Optimized Method for Mapping Inorganic Pigments by Means of Multispectral Imaging Combined with Hyperspectral Spectroscopy for the Study of Vincenzo Pasqualoni’s Wall Painting at the Basilica of S. Nicola in Carcere in Rome
Abstract
:1. Introduction
- (1)
- The identification of the main pigments used through point hyperspectral spectroscopy, confirmed by other diagnostic analyses: X-ray fluorescence (XRF) and Raman Spectroscopy [15].
- (2)
- A PCA on the hyperspectral data to evaluate the effective discrimination among the identified pigments;
- (3)
- A PCA on a wavelength reduction of the hyperspectral data to evaluate if a limited spectral range, corresponding to the filters set of the multispectral system, was sufficient to discriminate the pigments;
- (4)
- Acquisition of the multispectral images coupled with PCA to individuate all the areas in which the identified pigments are located.
2. Materials and Methods
2.1. Vincenzo Pasqualoni’s Wall Painting
2.2. Multispectral Imaging System
2.3. Hyperspectral Spectrometers
2.4. Principal Component Analysis (PCA)
- -
- The hyperspectral data were preprocessed with the sequential application of detrend, derivative, and mean center (MC) algorithms;
- -
- The multispectral data cube was preprocessed with the sequential application of Probabilistic Quotient Normalization (PQN) and autoscale algorithms.
3. Results and Discussion
3.1. Pigment Identification by Full Range VIS/NIR/SWIR Spectroscopy
3.2. UV/VIS/NIR Multispectral Imaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natalia, B.; Leonardo, B.; Adrover Gracia, I. I Pigmenti Nell’arte Dalla Preistoria Alla Rivoluzione Industriale; Prato, I., Ed.; Saonara: Padova, Italy, 2010; ISBN 8863360901. [Google Scholar]
- Chalmin, E.; Menu, M.; Vignaud, C. Analysis of rock art painting and technology of Palaeolithic painters. Meas. Sci. Technol. 2003, 14, 1590–1597. [Google Scholar] [CrossRef]
- Cuní, J. What do we know of Roman wall painting technique? Potential confounding factors in ancient paint media analysis. Herit. Sci. 2016, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- A Casoli, S.S.S. Organic materials in the wall paintings in Pompei: A case study of Insula del Centenario. Chem. Cent. J. 2012, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.; Kakoulli, I. Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications. Stud. Conserv. 2006, 51, 3–16. [Google Scholar] [CrossRef]
- Capobianco, G.; Bracciale, M.P.; Sali, D.; Sbardella, F.; Belloni, P.; Bonifazi, G.; Serranti, S.; Santarelli, M.L.; Cestelli Guidi, M. Chemometrics approach to FT-IR hyperspectral imaging analysis of degradation products in artwork cross-section. Microchem. J. 2017, 132, 69–76. [Google Scholar] [CrossRef]
- Pelagotti, A.; Mastio, A.D.; De Rosa, A.; Piva, A. Multispectral imaging of paintings: A way to material identification. IEEE Signal Process. Mag. 2008, 25, 27–36. [Google Scholar] [CrossRef]
- Cosentino, A. Identification of pigments by multispectral imaging; a flowchart method. Herit. Sci. 2014, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Bodkin, A.; Sheinis, A.; Norton, A.; Daly, J.; Beaven, S.; Weinheimer, J. Snapshot hyperspectral imaging: The hyperpixel array camera. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, Orlando, FL, USA, 13–16 April 2009; SPIE: Orlando, FL, USA; Volume 7334, p. 73340H. [Google Scholar]
- Geelen, B.; Blanch, C.; Gonzalez, P.; Tack, N.; Lambrechts, A. A tiny VIS-NIR snapshot multispectral camera. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VIII, San Francisco, CA, USA, 8–11 February 2015; SPIE: San Francisco, CA, USA; Volume 9374, p. 937414. [Google Scholar]
- Pronti, L.; Felici, A.C.; Ménager, M.; Vieillescazes, C.; Piacentini, M. Spectral Behavior of White Pigment Mixtures Using Reflectance, Ultraviolet—Fluorescence Spectroscopy, and Multispectral Imaging. Appl. Spectrosc. 2017, 71. [Google Scholar] [CrossRef] [Green Version]
