Enhanced Flotation Separation of Cassiterite from Calcite Using Metal-Inorganic Complex Depressant
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Flotation Tests
2.3. Zeta Potential Measurements
2.4. Contact Angle Measurements
2.5. Adsorption Measurements
2.6. XPS Measurements
3. Results and Discussion
3.1. Flotation Results
3.2. Zeta Potential Measurements Results
3.3. Adsorption Test Results
3.4. Contact Angle Measurements
3.5. XPS Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Izard, C.F.; Müller, D.B. Tracking the devil’s metal: Historical global and contemporary U.S. tin cycles. Resour. Conserv. Recycl. 2010, 54, 1436–1441. [Google Scholar] [CrossRef]
- Angadi, S.I.; Sreenivas, T.; Jeon, H.-S.; Baek, S.-H.; Mishra, B.K. A review of cassiterite beneficiation fundamentals and plant practices. Miner. Eng. 2015, 70, 178–200. [Google Scholar] [CrossRef]
- Gong, G.; Wang, P.; Liu, J.; Han, Y.; Zhu, Y. Effect and mechanism of Cu(II) on flotation separation of cassiterite from fluorite. Sep. Purif. Technol. 2020, 238, 116401. [Google Scholar] [CrossRef]
- Pavlova, G.G.; Palessky, S.V.; Borisenko, A.S.; Vladimirov, A.G.; Seifert, T.; Phan, L.A. Indium in cassiterite and ores of tin deposits. Ore Geol. Rev. 2015, 66, 99–113. [Google Scholar] [CrossRef]
- Yue, T.; Han, H.; Hu, Y.; Wei, Z.; Wang, J.; Wang, L.; Sun, W.; Yang, Y.; Sun, L.; Liu, R. Beneficiation and Purification of Tungsten and Cassiterite Minerals Using Pb–BHA Complexes Flotation and Centrifugal Separation. Minerals 2018, 8, 566. [Google Scholar] [CrossRef] [Green Version]
- Gong, G.; Han, Y.; Jie, L.; Zhu, Y.; Shuai, Y. In Situ Investigation of the Adsorption of Styrene Phosphonic Acid on Cassiterite (110) Surface by Molecular Modeling. Minerals 2017, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tong, X.; Feng, D.; Xie, X. Effect of Al (III) Ions on the Separation of Cassiterite and Clinochlore Through Reverse Flotation. Minerals 2018, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Tong, X.; Xie, X.; Song, Q.; Zhang, W.; Du, Y.; Zhang, S. Effects of grinding media on the flotation performance of cassiterite. Miner. Eng. 2021, 168, 106919. [Google Scholar] [CrossRef]
- Qi, J.; Dong, Y.; Liu, S.; Liu, G. A selective flotation of cassiterite with a dithiocarbamate-hydroxamate molecule and its adsorption mechanism. Appl. Surf. Sci. 2021, 538, 147996. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, P.; Ou, L.; Zhang, Y.; Chen, J. Flotation of cassiterite using alkyl hydroxamates with different carbon chain lengths: A theoretical and experimental study. Miner. Eng. 2021, 170, 107025. [Google Scholar] [CrossRef]
- Tan, X.; He, F.-Y.; Shang, Y.-B.; Yin, W.-Z. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite. Trans. Nonferrous Met. Soc. China 2016, 26, 2469–2478. [Google Scholar] [CrossRef]
- Zhang, L.; Khoso, S.A.; Tian, M.; Sun, W. Indium pre-enrichment from a Canadian sulphide ore via flotation technique. Miner. Eng. 2020, 156, 106481. [Google Scholar] [CrossRef]
- Gruner, H.; Bilsing, U. Cassiterite flotation using styrene phosphonic acid to produce high-grade concentrates at high recoveries from finely disseminated ores- comparison with other collectors and discussion of effective circuit configurations. Miner. Eng. 1992, 5, 429–434. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Zhong, H. Optimization of conventional hydroxamic acid for cassiterite flotation: Application of structural modification under principle of isomerism. Miner. Eng. 2021, 167, 106901. [Google Scholar] [CrossRef]
- Liu, J.; Kong, D.; Xie, R.; Li, Y.; Zhu, Y.; Liu, C. Flotation behavior and mechanism of hydroxycitric acid as a depressant on the flotation separation of cassiterite from calcite. Miner. Eng. 2021, 170, 107046. [Google Scholar] [CrossRef]
- Tian, M.; Liu, R.; Gao, Z.; Chen, P.; Han, H.; Wang, L.; Zhang, C.; Sun, W.; Hu, Y. Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Miner. Eng. 2018, 119, 31–37. [Google Scholar] [CrossRef]
- Sun, Q.; Lu, Y.; Wang, S.; Zhong, H. A novel surfactant 2-(benzylthio)-acetohydroxamic acid: Synthesis, flotation performance and adsorption mechanism to cassiterite, calcite and quartz. Appl. Surf. Sci. 2020, 522, 146509. [Google Scholar] [CrossRef]
