environ. Sci. Technol. 2005, 39, 8388–8394. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, R.J.; Frank, R.A.; Oakes, K.D.; Servos, M.R.; Young, R.F.; Fedorak, P.M.; MacKinnon, M.D.; Solomon, K.R.; Dixon, D.G.; Van Der Kraak, G. Fathead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters. Aquat. Toxicol. 2011, 101, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.D.; Ulrich, A.C. Oil sands naphthenic acids: A review of properties, measurement, and treatment. Chemosphere 2015, 127, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, P.J.; Tam, K.C. Water treatment technologies for the remediation of naphthenic acids in oil sands process-affected water. Chem. Eng. J. 2015, 279, 696–714. [Google Scholar] [CrossRef]
- Allen, E.W. Process water treatment in Canada’s oil sands industry: II. A review of emerging technologies. J. Environ. Eng. Sci. 2008, 7, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Dompierre, K.A.; Lindsay, M.B.J.; Cruz-Hernández, P.; Halferdahl, G.M. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake. Sci. Total Environ. 2016, 556, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Liu, Q. Froth treatment in Athabasca oil sands bitumen recovery process: A review. Energy Fuels 2013, 27, 7199–7207. [Google Scholar] [CrossRef]
- Foght, J.M.; Gieg, L.M.; Siddique, T. The microbiology of oil sands tailings: Past, present, future. FEMS Microbiol. Ecol. 2017, 93, fix034. [Google Scholar] [CrossRef] [Green Version]
- Small, C.C.; Cho, S.; Hashisho, Z.; Ulrich, A.C. Emissions from oil sands tailings ponds: Review of tailings pond parameters and emission estimates. J. Petrol. Sci. Eng. 2015, 127, 490–501. [Google Scholar] [CrossRef]
- Imperial Oil Resources Ltd. (Imperial). Kearl Oil Sands Mine: Fluid Tailings Management Report; Imperial Oil Resources Ltd.: Calgary, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Suncor Energy Inc. (Suncor). Mining Technologies. 2021. Available online: https://sustainability.suncor.com/en/innovation/mining-technologies (accessed on 23 May 2021).
- Government of Alberta. Lower Athabasca Region Tailings Management Framework for the Mineable Athabasca Oil Sands; Government of Alberta: Edmonton, AB, Canada, 2015. Available online: https://open.alberta.ca/dataset/962bc8f4-3924-46ce-baf8-d6b7a26467ae/resource/7c49eb63-751b-49fd-b746-87d5edee3131/download/2015-larp-tailingsmgtathabascaoilsands.pdf (accessed on 23 April 2021).
- Alberta Energy Regulator (AER). Directive 085: Fluid Tailings Management for Oil Sands Mining Projects; Alberta Energy Regulator: Calgary, AB, Canada, 2017; Available online: https://static.aer.ca/prd/2020-07/Directive085_0.pdf (accessed on 23 April 2021).
- Oil Sands Tailings Consortium (OSTC) and Canada’s Oil Sands Innovation Alliance (COSIA). Technical Guide for Fluid Fine Tailings Management; OSTC and COSIA: Calgary, AB, Canada, 2012. [Google Scholar]
- McKenna, G.; Mooder, B.; Burton, B.; Jamieson, A. Shear Strength and Density of Oil Sands Fine Tailings for Reclamation of a Boreal Forest Landscape. In Proceedings of the 5th International Oil Sands Tailings Conference, Lake Louise, AB, Canada, 4–7 December 2016. [Google Scholar]
- BGC Engineering Inc. Oil Sands Tailings Technology Review; Oil Sands Research and Information Network (OSRIN) Report No. TR-1, OSRIN; School of Energy and the Environment, University of Alberta: Edmonton, AB, Canada, 2010. [Google Scholar]
- Burden, R.; Wilson, G.W. Simulating deposition of Clearwater shale—FFT blends using a novel consolidation test. In Proceedings of the Canada’s Oil Sands Innovation Alliance (COSIA) Innovation Summit, Calgary, AB, Canada, 7–8 June 2018. [Google Scholar]
- Syncrude Canada Ltd. (Syncrude). 2019 Mildred Lake Tailings Management Report; Syncrude Canada Ltd.: Fort McMurray, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Suncor Energy Inc. (Suncor). 2019 Base Plant Fluid Tailings Management Report; Suncor Energy Inc.: Calgary, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Canadian Natural Upgrading Ltd. (CNUL). Canadian Natural Muskeg River Mine Fluid Tailings Management Report; Canadian Natural Upgrading Ltd.: Fort McMurray, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Canadian Natural Upgrading Ltd. (CNUL). Canadian Natural Jackpine Mine Fluid Tailings Management Report; Canadian Natural Upgrading Ltd.: Fort McMurray, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Syncrude Canada Ltd. (Syncrude). 2019 Aurora North Tailings Management Report; Syncrude Canada Ltd.: Fort McMurray, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Canadian Natural Resources Limited (CNRL). Canadian Natural Horizon: 2019 Horizon Tailings Management Report; Canadian Natural Resources Limited: Fort McMurray, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Suncor Energy Operating Inc. (Suncor). 2019 Fort Hills Fluid Tailings Management Report; Suncor Energy Operating Inc.: Calgary, AB, Canada, 2020; Available online: https://www.aer.ca/providing-information/by-topic/tailings (accessed on 23 April 2021).
- Westcott, F.; Watson, L. End pit Lakes Technical Guidance Document; Clearwater Environmental Consultants for Cumulative Effects; Project 2005-61; Management Association End Pit Lakes Subgroup: Calgary, AB, Canada, 2007; Available online: https://www.ceaa.gc.ca/050/documents_staticpost/cearref_37519/44851/t.pdf (accessed on 14 May 2020).
