Platinum-Group Minerals in the Placer of the Kitoy River, East Sayan, Russia
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Materials
3.2. Analytical Methods
4. Results
4.1. Grains of Os-Ir-Ru Alloys
4.2. Inclusions in Grains of Os-Ir-Ru Alloys
4.3. Rim on Os-Ir-Ru Alloys
4.4. PGE Selenides, Arsenoselenides, Tellurides
5. Discussion
6. Conclusions
- -
- Magmatic stage. At this stage high-temperature Os-Ir-Ru alloys with the magmatic ratio Os:Ir:Ru and homogeneous grain microstructure are formed under conditions of the deep crust or uppermost mantle;
- -
- Late magmatic stage. With magmatic system cooling, volatile components, such as S and As, accumulate with the formation of the residual fluid phase. The residual fluid phase interacts with early platinum group minerals. High-temperature Os-Ir-Ru alloys are replaced by PGE sulfides and sulfoarsenides in the Os-Ir-Ru-Pt system.
- -
- Postmagmatic stage. This stage is associated with the widespread development of arseno-selenides, selenides and tellurides of PGE. We assume that in the process of obduction of ophiolite complexes, the reducing conditions changed to oxidizing ones. The formation of selenides, PGE arsenides could be associated with a low S/Se ratio, due to the effective removal of S, which is more mobile than Se, in a fluid-saturated environment. These processes can also occur at the subduction stage, in which case the selenides will replace the previously formed sulfides and sulfoarsenides of PGE. The crushed grains filled with arsenoselenides and tellurides of PGE were probably formed at the stage of obduction of ophiolites and tectonic deformations. At the stage of obduction and orogeny, gold deposits were formed on the territory of the Eastern Sayan, in which telluride mineralization was established.
- -
- Metamorphic stage. At stage of remobilization and re-deposition of PGE under metamorphic conditions native osmium, Os-Ir alloy and garutiite (Ni,Fe,Ir) were formed. Secondary PGM (e.g., native Os, intermetallic compounds of Ni, Fe and PGE) form or were modified at relatively low temperature during some post magmatic stage, possibly serpentinization or weathering.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maurel, C.; Maurel, P. Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère. Implications pétrogénétiques: Teneur en chrome des spinelles. Bull. Minéralogie 1982, 105, 197–202. [Google Scholar] [CrossRef]
- Barnes, S.J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 1985, 53, 303–323. [Google Scholar] [CrossRef]
- Rollinson, H. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: Inferred parental melt compositions. Contrib. Mineral. Petrol. 2008, 156, 273–288. [Google Scholar] [CrossRef]
- Prichard, H.M.; Economou-Eliopoulos, M.; Fisher, P.C. Contrasting platinum-group mineral assemblages from two different podiform chromitite localities in the Pindos ophiolite complex, Greece. Can. Mineral. 2008, 46, 329–341. [Google Scholar] [CrossRef] [Green Version]
- González-Jiménez, J.M.; Augé, T.; Gervilla, F.; Bailly, L.; Proenza, J.A.; Griffin, W.L. Mineralogy and geochemistry of platinum-rich chromitites from the mantle-crust transition zone at Ouen Island, New Caledonia Ophiolite. Can. Mineral. 2011, 49, 1549–1569. [Google Scholar] [CrossRef]
- Ahmed, A.H. Highly depleted harzburgite–dunite–chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: A possible recycled upper mantle lithosphere. Precambrian Res. 2013, 233, 173–192. [Google Scholar] [CrossRef]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, E.F. Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: A Study of Solid and Fluid Inclusions in Chromite. J. Petrol. 1997, 38, 1419–1458. [Google Scholar] [CrossRef]
