Experimental Study on Relative Permeability Characteristics for CO2 in Sandstone under High Temperature and Overburden Pressure
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experiment Materials
2.2. Test Equipment and Principle
2.3. Test Process
3. Test Results and Analysis
3.1. Variation of Permeability with Temperature
3.2. Variation of Permeability with Stress
3.3. Mathematical Modeling of the Relationship between Temperature-Stress and Sandstone Permeability
4. Discussion
5. Conclusions and Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fauziah, C.A.; Al-Khdheeawi, E.A.; Barifcani, A.; Iglauer, S. Wettability Measurements on Two Sandstones: An Experimental Investigation Before and After CO2 Flooding. APPEA J. 2020, 60, 117–123. [Google Scholar] [CrossRef]
- Fauziah, C.A.; Al-Khdheeawi, E.A.; Iglauer, S.; Barifcani, A. Effect of Clay Minerals Heterogeneity on Wettability Measurements: Implications for CO2 Storage. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 19 August–2 November 2020. [Google Scholar]
- Fauziah, C.A.; Al-Khdheeawi, E.A.; Iglauer, S.; Barifcani, A. Influence of Total Organic Content on CO2-Water-Sandstone Wettability and CO2 Geo-Storage Capacity. In Proceedings of the SPE Europec, Virtual, 1–3 December 2020. [Google Scholar]
- Al-Khdheeawi, E.A.; Fauziah, C.A.; Mahdi, D.S.; Barifcani, A. A New Approach to Improve the Assessments of CO2 Geo-Sequestration Capacity of Clay Minerals. In Proceedings of the International Petroleum Technology Conference, Virtual, 23 March–1 April 2021. [Google Scholar]
- Fauziah, C.A.; Al-Khdheeawi, E.A.; Iglauer, S.; Lagat, C.; Barifcani, A. Influence of Gas Density on the Clay Wettability: Implication for CO2 Geo-Sequestration. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Virtual, 15–18 March 2021. [Google Scholar]
- Rezk, M.G.; Foroozesh, J. Study of Convective-diffusive Flow During CO2 Sequestration in Fractured Heterogeneous Saline Aquifers. J. Nat. Gas Sci. Eng. 2019, 69, 102926. [Google Scholar] [CrossRef]
- An, H.; Wei, X.R.; Wang, G.X.; Massarotto, P.; Wang, F.Y.; Rudolph, V.; Golding, S.D. Modeling Anisotropic Permeability of Coal and Its Effects on CO2 Sequestration and Enhanced Coalbed Methane Recovery. Int. J. Coal Geol. 2015, 152, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xia, L.; Zhang, Q.; Yu, Q. The Influence of Water Saturation on Permeability of Low-permeability Sandstone. Procedia Earth Planet. Sci. 2017, 17, 861–864. [Google Scholar] [CrossRef]
- Soong, Y.; Howard Bret, H.; Hedges, S.W.; Haljasmaa, I.; Warzinski, R.P.; Irdi, G.; McLendon, T.R. CO2 Sequestration in Saline Formation. Aerosol Air Qual. Res. 2014, 14, 522–532. [Google Scholar] [CrossRef]
- Amann Hildenbrand, A.; Dietrichs, J.P.; Krooss, B.M. Effective Gas Permeability of Tight Gas Sandstones as a Function of Capillary Pressure: A Non-steady-state Approach. Geofluids 2016, 16, 367–383. [Google Scholar] [CrossRef]
- Perera, M.; Samintha, A. A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams. Energies 2018, 11, 906. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, M.; Zhang, Y.H.; Sarmadivaleh, M.; Barifcani, A.; Al-Khdheeawi, E.; Iglauer, S. Carbon Geosequestration in Limestone: Pore-scale Dissolution and Geomechanical Weakening. Int. J. Greenh. Gas Control. 2017, 66, 106–119. [Google Scholar] [CrossRef]
- Fauziah, C.A.; Al-Khdheeawi, E.A.; Barifcani, A.; Iglauer, S. Wettability Measurements of Mixed Clay Minerals at Elevated Temperature and Pressure: Implications for CO2 Geo-Storage. In Proceedings of the SPE Gas & Oil Technology Showcase and Conference, Dubai, United Arab Emirates, 21–23 October 2019. [Google Scholar]