- Charette, T.; Castendyk, D.; Hrynyshyn, J.; Küpper, A.; McKenna, G.; Mooder, B. End Pit Lakes Guidance Document 2012; Cumulative Effects Management Association: Fort McMurray, AB, Canada, 2010. [Google Scholar]
- Sawatsky, L.; Hyndman, A.; McKenna, G.; Vandenberg, J. Fluid Fine Tailings Processes: Disposal, Capping, and Closure Alternatives. In Proceedings of the 6th International Oil Sands Tailings Conference, Edmonton, AB, Canada, 9–12 December 2018. [Google Scholar]
- McKenna, G. Landscape design for mine reclamation. In Proceedings of the Tailings and Mine Waste ’09, Banff, AB, Canada, 1–4 November 2009; Available online: https://sites.google.com/a/ualberta.ca/tmw-2009/ (accessed on 14 May 2020).
- Canada’s Oil Sands Innovation Alliance (COSIA). Pit Lakes: A Surface Mining Perspective; Canada’s Oil Sands Innovation Alliance: Calgary, AB, Canada, 2021; Available online: https://cosia.ca/sites/default/files/attachments/Park%20-%20COSIA%20-%20Pit%20Lakes%20-%20Final.pdf (accessed on 11 May 2021).
- McKenna, G.; Dawson, R. Oil Sands Tailings Technology Deployment Roadmap: Project Report—Volume 2; component 1 results; BGC Engineering Inc. and Norwest Corporation for Alberta Innovates—Energy and Environmental Solutions: Calgary, AB, Canada, 2012; Available online: https://www.cosia.ca/uploads/documents/id10/Tailings%20Roadmap%20Volume%202%20June%202012.pdf (accessed on 14 January 2021).
- Syncrude Canada Ltd. (Syncrude). Centrifuge Tails. 2020. Available online: https://www.syncrude.ca/environment/tailings-management/tailings-reclamation/centrifuged-tails/ (accessed on 14 May 2020).
- Syncrude Canada Ltd. (Syncrude). Composite Tails. 2020. Available online: https://www.syncrude.ca/environment/tailings-management/tailings-reclamation/composite-tails/ (accessed on 14 May 2020).
- Syncrude Canada Ltd. (Syncrude). Sandhill fen Recognized for Environmental Excellence. 2014. Available online: https://www.syncrude.ca/2014/05/13/sandhill-fen-recognized-for-environmental-excellence/ (accessed on 19 January 2021).
- Biagi, K.M.; Oswald, C.J.; Nicholls, E.M.; Carey, S.K. Increases in salinity following a shift in hydrologic regime in a constructed wetland watershed in a post-mining oil sands landscape. Sci. Total Environ. 2019, 653, 1445–1457. [Google Scholar] [CrossRef]
- Gibson, J.J.; Fennell, J.; Birks, S.J.; Yi, Y.; Moncur, M.C.; Hansen, B.; Jasechko, S. Evidence of discharging saline formation water to the Athabasca River in the oil sands mining region, northern Alberta. Can. J. Earth Sci. 2013, 50, 1244–1257. [Google Scholar] [CrossRef]
- Kaminsky, H.; Omotoso, O. Variability in fluid fine tailings. In Proceedings of the 5th International Oil Sands Tailings Conference, Lake Louise, AB, Canada, 4–7 December 2016. [Google Scholar]
- Penner, T.J.; Foght, J.M. Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Can. J. Microbiol. 2010, 56, 459–470. [Google Scholar] [CrossRef]
- Siddique, T.; Kuznetsov, P.; Kuznetsova, A.; Arkell, N.; Young, R.; Li, C.; Guigard, S.; Underwood, E.; Foght, J.M. Microbially-accelerated consolidation of oil sands tailings. Pathway I: Changes in porewater chemistry. Front. Microbiol. 2014, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- Stasik, S.; Wendt-Potthoff, K. Interaction of microbial sulphate reduction and methanogenesis in oil sands tailings ponds. Chemosphere 2014, 103, 59–66. [Google Scholar] [CrossRef]
- Willis, C.E.; St. Louis, V.L.; Kirk, J.L.; St. Pierre, K.A.; Dodge, C. Tailings ponds of the Athabasca oil sands region, Alberta, Canada, are likely not significant sources of total mercury and methylmercury to nearby ground and surface waters. Sci. Total Environ. 2019, 647, 1604–1610. [Google Scholar] [CrossRef]
- Cowie, B.R.; James, B.; Mayer, B. Distribution of total dissolved solids in McMurray Formation water in the Athabasca oil sands region, Alberta, Canada: Implications for regional hydrogeology and resource development. AAPG Bull. 2015, 99, 77–90. [Google Scholar] [CrossRef]
- Renault, S.; Lait, C.; Zwiazek, J.; MacKinnon, M. Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environ. Pollut. 1998, 102, 177–184. [Google Scholar] [CrossRef]
- MacKinnon, M.D.; Matthews, J.G.; Shaw, W.H.; Cuddy, R.G. Water Quality Issues Associated With Composite Tailings (CT) Technology for Managing Oil Sands Tailings. Int. J. Min. Reclam. Environ. 2001, 15, 235–256. [Google Scholar] [CrossRef]
- Ripmeester, M.J.; Duford, D.A. Method for routine “naphthenic acids fraction compounds’ determination in oil sands process-affected water by liquid-liquid extraction in dichloromethane and Fourier-Transform Infrared Spectroscopy. Chemosphere 2019, 233, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Government of Alberta. Long Term River Station Data. 2021. Available online: http://environment.alberta.ca/apps/EdwReportViewer/LongTermRiverStation.aspx (accessed on 14 May 2021).