- Qin, W.; Xu, Y.; Liu, H.; Ren, L.; Yang, C.J.I.; Research, E.C. Flotation and Surface Behavior of Cassiterite with Salicylhydroxamic Acid. Ind. Eng. Chem. Res. 2011, 50, 10778–10783. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Feng, D.; Tong, X.; Hu, S.; Yang, F.; Wang, G. A recipe of surfactant for the flotation of fine cassiterite particles. Miner. Eng. 2021, 160, 106658. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhu, Y.; Li, Y. The application and mechanism of high-efficiency depressant Na2ATP on the selective separation of cassiterite from fluorite by direct flotation. Miner. Eng. 2021, 169, 106963. [Google Scholar] [CrossRef]
- Bru, K.; Sousa, R.; Leite, M.M.; Broadbent, C.; Stuart, G.; Pashkevich, D.; Martin, M.; Kern, M.; Parvaz, D.B. Pilot-scale investigation of two Electric Pulse Fragmentation (EPF) approaches for the mineral processing of a low-grade cassiterite schist ore. Miner. Eng. 2020, 150, 106270. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Sun, L.; Gao, Z.; Sun, W.; Cao, X.J.M.E. Activation mechanism of zinc ions in cassiterite flotation with benzohydroxamic acid as a collector. 2020, 156, 106523. Minerals Eng. 2020, 156, 106523. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Z.; Ji, B.; Fan, R.; Liu, R.; Pan, C.; Wei, S.; Hu, Y. Selective Flotation of Cassiterite from Calcite with Salicylhydroxamic Acid Collector and Carboxymethyl Cellulose Depressant. Minerals 2018, 8, 316. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Gong, G.; Han, Y.; Zhu, Y. New Insights into the Adsorption of Oleate on Cassiterite: A DFT Study. Minerals 2017, 7, 236. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Wen, S.; Zhao, W.; Chen, Y. Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation. Sep. Purif. Technol. 2018, 200, 300–306. [Google Scholar] [CrossRef]
- Wu, H.; Tian, J.; Xu, L.; Fang, S.; Zhang, Z.; Chi, R. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Miner. Eng. 2018, 127, 42–47. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Yang, J.; Tang, Z.; Luo, L.; Shu, K.; Xu, Y.; Xu, L. Selective flotation separation of bastnaesite from calcite using xanthan gum as a depressant. Appl. Surf. Sci. 2020, 512, 145714. [Google Scholar] [CrossRef]
- Pan, G.; Zhang, G.; Shi, Q.; Chen, W. The Effect of Sodium Alginate on Chlorite and Serpentine in Chalcopyrite Flotation. Minerals 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, R.; Sun, W.; Jing, N.; Xie, F.; He, Q.Z.D. Selective depressive effect of pectin on sphalerite flotation and its mechanisms of adsorption onto galena and sphalerite surfaces. Miner. Eng. 2021, 170, 106989. [Google Scholar] [CrossRef]
- Muganda, S.; Zanin, M.; Grano, S.R. Influence of particle size and contact angle on the flotation of chalcopyrite in a laboratory batch flotation cell. Int. J. Mineral Processing 2011, 98, 150–162. [Google Scholar] [CrossRef]
Reagents | Products | Yield (%) | SnO2 Grade (%) | SnO2 Recovery (%) |
---|---|---|---|---|
NaOL (0.2 mM) | Concentrate | 85.57 | 46.65 | 82.27 |
Tailing | 14.43 | 59.61 | 17.73 | |
Feed | 100 | 48.52 | 100 | |
NaOL (0.2 mM) SS (80 mg/L) | Concentrate | 69.52 | 57.34 | 82.07 |
Tailing | 30.48 | 28.57 | 17.93 | |
Feed | 100 | 48.57 | 100 | |
NaOL (0.2 mM) AlSS (80 mg/L) | Concentrate | 45.56 | 82.34 | 77.38 |
Tailing | 54.43 | 20.15 | 22.62 | |
Feed | 100 | 48.49 | 100 |
Elements | Conditions | Shift | ||
---|---|---|---|---|
Calcite | Calcite + AlSS | |||
Concentration (%) | Ca 2p | 13.92 | 7.84 | −6.08 |
O 1S | 41.77 | 46.68 | 4.91 | |
C 1S | 44.31 | 34.58 | −9.73 | |
Si 2p | - | 6.28 | +6.28 | |
Al 2p | - | 4.64 | +4.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Zhu, D. Enhanced Flotation Separation of Cassiterite from Calcite Using Metal-Inorganic Complex Depressant. Minerals 2021, 11, 880. https://doi.org/10.3390/min11080880
Zhao G, Zhu D. Enhanced Flotation Separation of Cassiterite from Calcite Using Metal-Inorganic Complex Depressant. Minerals. 2021; 11(8):880. https://doi.org/10.3390/min11080880
Chicago/Turabian StyleZhao, Guanfei, and Dongmei Zhu. 2021. "Enhanced Flotation Separation of Cassiterite from Calcite Using Metal-Inorganic Complex Depressant" Minerals 11, no. 8: 880. https://doi.org/10.3390/min11080880
APA StyleZhao, G., & Zhu, D. (2021). Enhanced Flotation Separation of Cassiterite from Calcite Using Metal-Inorganic Complex Depressant. Minerals, 11(8), 880. https://doi.org/10.3390/min11080880