- Juanes, R.; Spiteri, E.J.; Orr, F.M.; Blunt, M.J. Impact of Relative Permeability Hysteresis on Geological CO2 Storage. Water Resour. Res. 2006, 42, W12418. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A. Impact of Reservoir Wettability and Heterogeneity on CO2-plume Migration and Trapping Capacity. Int. J. Greenh. Gas Control. 2017, 58, 142–158. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Influence of CO2-wettability on CO2 Migration and Trapping Capacity in Deep Saline Aquifers. Greenh. Gases Sci. Technol. 2017, 7, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Influence of Rock Wettability on CO2 Migration and Storage Capacity in Deep Saline Aquifers. Energy Procedia 2017, 114, 4357–4365. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Effect of Wettability Heterogeneity and Reservoir Temperature on CO2 Storage Efficiency in Deep Saline Aquifers. Int. J. Greenh. Gas Control. 2018, 68, 216–229. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Influence of Injection Well Configuration and Rock Wettability on CO2 Plume Behaviour and CO2 Trapping Capacity in Heterogeneous Reservoirs. J. Nat. Gas Sci. Eng. 2017, 43, 190–206. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Zhang, Y.; Iglauer, S. Impact of Salinity on CO2 Containment Security in Highly Heterogeneous Reservoirs. Greenh. Gases-Sci. Technol. 2018, 8, 93–105. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Effect of Brine Salinity on CO2 Plume Migration and Trapping Capacity in Deep Saline Aquifers. APPEA J. 2017, 57, 100–109. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Impact of Injection Scenario on CO2 Leakage and CO2 Trapping Capacity in Homogeneous Reservoirs. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 20–23 March 2018. [Google Scholar]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Impact of Injected Water Salinity on CO2 Storage Efficiency in Homogenous Reservoirs. APPEA J. 2018, 58, 44–50. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Effect of the Number of Water Alternating CO2 Injection Cycles on CO2 Trapping Capacity. APPEA J. 2019, 59, 357–363. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Enhancement of CO2 Trapping Efficiency in Heterogeneous Reservoirs by Water-alternating Gas Injection. Greenh. Gases Sci. Technol. 2018, 8, 920–931. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. The Effect of Waco2 Ratio on CO2 Geo-sequestration Efficiency in Homogeneous Reservoirs. Energy Procedia 2018, 154, 100–105. [Google Scholar] [CrossRef]
- Niu, Q.; Cao, L.; Sang, S.; Zhou, X.; Liu, S. Experimental Study of Permeability Changes and Its Influencing Factors with CO2 Injection in Coal. J. Nat. Gas Sci. Eng. 2019, 61, 215–225. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Rahman, S.S.; Zhou, N.; Suo, Y. Predicting Permeability Changes with Injecting CO2 in Coal Seams During CO2 Geological Sequestration: A Comparative Study Among Six Svm-based Hybrid Models. Sci. Total. Environ. 2020, 705, 135941. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, Q. CO2 Breakthrough Pressure and Permeability for Unsaturated Low-permeability Sandstone of the Ordos Basin. J. Hydrol. 2017, 550, 331–342. [Google Scholar] [CrossRef]