- Jeeravipoolvarn, S.; Chalaturnyk, R.J.; Scott, J.D. Consolidation Modeling of Oil Sands Fine Tailings: History Matching. In Proceedings of the 61st Canadian Geotechnical Conference, Edmonton, AB, Canada, 22–24 September 2008. [Google Scholar]
- Kaminsky, H.A.W.; Etsell, T.H.; Ivey, D.G.; Omotoso, O. Distribution of clay minerals in the process streams produced by the extraction of bitumen from Athabasca oil sands. Can. J. Chem. Eng. 2009, 87, 85–93. [Google Scholar] [CrossRef]
- Jeeravipoolvarn, S.; Scott, J.D.; Chalaturnyk, R.J. 10 m standpipe tests on oil sands tailings: Long-term experimental results and prediction. Can. Geotech. J. 2009, 46, 875–888. [Google Scholar] [CrossRef]
- Mikula, R.J.; Munoz, V.A.; Omotoso, O. Centrifugation options for production of dry stackable tailings in surface mined oil sands tailings management. J. Can. Petrol. Technol. 2009, 48, 19–23. [Google Scholar] [CrossRef]
- Kaminsky, H.A.W.; Etsell, T.H.; Ivey, D.G.; Omotoso, O. Characterization of heavy minerals in the Athabasca oil sands. Miner. Eng. 2008, 21, 264–271. [Google Scholar] [CrossRef]
- Gibson, R.E.; England, G.L.; Hussey, M.J.L. The theory of one-dimensional consolidation of saturated clays I, finite non-linear consolidation of thin homogeneous layers. Géotechnique 1967, 17, 261–273. [Google Scholar] [CrossRef]
- Jeeravipoolvarn, S.; Scott, J.D.; Chalaturnyk, R.J. Multi-dimensional Finite Strain Consolidation Theory: Modeling Study. In Proceedings of the 61st Canadian Geotechnical Conference, Edmonton, AB, Canada, 22–24 September 2008. [Google Scholar]
- Suthaker, N.N.; Scott, J.D. Large Scale Consolidation Testing of Oil Sand Fine Tails. In Proceedings of the 1st International Congress on Environmental Geotechnics, Edmonton, AB, Canada, 10–15 July 1994. [Google Scholar]
- Sorta, A.; Beier, N.; Kabwe, L.K.; Scott, J.D.; Wilson, G.W. The Case for Using Fines Void Ration. In Proceedings of the 68th Canadian Geotechnical Conference, Quebec City, QC, Canada, 21–23 September 2015. [Google Scholar]
- Beier, N.A. Role of Sodium Hydroxide in Bitumen Extraction: Production of Natural Surfactants and Slime Coating. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2015. [Google Scholar]
- Wilson, G.W.; Kabwe, L.K.; Beier, N.A.; Scott, J.D. Effect of various treatments on consolidation of oil sands fluid fine tailing. Can. Geotech. J. 2017, 55, 1059–1066. [Google Scholar] [CrossRef]
- Sorta, A.R.; Sego, D.C.; Wilson, W. Physical modelling of oil sands tailings consolidation. Int. J. Phys. Model. Geotech. 2016, 16, 47–64. [Google Scholar] [CrossRef]
- Dompierre, K.A.; Barbour, S.L. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: A multi-tracer study. J. Contam. Hydrol. 2016, 189, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Dompierre, K.A.; Barbour, S.L.; North, R.L.; Carey, S.K.; Lindsay, M.B.J. Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake. Water Resour. Res. 2017, 53, 4725–4740. [Google Scholar] [CrossRef]
- White, K.B.; Liber, K. Early chemical and toxicological risk characterization of inorganic constituents in surface water from the Canadian oil sands first large-scale end pit lake. Chemosphere 2018, 211, 745–757. [Google Scholar] [CrossRef] [PubMed]
- White, K.B.; Liber, K. Chronic toxicity of surface water from a Canadian oil sands end pit lake to the freshwater invertebrates Chironomus dilutus and Ceriodaphnia dubia. Arch. Environ. Contam. Toxicol. 2020, 78, 439–450. [Google Scholar] [PubMed]
- Leung, S.S.; MacKinnon, M.D.; Smith, R.E.H. The ecological effects of naphthenic acids and salts on phytoplankton from the Athabasca oil sands region. Aquat. Toxicol. 2003, 62, 11–26. [Google Scholar]
- Nero, V.; Farwell, A.; Lee, L.E.J.; Van Meer, T.; MacKinnon, M.D.; Dixon, D.G. The effects of salinity on naphthenic acid toxicity to yellow perch: Gill and liver histopathology. Ecotoxicol. Environ. Saf. 2006, 65, 252–264. [Google Scholar] [CrossRef]
- Monaghan, J.; Richards, L.C.; Vandergrift, G.W.; Hounjet, L.J.; Stoyanov, S.R.; Gill, C.G.; Krogh, E.T. Direct mass spectrometric analysis of naphthenic acids and polycyclic aromatice hydrocarbons in waters impacted by diluted bitumen and conventional crude oil. Sci. Total Environ. 2021, 765, 144206. [Google Scholar] [CrossRef] [PubMed]
- Rundle, K.I.; Sharaf, M.S.; Stevens, D.; Kamunde, C.; van der Heuvel, M.R. Oil sands derived naphthenic acids are oxidative uncouplers and impair electron transport in isolated mitochondria. Environ. Sci. Technol. 2018, 765, 10810–10811. [Google Scholar] [CrossRef]