- Legnaioli, S.; Lorenzetti, G.; Cavalcanti, G.H.; Grifoni, E.; Marras, L.; Tonazzini, A.; Salerno, E.; Pallecchi, P.; Giachi, G.; Palleschi, V. Recovery of archaeological wall paintings using novel multispectral imaging approaches. Herit. Sci. 2013, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pronti, L.; Ferrara, P.; Uccheddu, F.; Pelagotti, A.; Piva, A. Identification of pictorial materials by means of optimized multispectral reflectance image processing. In Proceedings of the 2015 IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015. [Google Scholar] [CrossRef]
- Baronti, S.; Casini, A.; Lotti, F.; Porcinai, S. Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis. Appl. Opt. 1998, 37, 1299. [Google Scholar] [CrossRef]
- Romani, M.; Capobianco, G.; Pronti, L.; Colao, F.; Seccaroni, C.; Puiu, A.; Felici, A.C.; Verona-Rinati, G.; Cestelli-Guidi, M.; Tognacci, A.; et al. Analytical chemistry approach in cultural heritage: The case of Vincenzo Pasqualoni’s wall paintings in S. Nicola in Carcere (Rome). Microchem. J. 2020, 156, 104920. [Google Scholar] [CrossRef]
- Jamaludin, M.I.; Matori, A.N.; Myint, K.C. Application of NIR to determine effects of hydrocarbon microseepage in oil palm vegetation stress. In Proceedings of the International Conference on Space Science and Communication, IconSpace, Langkawi, Malaysia, 10–12 August 2015; IEEE Computer Society: Washington, DC, USA, 2015; Volume 2015, pp. 215–220. [Google Scholar]
- ASD Full Range, Portable Spectrometers & Spectroradiometers | Malvern Panalytical. Available online: https://www.malvernpanalytical.com/en/products/product-range/asd-range (accessed on 15 June 2021).
- Amigo, J.M.; Martí, I.; Gowen, A. Hyperspectral Imaging and Chemometrics. A Perfect Combination for the Analysis of Food Structure, Composition and Quality. In Data Handling in Science and Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 28, pp. 343–370. [Google Scholar]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Chemometrics: Statistics and Computer Application in Analytical Chemistry, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2016; ISBN 978-3-527-34097-2. [Google Scholar]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC-Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in1H NMR metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef]
- Sun, D.-W. Infrared Spectroscopy for Food Quality Analysis and Control; Elsevier: London, UK, 2009; ISBN 978-0-12-374136-3. [Google Scholar]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.P.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2000, 56, 3–18. [Google Scholar] [CrossRef]
- Erdogu, B.; Ulubey, A. colour symbolism in the prehistoric architecture of central anatolia and raman spectroscopic investigation of red ochre in chalcolithic çatalhöyük. Oxford J. Archaeol. 2011, 30, 1–11. [Google Scholar] [CrossRef]
- Clementi, C.; Ciocan, V.; Vagnini, M.; Doherty, B.; Tabasso, M.L.; Conti, C.; Brunetti, B.G.; Miliani, C. Non-invasive and micro-destructive investigation of the Domus Aurea wall painting decorations. Anal. Bioanal. Chem. 2011, 401, 1815–1826. [Google Scholar] [CrossRef]
- Mazzocchin, G.A.; Agnoli, F.; Salvadori, M. Analysis of Roman age wall paintings found in Pordenone, Trieste and Montegrotto. Talanta 2004, 64, 732–741. [Google Scholar] [CrossRef]
- Sbroscia, M.; Cestelli-Guidi, M.; Colao, F.; Falzone, S.; Gioia, C.; Gioia, P.; Marconi, C.; Mirabile Gattia, D.; Loreti, E.M.; Marinelli, M.; et al. Multi-analytical non-destructive investigation of pictorial apparatuses of “Villa della Piscina” in Rome. Microchem. J. 2020, 153, 104450. [Google Scholar] [CrossRef]
- Marcaida, I.; Maguregui, M.; Morillas, H.; Perez-Diez, S.; Madariaga, J.M. Raman imaging to quantify the thermal transformation degree of Pompeian yellow ochre caused by the 79 AD Mount Vesuvius eruption. Anal. Bioanal. Chem. 2019, 411, 7585–7593. [Google Scholar] [CrossRef]
- Mazzocchin, G.A.; Agnoli, F.; Mazzocchin, S.; Colpo, I. Analysis of pigments from Roman wall paintings found in Vicenza. Talanta 2003, 61, 565–572. [Google Scholar] [CrossRef]
- Daniilia, S.; Minopoulou, E.; Andrikopoulos, K.S.; Tsakalof, A.; Bairachtari, K. From Byzantine to post-Byzantine art: The painting technique of St Stephen’s wall paintings at Meteora, Greece. J. Archaeol. Sci. 2008, 35, 2474–2485. [Google Scholar] [CrossRef]