- Pollyea, R.M. Influence of Relative Permeability on Injection Pressure and Plume Configuration During Co2 Injections in a Mafic Reservoir. Int. J. Greenh. Gas Control. 2016, 46, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Chiao, C.; Yu, C.; Lei, S.; Lin, J.-Y.; Lu, C.-Y. A Study of Relative Permeability Parameters on Rock Cores Using a Two-phase Flow Test. Terr. Atmos. Ocean. Sci. 2017, 28, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Wang, J.; Pan, Z. Variation in Permeability During CO2-CH4 Displacement in Coal Seams: Part 1-experimental Insights. Fuel 2020, 263, 116666. [Google Scholar] [CrossRef]
- Fatt, I.; Davis, D.H. Reduction in Permeability with Overburden Pressure. J. Pet. Technol. 1952, 4, 16. [Google Scholar] [CrossRef]
- Toderas, M.; Moraru, R. The Effect of Increasing the Water Content on Rocks Characteristics from Şuior, Romania. Min. Miner. Depos. 2017, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lekić, A.; Jukić, L.; Arnaut, M.; Macenić, M. Simulation of CO2 Injection in a Depleted Gas Reservoir: A Case Study for Upper Miocene Sandstone, Northern Croatia. Min. Geol. Pet. Eng. Bull. 2019, 34, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, J.; Wang, L.; Luo, M.; Liu, H.; Xu, H.; Zou, H. Impurity Effects on the Mechanical Properties and Permeability Characteristics of Salt Rock. Energies 2020, 12, 1366. [Google Scholar] [CrossRef] [Green Version]
- Al-Khdheeawi, E.A.; Mahdi, D.S.; Ali, M.; Fauziah, C.A.; Barifcani, A. Impact of Caprock Type on Geochemical Reactivity and Mineral Trapping Efficiency of CO2. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 2 November–19 August 2020. [Google Scholar]
- Al-Khdheeawi, E.A.; Mahdi, D.S.; Ali, M.; Iglauer, S.; Barifcani, A. Reservoir Scale Porosity-Permeability Evolution in Sandstone Due to CO2 Geological Storage. In Proceedings of the 15th Greenhouse Gas Control Technologies Virtual Conference, Virtual, 15–18 March 2021. [Google Scholar]
- Vairogs, J.; Hearn, C.L.; Dareing, D.W.; Rhoades, V.W. Effect of Rock Stress on Gas Production from Low-permeability Reservoirs. J. Pet. Technol. 1971, 23, 1161–1167. [Google Scholar] [CrossRef]
- Zheng, J.; Zheng, L.; Liu, H.; Ju, Y. Relationships Between Permeability, Porosity and Effective Stress for Low-permeability Sedimentary Rock. Int. J. Rock Mech. Min. Sci. 2015, 78, 304–318. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, S.A.; Goshtasbi, K.; Kazemzadeh, E.; Bakhtiari, H.A.; Esfahani, M.R.; Vali, J. Relationship Between Porosity and Permeability with Stress Using Pore Volume Compressibility Characteristic of Reservoir Rocks. Arab. J. Geosci. 2014, 7, 231–239. [Google Scholar] [CrossRef]
- An, C.; Killough, J.; Xia, X. Investigating the Effects of Stress Creep and Effective Stress Coefficient on Stress-dependent Permeability Measurements of Shale Rock. J. Pet. Sci. Eng. 2021, 198, 108155. [Google Scholar] [CrossRef]
- Agheshlui, H. Stress Influence on the Permeability of a Sample Heterogeneous Rock. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 159–170. [Google Scholar] [CrossRef]
- Lu, J.; Yin, G.; Deng, B.; Zhang, W.; Li, M.; Chai, X.; Liu, C.; Liu, Y. Permeability Characteristics of Layered Composite Coal-rock Under True Triaxial Stress Conditions. J. Nat. Gas Sci. Eng. 2019, 66, 60–76. [Google Scholar] [CrossRef]
- Wang, F.; Mi, Z.; Sun, Z.; Li, X.; Lan, T.; Yuan, Y.; Xu, T. Experimental Study on the Effects of Stress Variations on the Permeability of Feldspar-Quartz Sandstone. Geofluids 2017, 2017, 8354524. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zoback Mark, D.; Kohli Arjun, H. The Impacts of Effective Stress and CO2 Sorption on the Matrix Permeability of Shale Reservoir Rocks. Fuel 2017, 203, 179–186. [Google Scholar] [CrossRef]