- Lawrence, G.A.; Tedford, E.W.; Pieters, R. Suspended solids in an end pit lake: Potential mixing mechanisms. Can. J. Civ. Eng. 2016, 43, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Tedford, E.; Halferdahl, G.; Pieters, R.; Lawrence, G.A. Temporal variations in turbidity in an oil sands pit lake. Environ. Fluid Mech. 2019, 19, 457–473. [Google Scholar]
- Shen, X.; Sun, T.; Su, M.; Dang, Z.; Yang, Z. Short-term response of aquatic ecosystem metabolism to turbidity disturbance in experimental estuarine wetlands. Ecol. Eng. 2019, 136, 55–61. [Google Scholar] [CrossRef]
- Zehrer, R.F.; Burns, C.W.; Flöder, S. Sediment resuspension, salinity and temperature affect the plankton community of a shallow coastal lake. Mar. Freshw. Res. 2015, 66, 317–328. [Google Scholar] [CrossRef]
- Reid, M.L.; Warren, L.A. S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction. J. Environ. Manag. 2016, 166, 321–329. [Google Scholar] [CrossRef]
- Hartsock, J.A.; Piercey, J.; House, M.K.; Vitt, D.H. An evaluation of water quality at Sandhills Wetland: Implications for reclaiming wetlands above soft tailings deposits in northern Alberta, Canada. Wetl. Ecol. Manag. 2021, 29, 111–127. [Google Scholar] [CrossRef]
- Vessey, C.J.; Lindsay, M.B.J.; Barbour, S.L. Sodium transport and attenuation in soil cover materials for oil sands mine reclamation. Appl. Geochem. 2019, 100, 42–54. [Google Scholar] [CrossRef]
- Wiener, J.G.; Krabbenhoft, D.P.; Heinz, G.H.; Scheuhammer, A.M. Ecotoxicology of mercury. In Handbook of Ecotoxicology; Hoffman, D.J., Rattner, B.A., Burton, G.A., Cairns, J., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 409–463. [Google Scholar]
- Oswald, C.J.; Carey, S.K. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region. Environ. Pollut. 2016, 213, 628–637. [Google Scholar] [CrossRef]
- Vitt, D.H.; House, M.; Hartsock, J.A. Sandhill Fen, an initial trial for wetland species assembly on in-pit substrates: Lessons after three years. Botany 2016, 94, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Biagi, K.M.; Clark, M.G.; Carey, S.K. Hydrological functioning of a constructed peatland watershed in the Athabasca oil sands region: Potential trajectories and lessons learned. Ecol. Eng. 2021, 166, 106236. [Google Scholar] [CrossRef]
- Foote, L. Threshold Considerations and Wetland Reclamation in Alberta’s Mineable Oil Sands. Ecol. Soc. 2012, 17, art35. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, P.; Hrudey, S.E.; Naeth, M.A.; Plourde, A.; Therrien, R.; Van Der Kraak, G.; Xu, Z. The Royal Society of Canada Expert Panel: Environmental and Health Impacts of Canada’s Oil Sands Industry: Report; Royal Society of Canada: Ottawa, ON, Canada, 2010. [Google Scholar]
- Trites, M.; Bayley, S.E. Vegetation communities in continental boreal wetlands along a salinity gradient: Implications for oil sands mining reclamation. Aquat. Bot. 2009, 91, 27–39. [Google Scholar] [CrossRef]
- Roshani, A.; Fall, M.; Kennedy, K. Microstructural, hydraulic conductivity and geochemical changes of drying mature fine oil sands tailings in column experiments. Int. J. Min. Reclam. Environ. 2018, 32, 239–253. [Google Scholar] [CrossRef]
- Cilia, C.R.C. Characterizing the Physical and Chemical Mass Transport of Dissolved Salts in Layered Oil Sands Waste Undergoing Reclamation. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2017. [Google Scholar]
- Kessler, S.; Barbour, S.L.; van Rees, K.C.J.; Dobchuk, B. Salinization of soil over saline-sodic overburden from the oil sands in Alberta. Can. J. Soil Sci. 2010, 90, 637–647. [Google Scholar] [CrossRef]
- Li, X.; Ma, B.; Drozdowski, B.; Salifu, F.; Chang, S.X. Effects of capping strategy and water balance on salt movement in oil sands reclamation soils. Water 2020, 12, 512. [Google Scholar] [CrossRef] [Green Version]
- Dobchuk, B.S.; Shurniak, R.E.; Barbour, S.L.; O’Kane, M.A.; Song, Q. Long-term monitoring and modelling of a reclaimed watershed cover on oil sands tailings. Int. J. Min. Reclam. Environ. 2013, 27, 180–201. [Google Scholar] [CrossRef]
- Renault, S.; Paton, E.; Nilsson, G.; Zwiazek, J.J.; MacKinnon, M.D. Responses of Boreal Plants to High Salinity Oil Sands Tailings Water. J. Environ. Qual. 1999, 28, 1957–1962. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Fleurial, K.; Sherr, I.; Vassov, R.; Zwiazek, J.J. Growth and physiological responses of tree seedlings to oil sands non-segregated tailings. Environ. Pollut. 2020, 259, 113945. [Google Scholar] [CrossRef] [PubMed]
- Government of Alberta. Alberta Tier 1 Soil and Groundwater Remediation Guidelines; Government of Alberta, Land Policy Branch: Edmonton, AB, Canada, 2019. Available online: https://open.alberta.ca/dataset/842becf6-dc0c-4cc7-8b29-e3f383133ddc/resource/a5cd84a6-5675-4e5b-94b8-0a36887c588b/download/albertatier1guidelines-jan10-2019.pdf (accessed on 17 June 2021).