- Nakagawa, M.; Franco, H.E.A. Placer Os-Ir-Ru alloys and sulfides: Indicators of sulfur fugacity in an ophiolite? Can. Mineral. 1997, 35, 1441–1452. [Google Scholar]
- Ballhaus, C. Origin of podiform chromite deposits by magma mingling. Earth Planet. Sci. Lett. 1998, 156, 185–193. [Google Scholar] [CrossRef]
- Zhou, M.F.; Sun, M.; Keays, R.R.; Kerrich, R.W. Controls on Platinum-Group Elemental Distributions of Podiform Chromitites: A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochim. Cosmochim. Acta 1998, 62, 677–688. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Andrews, D.R.A.; Brenan, J.M. Phase equilibrium constraints on the magmatic origin of laurite+Ru-Os-Ir alloy. Can. Mineral. 2002, 40, 1705–1716. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Arai, S. Platinum-group minerals in podiform chromitites of the Oman ophiolite. Can. Mineral. 2003, 41, 597–616. [Google Scholar] [CrossRef] [Green Version]
- Garuti, G. Chromite-platinum-group element magmatic deposits. In Geology, Encyclopedia of Life Support Systems (EOLSS); de Vivo, B., Grasemann, B., Stüwe, K., Eds.; EOLSS Publisher: Oxford, UK, 2004. [Google Scholar]
- Crocket, J.H. Platinum-group element geochemistry of mafic and ultramafic rocks. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements; Cabri, L.J., Ed.; Canadian Institute of Mining Metallurgy and Petroleum: Montreal, QC, Canada, 2002; Volume 54, pp. 177–210. ISBN 9781894475273. [Google Scholar]
- Bird, J.M.; Bassett, W.A. Evidence of a deep mantle history in terrestrial osmium-iridium-ruthenium alloys. J. Geophys. Res. Solid Earth 1980, 85, 5461–5470. [Google Scholar] [CrossRef]
- Garuti, G.; Zaccarini, F. In situ alteration of platinum-group minerals at low temperature; evidence from serpentinized and weathered chromitite of the Vourinos Complex. Can. Mineral. 1997, 35, 611–626. [Google Scholar]
- Mc Donald, A.M.; Proenza, J.A.; Zaccarini, F.; Rudashevsky, N.S.; Cabri, L.J.; Stanley, C.J.; Rudashevsky, V.N.; Melgarejo, J.C.; Lewis, J.F.; Longo, F.; et al. Garutiite, (Ni,Fe,Ir), a new hexagonal polymorph of native Ni from Loma Peguera, Dominican Republic. Eur. J. Mineral. 2010, 22, 293–304. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Reich, M.; Camprubí, A.; Gervilla, F.; Griffin, W.L.; Colás, V.; O’Reilly, S.Y.; Proenza, J.A.; Pearson, N.J.; Centeno-García, E. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles. Contrib. Mineral. Petrol. 2015, 170, 1–20. [Google Scholar] [CrossRef]
- Agafonov, L.V.; Kuzhuget, K.S.; Oydup, C.K.; Stupakov, S.I. Native Metals in Ultramafic Massifs of Tuva; Velinskiy, V., Ed.; UIGGM: Novosibirsk, Russia, 1993; p. 86. ISBN 5762307336. (In Russian) [Google Scholar]
- Podlipsky, M.Y.; Krivenko, A.P.; Polyakov, G.V. Platinum-palladium mineralization in chromite ores from ultrabasic rocks of the western Sayan region. Dokl. Earth Sci. 2004, 396, 508–511. [Google Scholar]
- Tolstykh, N.D.; Krivenko, A.P.; Pospelova, L.N. Unusual compounds of iridium, osmium and ruthenium with selenium, tellurium and arsenic from placers of the Zolotaya River (western Sayans). Zap. Vsesoyuzn. Miner. Obs. 1997, 126, 23–34. (In Russian) [Google Scholar]