- Nooraiepour, M.; Bohloli, B.; Park, J.; Sauvin, G.; Skurtveit, E.; Mondol, N.H. Effect of Brine-CO2 Fracture Flow on Velocity and Electrical Resistivity of Naturally Fractured Tight Sandstones. Geophysics 2018, 83, WA37–WA48. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Wang, J.; Wang, H.; Zheng, J.; Ranjith, P.G.; Gao, F. CO2 Permeability of Fractured Coal Subject to Confining Pressures and Elevated Temperature: Experiments and Modeling. Sci. China Technol. Sci. 2016, 59, 1931–1942. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Shariatipour, S.; Ifelebuegu, A. The Influence of Temperature on Wettability Alteration During CO2 Storage in Saline Aquifers. Int. J. Greenh. Gas Control. 2020, 99, 103101. [Google Scholar] [CrossRef]
Test Parameter | Sample Seepage Cross-Sectional Area (A)/cm2 | Standard Atmospheric Pressure (P0)/0.1 MPa | Gas Injection Pressure (P1)/0.1 MPa | Outlet Pressure (P2)/0.1 MPa | Aerodynamic Viscosity (μ)/mPa·s | Sample Height (L)/cm |
---|---|---|---|---|---|---|
Value | 19.635 | 1 | 20 | 0 | 0.015 | 10 |
Sample Temperature | Sample No. | Diameter/mm | Height/mm | Mass/g | Porosity/% | |
---|---|---|---|---|---|---|
Before Heating | After Heating | |||||
Room temperature | SG1-1 | 49.0 | 99.5 | 469.01 | 469.01 | 3.15 |
SG1-2 | 49.5 | 99.2 | 450.51 | 450.51 | 3.11 | |
SG1-3 | 50.2 | 95.9 | 470.25 | 470.25 | 3.17 | |
200 °C | SG2-1 | 49.7 | 101.4 | 453.30 | 452.15 | 3.39 |
SG2-2 | 50.4 | 100.8 | 454.15 | 453.08 | 3.41 | |
SG2-3 | 50.3 | 100.2 | 455.34 | 454.32 | 3.38 | |
400 °C | SG3-1 | 49.1 | 96.4 | 458.51 | 446.85 | 4.57 |
SG3-2 | 50.9 | 97.8 | 429.58 | 428.53 | 4.58 | |
SG3-3 | 49.7 | 95.6 | 460.95 | 459.90 | 4.57 | |
600 °C | SG4-1 | 50.2 | 98.3 | 459.93 | 456.78 | 7.19 |
SG4-2 | 50.7 | 97.2 | 461.57 | 458.84 | 7.18 | |
SG4-3 | 49.9 | 100.7 | 453.11 | 451.00 | 7.21 | |
800 °C | SG5-1 | 50.0 | 100.2 | 457.86 | 455.20 | 11.28 |
SG5-2 | 50.7 | 97.5 | 449.62 | 447.03 | 11.24 | |
SG5-3 | 50.2 | 98.2 | 451.94 | 448.10 | 11.31 | |
1000 °C | SG6-1 | 50.7 | 101.4 | 455.22 | 453.87 | 13.27 |
SG6-2 | 49.2 | 99.5 | 440.60 | 437.47 | 13.15 | |
SG6-3 | 49.5 | 97.7 | 451.63 | 449.81 | 13.33 |
Function Expression | Fitting Degree R2 | Average Error |
---|---|---|
K = 0.2129 − 0.001849x + 0.000696y | 78.5% | 0.46310 |
K = 0.1295 − 7.665e−4x + 9.053e−4y + 1.398e−5x2 − 4.651e−6xy | 80.1% | 0.42920 |
K = 0.2815 + 4.918e−4x − 3.115e−4y − 4.651e−6xy + 1.195e−6y2 | 98.2% | 0.03982 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, K.; Wang, L.; Ren, B.; Li, Z.; Wang, S.; Jiang, C. Experimental Study on Relative Permeability Characteristics for CO2 in Sandstone under High Temperature and Overburden Pressure. Minerals 2021, 11, 956. https://doi.org/10.3390/min11090956
Ding K, Wang L, Ren B, Li Z, Wang S, Jiang C. Experimental Study on Relative Permeability Characteristics for CO2 in Sandstone under High Temperature and Overburden Pressure. Minerals. 2021; 11(9):956. https://doi.org/10.3390/min11090956
Chicago/Turabian StyleDing, Ke, Lianguo Wang, Bo Ren, Zhaolin Li, Shuai Wang, and Chongyang Jiang. 2021. "Experimental Study on Relative Permeability Characteristics for CO2 in Sandstone under High Temperature and Overburden Pressure" Minerals 11, no. 9: 956. https://doi.org/10.3390/min11090956
APA StyleDing, K., Wang, L., Ren, B., Li, Z., Wang, S., & Jiang, C. (2021). Experimental Study on Relative Permeability Characteristics for CO2 in Sandstone under High Temperature and Overburden Pressure. Minerals, 11(9), 956. https://doi.org/10.3390/min11090956