- Renault, S.; Qualizza, C.; MacKinnon, M. Suitability of altai wildrye (Elymus angustus) and slender wheatgrass (Agropyron trachycaulum) for initial reclamation of saline composite tailings of oil sands. Environ. Pollut. 2004, 128, 339–349. [Google Scholar] [CrossRef]
- Boldt-Burisch, K.; Naeth, M.A.; Schneider, U.; Schenider, B.; Hüttl, R.F. Plant growth and arbuscular mycorrhizae development in oil sands processing by-products. Sci. Total Environ. 2018, 621, 30–39. [Google Scholar] [CrossRef]
- Collins, C.E.V.; Foght, J.M.; Siddique, T. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings. Sci. Total Environ. 2016, 565, 306–312. [Google Scholar] [CrossRef]
- Warren, L.A.; Kendra, K.E.; Brady, A.L.; Slater, G.F. Sulfur biogeochemistry of an oil sands composite tailings deposit. Front. Microbiol. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fedorak, P.M.; Coy, D.L.; Salloum, M.J.; Dudas, M.J. Methanogenic potential of tailings samples from oil sands extraction plants. Can. J. Microbiol. 2002, 48, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Risacher, F.F.; Morris, P.K.; Arriaga, D.; Goad, C.; Colenbrander Nelson, T.; Slater, G.F.; Warren, L.A. The interplay of methane and ammonia as key oxygen consuming constituents in early stage development of Base Mine Lake, the first demonstration oil sands pit lake. Appl. Geochem. 2018, 93, 49–59. [Google Scholar] [CrossRef]
- Arriaga, D.; Colenbrander Nelson, T.; Risacher, F.F.; Morris, P.K.; Goad, C.; Slater, G.F.; Warren, L.A. The co-importance of physical mixing and biogeochemical consumption in controlling water cap oxygen levels in Base Mine Lake. Appl. Geochem. 2019, 111, 104442. [Google Scholar] [CrossRef]
- Stasik, S.; Wendt-Potthoff, K. Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond. Water Res. 2016, 106, 223–231. [Google Scholar] [CrossRef]
- Stasik, S.; Loick, N.; Knöller, K.; Weisener, C.; Wendt-Potthoff, K. Understanding biogeochemical gradients of sulfur, iron and carbon in an oil sands tailings pond. Chem. Geol. 2014, 382, 44–53. [Google Scholar] [CrossRef]
- Mori, J.F.; Chen, L.-X.; Jessen, G.L.; Rudderham, S.G.; McBeth, J.M.; Lindsay, M.B.J.; Slater, G.F.; Banfield, J.F.; Warren, L.A. Putative mixotrophic nitrifying-denitrifying gammaproteobacterial implicated in nitrogen cycling within the ammonia/oxygen transition zone of an oil sands pit lake. Front. Microbiol. 2019, 10, 2435. [Google Scholar] [CrossRef]
- Chen, L.X.; Méheust, R.; Crits-Christoph, A.; McMahon, K.D.; Colenbrander Nelson, T.; Slater, G.F.; Warren, L.A.; Banfield, J.F. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat. Microbiol. 2020, 5, 1504–1515. [Google Scholar] [CrossRef]
- Herman, D.C.; Fedorak, P.M.; Mackinnon, M.D.; Costerton, J.W. Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings. Can. J. Microbiol. 1994, 40, 467–477. [Google Scholar] [CrossRef]
- Siddique, T.; Mohamad Shahimin, M.F.; Zamir, S.; Semple, K.; Li, C.; Foght, J.M. Long-term incubation reveals methanogenic biodegradation of C5 and C6 iso-alkanes in oil sands tailings. Environ. Sci. Technol. 2015, 49, 14732–14739. [Google Scholar] [CrossRef]
- Saidi-Mehrabad, A.; He, Z.; Tamas, I.; Sharp, C.E.; Brady, A.L.; Rochman, F.F.; Bodrossy, L.; Abell, G.C.J.; Penner, T.; Dong, X.; et al. Methanotrophic bacteria in oil sands tailings ponds of northern Alberta. ISME J. 2013, 7, 908–921. [Google Scholar] [CrossRef] [Green Version]
- Stasik, S.; Wick, L.Y.; Wendt-Potthoff, K. Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere 2015, 138, 133–139. [Google Scholar] [CrossRef]
- Rochman, F.F.; Sheremet, A.; Tamas, I.; Saidi-Mehrabad, A.; Kim, J.J.; Dong, X.; Sensen, C.W.; Gieg, L.M.; Dunfield, P.F. Benzene and naphthalene degrading bacterial communities in an oil sands tailings pond. Front. Microbiol. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Mohamad Shahimin, M.F.; Siddique, T. Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings. Environ. Pollut. 2017, 221, 398–406. [Google Scholar] [CrossRef]
- Mohamad Shahimin, M.F.; Siddique, T. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. Sci. Total Environ. 2017, 583, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lee, K.; Ma, B.; Asiedu, E.; Ulrich, A.C. Indigenous microorganisms residing in oil sands tailings biodegrade residual bitumen. Chemosphere 2018, 209, 551–559. [Google Scholar] [CrossRef]
- Clemente, J.S.; MacKinnon, M.D.; Fedorak, P.M. Aerobic biodegradation of two commercial naphthenic acids preparations. Environ. Sci. Technol. 2004, 38, 1009–1016. [Google Scholar] [CrossRef]
- Toor, N.S.; Franz, E.D.; Fedorak, P.M.; MacKinnon, M.D.; Liber, K. Degradation and aquatic toxicity of naphthenic acids in oil sands process-affected waters using simulated wetlands. Chemosphere 2013, 90, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lee, K.; Ulrich, A.C. Model naphthenic acids removals by microalgae and Base Mine Lake cap water microbial inoculum. Chemosphere 2019, 234, 796–805. [Google Scholar] [CrossRef]
- Quesnel, D.M.; Bhaskar, I.M.; Gieg, L.M.; Chua, G. Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta. Chemosphere 2011, 84, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Miles, S.M.; Asiedu, E.; Balaberda, A.; Ulrich, A.U. Oil sands process affected water sourced Trichoderma harzianum demonstrates capacity for mycoremediation of naphthenic acid fraction compounds. Chemosphere 2020, 258, 127281. [Google Scholar] [CrossRef]