- Barkov, A.Y.; Shvedov, G.I.; Silyanov, S.A.; Martin, R.F. Mineralogy of Platinum-Group Elements and Gold in the Ophiolite-Related Placer of the River Bolshoy Khailyk, Western Sayans, Russia. Minerals 2018, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Barkov, A.Y.; Tamura, N.; Shvedov, G.I.; Stan, C.V.; Ma, C.; Winkler, B.; Martin, R.F. Platiniferous Tetra-Auricupride: A Case Study from the Bolshoy Khailyk Placer Deposit, Western Sayans, Russia. Minerals 2019, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Orsoev, D.A.; Tolstykh, N.D.; Kislov, E.V. PtCu3 composition mineral from chromitites of Ospinsko-Kitoisky ultramafic massif (Eastern Sayans). Zap. Vserossiyskogo Mineral. Obs. 2001, 130, 61–70. (In Russian) [Google Scholar]
- Zhmodik, S.M.; Mironov, A.G.; Agafonov, L.V.; Zhmodik, A.S.; Pavlov, A.L.; Moroz, T.N.; Airiyants, E.V.; Kulikov, Y.L.; Borovikov, A.A.; Ponomarchuk, V.A.; et al. Carbonization of east Sayan ultrabasic rocks and Au-Pd-Pt mineralization. Russ. Geol. Geophys. 2004, 45, 210–225. [Google Scholar]
- Zhmodik, S.M.; Postnikov, A.A.; Buslov, M.M.; Mironov, A.G. Geodynamics of the Sayan-Baikal-Muya accretion-collision belt in the neoproterozoic-early paleozoic and regularities of the formation and localization of precious-metal mineralization. Russ. Geol. Geophys. 2006, 47, 187–201. [Google Scholar]
- Kiseleva, O.N.; Zhmodik, S.M.; Damdinov, B.B.; Agafonov, L.V.; Belyanin, D.K. Composition and evolution of PGE mineralization in chromite ores from the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur areas, East Sayan). Russ. Geol. Geophys. 2014, 55, 259–272. [Google Scholar] [CrossRef]
- Kiseleva, O.; Zhmodik, S. PGE mineralization and melt composition of chromitites in Proterozoic ophiolite complexes of Eastern Sayan, Southern Siberia. Geosci. Front. 2017, 8, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Kiseleva, O.N. Chromitites and Platinum-Metal Mineralization in the Ophiolites of the Southeastern Part of the Eastern Sayan. Ph.D. Thesis, Institute of Geology and Mineralogy of the Siberian Branch of Russian Academy of Science IGM SB RAS, Novosibirsk, Russia, 2014. (In Russian). [Google Scholar]
- Dobretsov, N.L.; Konnikov, E.G.; Dobretsov, N.N. Precambrian ophiolite belts of southern Siberia, Russia, and their metallogeny. Precambrian Res. 1992, 58, 427–446. [Google Scholar] [CrossRef]
- Belichenko, V.G.; Butov, Y.P.; Boos, R.G.; Vratkovskaya, S.V.; Dobretsov, N.L.; Dolmatov, V.A.; Zhmodik, S.M.; Konnikov, E.G.; Kuzmin, M.I.; Medvedev, V.N.; et al. Geology and Metamorphism of the East Sayan; Nauka: Novosibirsk, Russia, 1988. (In Russian) [Google Scholar]
- Gordienko, I.V.; Dobretsov, N.L.; Zhmodik, S.M.; Roshchektaev, P.A. Multistage Thrust and Nappe Tectonics in the Southeastern Part of East Sayan and Its Role in the Formation of Large Gold Deposits. Russ. Geol. Geophys. 2021, 62, 109–120. [Google Scholar] [CrossRef]
- Kuzmichev, A.B.; Sklyarov, E.V.; Letnikova, E.F.; Gladkochub, D.F.; Khain, E.V. Neoproterozoic ophiolite and sedimentary sequences of the Tuva-Mongolian superterrane. In Proceedings of the Assembly and Breakup of Rodinia Supercontinent: Evidence from South Siberia; Guide-Book and Abstracts of the IGCP-440 Workshop. Sklyarov, E.V., Ed.; Publishing House of Institute of Earth Crust: Irkutsk, Russia, 2001; pp. 71–92. (In Russian). [Google Scholar]
- Fedorovskii, V.S.; Khain, E.V.; Vladimirov, A.G.; Kargopolov, S.A.; Gibsher, A.S.; Izokh, A.E. Tectonics, metamorphism, and magmatism of collisional zones of the Central Asian Caledonides. Geotectonics 1995, 29, 193–212. [Google Scholar]
- Dobretsov, N.L. About the cover tectonics of the Eastern Sayan [O pokrovnoy tektonike Vostochnogo Sayana]. Geotektonika 1985, 1, 39–50. (In Russian) [Google Scholar]