- Uda, M. In situ characterization of ancient plaster and pigments on tomb walls in Egypt using energy dispersive X-ray diffraction and fluorescence. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2004, 226, 75–82. [Google Scholar] [CrossRef]
- Siddall, R. Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals 2018, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Baldini, F.; Bacci, M.; Carlà, R.; Linari, R. A Color Analysis of the Brancacci Chapel Frescoes. Appl. Spectrosc. 1991, 45, 26–31. [Google Scholar]
- Agresti, G.; Bonifazi, G.; Capobianco, G.; Lanteri, L.; Pelosi, C.; Serranti, S.; Veneri, A. Hyperspectral imaging as powerful technique for evaluating the stability of Tattoo Wall®. Microchem. J. 2020, 157, 104866. [Google Scholar] [CrossRef]
- Yivlialin; Galli; Raimondo; Martini; Sassella Detecting the NIR Fingerprint of Colors: The Characteristic Response of Modern Blue Pigments. Heritage 2019, 2, 2255–2261. [CrossRef] [Green Version]
- Cosentino, A. FORS Spectral Database of Historical Pigments in Different Binders. e-Conserv. J. 2014, 54–65. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; Data Series 1035; U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Capobianco, G.; Prestileo, F.; Serranti, S.; Bonifazi, G. Hyperspectral imaging-based approach for the in-situ characterization of ancient Roman wall paintings. Period. Mineral. 2015, 84, 407–418. [Google Scholar]
- Capobianco, G.; Bonifazi, G.; Prestileo, F.; Serranti, S. Pigment identification in pictorial layers by Hyper-Spectral Imaging. In Proceedings of the Advanced Environmental, Chemical, and Biological Sensing Technologies XI, Baltimore, MD, USA, 5–9 May 2014; p. 91060B. [Google Scholar]
- Bonifazi, G.; Capobianco, G.; Pelosi, C.; Serranti, S. Hyperspectral imaging as powerful technique for investigating the stability of painting samples. J. Imaging 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
Colors | XRF | Raman | Pigment Identification |
---|---|---|---|
blue | silicon, aluminum, sulfur | 550 cm−1 | ultramarine |
cobalt, nickel, arsenic, bismuth | shoulder at 500 cm−1 | smalt and/or cobalt blue | |
yellow | iron, calcium | 391 cm−1 (goethite) | yellow ochre |
arsenic, sulfur | 345 cm−1 | orpiment | |
green | chrome | 299, 351, 553, 613 cm−1 | chrome green |
iron, copper | - | green earth + malachite | |
red | iron, calcium | 224, 290, 411 cm−1 | red ochre |
lead, chromium | 106, 144, 340, 380, 826 cm−1 | phoenicochroite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pronti, L.; Capobianco, G.; Vendittelli, M.; Felici, A.C.; Serranti, S.; Bonifazi, G. Optimized Method for Mapping Inorganic Pigments by Means of Multispectral Imaging Combined with Hyperspectral Spectroscopy for the Study of Vincenzo Pasqualoni’s Wall Painting at the Basilica of S. Nicola in Carcere in Rome. Minerals 2021, 11, 839. https://doi.org/10.3390/min11080839
Pronti L, Capobianco G, Vendittelli M, Felici AC, Serranti S, Bonifazi G. Optimized Method for Mapping Inorganic Pigments by Means of Multispectral Imaging Combined with Hyperspectral Spectroscopy for the Study of Vincenzo Pasqualoni’s Wall Painting at the Basilica of S. Nicola in Carcere in Rome. Minerals. 2021; 11(8):839. https://doi.org/10.3390/min11080839
Chicago/Turabian StylePronti, Lucilla, Giuseppe Capobianco, Margherita Vendittelli, Anna Candida Felici, Silvia Serranti, and Giuseppe Bonifazi. 2021. "Optimized Method for Mapping Inorganic Pigments by Means of Multispectral Imaging Combined with Hyperspectral Spectroscopy for the Study of Vincenzo Pasqualoni’s Wall Painting at the Basilica of S. Nicola in Carcere in Rome" Minerals 11, no. 8: 839. https://doi.org/10.3390/min11080839
APA StylePronti, L., Capobianco, G., Vendittelli, M., Felici, A. C., Serranti, S., & Bonifazi, G. (2021). Optimized Method for Mapping Inorganic Pigments by Means of Multispectral Imaging Combined with Hyperspectral Spectroscopy for the Study of Vincenzo Pasqualoni’s Wall Painting at the Basilica of S. Nicola in Carcere in Rome. Minerals, 11(8), 839. https://doi.org/10.3390/min11080839