- Keiluweit, M.; Fendorf, S. Texture-dependent anaerobic microsites constrain soil carbon oxidation rates. In Proceedings of the EGA General Assembly, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Neira, J.; Ortiz, M.; Morales, L.; Acevedo, E. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling. Chil. J. Agric. Res. 2015, 75, 35–44. [Google Scholar] [CrossRef]
- Bornstein, J.; Hedstrom, W.E.; Scott, F.R. Oxygen Diffusion Rate Relationships under Three Soil Conditions; Life Sciences and Agriculture Experiment Station, University of Maine: Orono, ME, USA, 1980; Volume 98, pp. 1–14. [Google Scholar]
- Clothier, L.N.; Gieg, L.M. Anaerobic biodegradation of surrogate naphthenic acids. Water Res. 2016, 90, 156–166. [Google Scholar] [CrossRef]
- Gunawan, Y.; Nemati, M.; Dalai, A. Biodegradation of a surrogate naphthenic acid under denitrifying conditions. Water Res. 2014, 51, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Rudderham, S.B. Geomicrobiology and Geochemistry of Fluid Fine Tailings in an Oil Sands End Pit Lake. Master’s Thesis, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada, 2019. [Google Scholar]
- Bordenave, S.; Ramos, E.; Lin, S.; Voordouw, G.; Gieg, L.; Guo, C.; Wells, S. Use of Calcium Sulfate to Accelerate Densification while Reducing Greenhouse Gas Emissions from Oil Sands Tailings Ponds. In Proceedings of the Canadian International Petroleum Conference, Calgary, AB, Canada, 16–18 June 2009. [Google Scholar]
- Ramos-Padrón, E.; Bordenave, S.; Lin, S.; Bhaskar, I.M.; Dong, X.; Sensen, C.W.; Fournier, J.; Vourdouw, G.; Gieg, L.M. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ. Sci. Technol. 2011, 45, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.F.; Semple, K.; Foght, J. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiol. Ecol. 2015, 91, fiv042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Walshe, G.; Chi Fru, E.; Ciborowski, J.J.H.; Weisener, C.G. Microcosm assessment of the biogeochemical development of sulfur and oxygen in oil sands fluid fine tailings. Appl. Geochem. 2013, 37, 1–11. [Google Scholar] [CrossRef]
- Siddique, T.; Semple, K.; Li, C.; Foght, J.M. Methanogenic biodegradation of iso-alkanes and cycloalkanes during long-term incubation with oil sands tailings. Environ. Pollut. 2020, 258, 113768. [Google Scholar] [CrossRef]
- Clark, M.G.; Drewitt, G.B.; Carey, S.K. Energy and carbon fluxes from an oil sands pit lake. Sci. Total Environ. 2021, 752, 141966. [Google Scholar] [CrossRef]
- Clark, M.G.; Humphreys, E.R.; Carey, S.K. The initial three years of carbon dioxide exchange between the atmosphere and a reclaimed oil sands wetland. Ecol. Eng. 2019, 17, 667–682. [Google Scholar] [CrossRef]
- Clark, M.G.; Humphreys, E.R.; Carey, S.K. Low methane emissions from a boreal wetland constructed on oil sands mine tailings. Biogeosciences 2020, 135, 116–126. [Google Scholar] [CrossRef] [Green Version]
- McCullough, C.D.; Schultze, M.; Vandenberg, J. Realizing beneficial end uses from abandoned pit lakes. Minerals 2020, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Siddique, T.; Kuznetsov, P.; Kuznetsova, A.; Li, C.; Young, R.; Arocena, J.M.; Foght, J.M. Microbially-accelerated consolidation of oil sands tailings. Pathway II: Solid phase biogeochemistry. Front. Microbiol. 2014, 5, 107. [Google Scholar] [CrossRef] [PubMed]
- Canada’s Oil Sands Innovation Alliance (COSIA). 2019 Water Mining Research Report; Canada’s Oil Sands Innovation Alliance: Calgary, AB, Canada, 2020. [Google Scholar]
- Lindsay, M.B.J.; Vessey, C.J.; Robertson, J.M. Mineralogy and geochemistry of oil sands froth treatment tailings: Implications for acid generation and metal(loid) release. Appl. Geochem. 2019, 102, 186–196. [Google Scholar] [CrossRef]
- Kuznetsov, P.; Kuznetsova, A.; Foght, J.M.; Siddique, T. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying. Sci. Total Environ. 2015, 505, 1–10. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Kuznetsov, P.; Foght, J.M.; Siddique, T. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage. Sci. Total Environ. 2016, 571, 699–710. [Google Scholar] [CrossRef]
- Vedoy, D.R.J.; Soares, J.B.P. Water-soluble polymers for oil sands tailing treatment: A review. Can. J. Chem. Eng. 2015, 93, 888–904. [Google Scholar] [CrossRef]
- Vajihinejad, V.; Gumfekar, S.P.; Dixon, D.V.; Silva, M.A.; Soares, J.B.P. Enhanced dewatering of oil sands tailings by a novel water-soluble cationic polymer. Sep. Purif. Technol. 2021, 260, 118183. [Google Scholar] [CrossRef]
- Soares, J.B.P.; Motta, F.L. Using polymer reaction engineering principles to help the environment: The case of the Canadian oil sands tailings. J. Braz. Chem. Soc. 2019, 30, 426–435. [Google Scholar] [CrossRef]
- Hripko, R.; Vajihinejad, V.; Motta, F.L.; Soares, J.B.P. Enhanced flocculation of oil sands mature fine tailings using hydrophobically modified polyacrylamide copolymers. Glob. Chall. 2018, 2, 1700135. [Google Scholar] [CrossRef]
- Amoako, K.A. Geotechnical Behavior of Two Novel Polymer Treatments of Oil Sands Fine Tailings. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2020. [Google Scholar]
- Lipp, D.; Kozakiewicz, J. Acrylamide polymers. In Kirk-Othmer Encyclopedia of Chemical Technology; Kroschwitz, J.I., Ed.; Wiley: Toronto, Canada, 1991; pp. 266–287. [Google Scholar]
- Haveroen, M.E.; MacKinnon, M.D.; Fedorak, P.M. Polyacrylamide added as a nitrogen source stimulates methanogenesis in consortia from various wastewaters. Water Res. 2005, 29, 3333–3341. [Google Scholar] [CrossRef]
- Xu, Y.; Hamza, H. Thickening and disposal of oil sand tailings. Min. Eng. 2003, 55, 33–39. [Google Scholar]
- Long, J.; Li, H.; Xu, Z.; Masliyah, J.H. Role of colloidal interactions in oil sand tailings treatment. AIChE J. 2006, 52, 371–383. [Google Scholar] [CrossRef]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef] [PubMed]
- Kay-Shoemake, J.L.; Watwood, M.E.; Lentz, R.D.; Sojka, E.R. Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil. Soil Biol. Biochem. 1998, 30, 1045–1052. [Google Scholar] [CrossRef]
- Bao, M.; Chen, Q.; Li, Y.; Jiang, G. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field. J. Hazard. Mater. 2010, 184, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Chen, Z.; Zhao, Y.; Zhang, H.; Feng, Y. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. J. Hazard. Mater. 2010, 175, 955–959. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Z.; Lin, K.; Cai, W. Microbial degradation of polyacrylamide by aerobic granules. Environ. Technol. 2012, 33, 1049–1054. [Google Scholar] [CrossRef]
- Song, W.; Zhang, Y.; Gao, Y.; Chen, D.; Yang, M. Cleavage of the main carbon chain backbone of high molecular weight polyacrylamide by aerobic and anaerobic biological treatment. Chemosphere 2017, 189, 277–283. [Google Scholar] [CrossRef]
- Song, T.; Li, S.; Ding, W.; Li, H.; Bao, M.; Li, Y. Biodegradation of hydrolyzed polyacrylamide by the combined expanded granular sludge bed reactor-aerobic biofilm reactor biosystem and key microorganisms involved in this bioprocess. Bioresour. Technol. 2018, 263, 153–162. [Google Scholar] [CrossRef]
- Berdugo-Clavijo, C.; Sen, A.; Seyyedi, M.; Quintero, H.; O’Neil, B.; Gieg, L.M. High temperature utilization of PAM and HPAM by microbial communities enriched from oilfield produced water and activated sludge. AMB Express 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Dai, X.; Luo, F.; Yi, J.; He, Q.; Dong, B. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system. Bioresour. Technol. 2014, 153, 55–61. [Google Scholar] [CrossRef]
- Dai, X.; Luo, F.; Zhang, D.; Dai, L.; Chen, Y.; Dong, B. Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal. Sci. Rep. 2015, 5, 11675. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liu, J.F.; Li, C.Y.; Yang, S.Z.; Gu, J.D.; Mu, B.Z. Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrichment cultures from production water of oil reservoirs. Biodegradation 2018, 29, 233–243. [Google Scholar] [CrossRef]
- Nakamiya, K.; Kinoshita, S. Isolation of polyacrylamide-degrading bacteira. J. Ferment. Bioeng. 1995, 80, 418–420. [Google Scholar] [CrossRef]
- Joshi, S.; Abed, A. Biodegradation of polyacrylamide and its derivatives. Environ. Process. 2017, 4, 463–476. [Google Scholar] [CrossRef]
- Grula, M.M.; Huang, M.; Sewell, G. Interactions of certain polyacrylamides with soil bacteria. Soil Sci. 1994, 158, 291–300. [Google Scholar] [CrossRef]
- Guezennec, A.G.; Michel, C.; Bru, K.; Touze, S.; Desroche, N.; Mnif, I.; Motelica-Heino, M. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: A review. Environ. Sci. Pollut. Res. 2015, 22, 6390–6406. [Google Scholar] [CrossRef] [Green Version]
- Xiong, B.; Dettam Loss, R.; Shields, D.; Pawlik, R.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]
- Woodrow, J.E.; Seiber, J.N.; Miller, G.C. Acrylamide release resulting from sunlight irradiation of aqueous polyacrylamide/iron mixtures. J. Agric. Food Chem. 2008, 56, 2773–2779. [Google Scholar] [CrossRef]
- Caulfield, M.J.; Qiao, G.G.; Solomon, D.H. Some aspects of the properties and degradation of polyacrylamides. Chem. Rev. 2002, 102, 3067–3083. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Purswani, P.; Pawlik, T.; Samineni, L.; Karpyn, Z.T.; Zydney, A.L.; Kumar, M. Mechanical degradation of polyacrylamide at ultra high deformation rates during hydraulic fracturing. Environ. Sci. Water Res. Technol. 2020, 6, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.M.; Al-Maamari, R.S.; Al-Hashmi, A.S.; Zaitoun, A.; Al-Sharji, H. In-situ rheology and mechanical degradation of EOR polyacrylamide solutions under moderate shear rates. J. Petrol. Sci. Eng. 2014, 115, 57–65. [Google Scholar] [CrossRef]
- Neelakantan, R.; Vaezi, G.F.; Sanders, R.S. Effects of shear on the yield stress and aggregate struction of flocculant-dosed, concentrated kaolinite suspensions. Miner. Eng. 2018, 123, 95–103. [Google Scholar] [CrossRef]
- Karami, H.R.; Rahimi, M.; Ovaysi, S. Degradation of drag reducing polymers in aqueous solutions. Korean J. Chem. Eng. 2018, 35, 34–43. [Google Scholar] [CrossRef]
- MacKinnon, M.D. Development of the tailings pond at Syncrude’s oil sands plant: 1978–1987. AOSTRA J. Res. 1989, 5, 109–133. [Google Scholar]
- Uranta, K.G.; Rezaei-Gomari, S.; Russell, P.; Hamad, F. Studying the effectiveness of polyacrylamide (PAM) application in hydrocarbon reservoirs at different operational conditions. Energies 2018, 11, 2201. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Zhao, L.; Du, G.; Li, N.; Xu, K.; Yang, H. Investigation of the degradation and stability of acrylamide-based polymers in acid solution: Functional monomer modified polyacrylamide. Petroleum 2016, 2, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Gröllmann, U.; Schnabel, W. Free radical-induced oxidative degradation of polyacrylamide in aqueous solution. Polym. Degrad. Stab. 1982, 4, 203–212. [Google Scholar] [CrossRef]
- Xiong, B.; Miller, Z.; Roman-White, S.; Tasker, T.; Farina, B.; Piechowicz, B.; Burgos, W.D.; Joshi, P.; Zhu, L.; Gorski, C.A.; et al. Chemical Degradation of Polyacrylamide during Hydraulic Fracturing. Environ. Sci. Technol. 2018, 52, 327–336. [Google Scholar] [CrossRef]
- Seright, R.S.; Skjevrak, I. Effect of dissolved iron and oxygen on stability of hydrolyzed polyacrylamide polymers. SPE J. 2015, 20, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, E.M.; Carey, S.K.; Humphreys, E.R.; Clark, M.G.; Drewitt, G.B. Multi-year water balance assessment of a newly constructed wetland, Fort McMurray, Alberta. Hydrol. Process. 2016, 30, 2739–2753. [Google Scholar] [CrossRef]
- Sutton, O.F.; Price, J.S. Soil moisture dynamics modelling of a reclaimed upland in the early post-construction period. Sci. Total Environ. 2020, 718, 134628. [Google Scholar] [CrossRef]
- Spennato, H.M.; Ketcherson, S.J.; Mendoza, C.A.; Carey, S.K. Water table dynamics in a constructed wetland, Fort McMurray, Alberta. Hydrol. Process. 2018, 32, 3824–3826. [Google Scholar] [CrossRef]
- Kabwe, L.K.; Scott, J.D.; Beier, N.A.; Wilson, G.W.; Jeeravipoolvarn, S. Environmental implications of end pit lakes at oil sand mines in Alberta, Canada. Environ. Geotech. 2019, 6, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Abolfazlzadehdoshanbehbazari, M.; Birks, S.J.; Moncur, M.C.; Ulrich, A.C. Fate and transport of oil sand process-affected water into the underlying clay till: A field study. J. Contam. Hydrol. 2013, 151, 83–92. [Google Scholar] [CrossRef]
- Simhayov, R.B.; Price, J.S.; Smeaton, C.M.; Parsons, C.; Rezanezhad, F.; Van Cappellen, P. Solute pools in Nikanotee Fen watershed in the Athabasca oil sands region. Environ. Pollut. 2017, 225, 150–162. [Google Scholar] [CrossRef]
- Vaughan, D.J. Mineral surfaces: An overview. In Mineral Surfaces; Vaughan, D., Patrick, R.A.D., Eds.; Chapman & Hill: London, UK, 1995; pp. 1–16. [Google Scholar]
- Kessel, E.D.; Ketchenson, S.J.; Price, J.S. The distribution and migration of sodium from a reclaimed upland to a constructed fen peatland in a post-mined oil sands landscape. Sci. Total Environ. 2018, 630, 1553–1564. [Google Scholar] [CrossRef]
- Schramm, L.L.; Stasiuk, E.N.; MacKinnon, M. Surfactants in Athabasca Oil Sands Slurry Conditioning, Flotation Recovery, and Tailings Processes; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Fennell, J.; Arciszewski, T.J. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta. Sci. Total Environ. 2019, 686, 968–985. [Google Scholar] [CrossRef]
- Janfada, A.; Headley, J.V.; Peru, K.M.; Barbour, S.L. A laboratory evaluation of the sorption of oil sands naphthenic acids on organic rich soils. J. Environ. Sci. Health A 2006, 41, 985–997. [Google Scholar] [CrossRef]
- Oiffer, A.A.L.; Barker, J.F.; Gervais, F.M.; Mayer, K.U.; Ptacek, C.J.; Rudolph, D.L. A detailed field-based evaluation of naphthenic acid mobility in groundwater. J. Contam. Hydrol. 2009, 108, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Gervais, F.J.M. Fate and Transport of Naphthenic Acids in a Glacial Aquifer. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2004. [Google Scholar]
- Gervais, F.; Barker, J. Fate and Transport of Naphthenic Acids in Groundwater. In Proceedings of the 4th International Conference of Groundwater Quality: Bringing Groundwater Quality Research to the Watershed Scale, Waterloo, ON, Canada, 19–22 July 2004. [Google Scholar]
- Bowman, D.T.; Warren, L.A.; McCarry, B.E.; Slater, G.F. Profiling of individual naphthenic acids at compositie tailings reclamation fen by comprehensive two-dimensional gas chromatography-mass spectrometry. Sci. Total Environ. 2019, 649, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Geertsema, M. Quick clay. In Encyclopedia of Natural Hazards; Encyclopedia of Earth Sciences Series; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Guida, M.; Mattei, M.; Melluso, G.; Pagano, G.; Meriç, S. Daphnia magna and Selenastrum capricornutum in evaluating the toxicity of alum and polymer used in coagulation-flocculation. Fresenius Environ. Bull. 2004, 13, 1244–1247. [Google Scholar]
- Gostomski, F. The toxicity of aluminum to aquatic species in the US. Environ. Geochem. Health 1990, 12, 51–54. [Google Scholar] [CrossRef] [PubMed]
Parameter | Untreated Fluid Fine Tailings (FFT) | References |
---|---|---|
Bitumen content (wt%) | 0.7–5.6 | [39,43,57,58,59,69] |
Solids content (wt%) | 22–81 | [39,43,57,58,59,69] |
Fines content (<44 µm) (dry wt%) | 50–100 | [57,59,69] |
Sand to fines ratio (SFR) | 0–1.1 | [39,43,59,69,70] |
Methylene Blue Index (meq/100 g) 1 | 1.4–14 | [57] |
Mechanisms of Change | Tailings Landforms | |
---|---|---|
Terrestrial Deposit with Wetland | End Pit Lake | |
Consolidation |
|
|
Chemical mass loading via pore water fluxes |
|
|
Biogeochemistry |
|
|
Polymer degradation |
|
|
Surface water and groundwater interactions |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cossey, H.L.; Batycky, A.E.; Kaminsky, H.; Ulrich, A.C. Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms. Minerals 2021, 11, 830. https://doi.org/10.3390/min11080830
Cossey HL, Batycky AE, Kaminsky H, Ulrich AC. Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms. Minerals. 2021; 11(8):830. https://doi.org/10.3390/min11080830
Chicago/Turabian StyleCossey, Heidi L., Anya E. Batycky, Heather Kaminsky, and Ania C. Ulrich. 2021. "Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms" Minerals 11, no. 8: 830. https://doi.org/10.3390/min11080830
APA StyleCossey, H. L., Batycky, A. E., Kaminsky, H., & Ulrich, A. C. (2021). Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms. Minerals, 11(8), 830. https://doi.org/10.3390/min11080830