- Sklyarov, E.V.; Kovach, V.P.; Kotov, A.B.; Kuzmichev, A.B.; Lavrenchuk, A.V.; Perelyaev, V.I.; Shchipansky, A.A. Boninites and ophiolites: Problems of their relations and petrogenesis of boninites. Russ. Geol. Geophys. 2016, 57, 127–140. [Google Scholar] [CrossRef]
- Kuzmichev, A.B.; Larionov, A.N. Neoproterozoic island arcs in East Sayan: Duration of magmatism (from U–Pb zircon dating of volcanic clastics). Russ. Geol. Geophys. 2013, 54, 34–43. [Google Scholar] [CrossRef]
- Zhmodik, S.; Kiseleva, O.; Belyanin, D.; Damdinov, B.; Airiyants, E.; Zhmodik, A. PGE mineralization in ophiolites of the southeast part of the Eastern Sayan (Russia). In Proceedings of the 12th International Platinum Symposium, Yekaterinburg, Russia, 11–14 August 2014; Russian Academy of Sciences; Zavaritsky Institute of Geology and Geochemistry (IGG UB RAS): Yekaterinburg, Russia, 2014; pp. 221–222. [Google Scholar]
- Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M.; Ashchepkov, I.V.; Kovalev, S.A. Multistage Magmatism in Ophiolites and Associated Metavolcanites of the Ulan-Sar’dag Mélange (East Sayan, Russia). Minerals 2020, 10, 1077. [Google Scholar] [CrossRef]
- Kiseleva, O.N.; Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M. Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia). Minerals 2020, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Orsoev, D.A.; Ochirov, Y.C.; Mironov, A.G.; Damdinov, B.B.; Zhmodik, S.M. Platinum metal minerals and types of their associations in gold placers of the Sayan-Baikal folded area (Buryatia). Russ. Geol. Geophys. 2004, 45, 335–346. [Google Scholar]
- Garuti, G.; Zaccarini, F.; Cabella, R.; Fershtater, G. Occurrence of unknown Ru-Os-Ir-Fe oxides in the chromitites of the Nurali ultramafic complex, Southern Urals, Russia. Can. Mineral. 1997, 35, 1431–1439. [Google Scholar]
- Tolstykh, N.D.; Sidorov, E.; Laajoki, K.V.O.; Krivenko, A.P.; Podlipskiy, M. The association of platinum-group minerals in placers of the Pustaya River, Kamchatka, Russia. Can. Mineral. 2000, 38, 1251–1264. [Google Scholar] [CrossRef] [Green Version]
- Zaykov, V.V.; Melekestseva, I.Y.; Zaykova, E.V.; Kotlyarov, V.A.; Kraynev, Y.D. Gold and platinum group minerals in placers of the South Urals: Composition, microinclusions of ore minerals and primary sources. Ore Geol. Rev. 2017, 85, 299–320. [Google Scholar] [CrossRef]
- Airiyants, E.V.; Belyanin, D.K.; Zhmodik, S.M.; Agafonov, L.V.; Romashkin, P.A. Chemical composition and origin of platinum-group minerals from placers of the Aunik River, Buryatia, Russia. Ore Geol. Rev. 2020, 120, 103453. [Google Scholar] [CrossRef]
- Cabri, L.J.; Harris, D.C.; Weiser, T.W. Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Explor. Min. Geol. 1996, 5, 73–167. [Google Scholar]
- González-Jiménez, J.M.; Proenza, J.A.; Gervilla, F.; Melgarejo, J.C.; Blanco-Moreno, J.A.; Ruiz-Sánchez, R.; Griffin, W.L. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 2011, 125, 101–121. [Google Scholar] [CrossRef]
- Zaccarini, F.; Pushkarev, E.; Garuti, G.; Kazakov, I. Platinum-Group Minerals and Other Accessory Phases in Chromite Deposits of the Alapaevsk Ophiolite, Central Urals, Russia. Minerals 2016, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Aiglsperger, T.; Proenza, J.A.; Font-Bardia, M.; Baurier-Aymat, S.; Galí, S.; Lewis, J.F.; Longo, F. Supergene neoformation of Pt-Ir-Fe-Ni alloys: Multistage grains explain nugget formation in Ni-laterites. Miner. Depos. 2016, 52, 1069–1083. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Zaccarini, F.; Lewis, J.F.; Garuti, G.; Labrador, M.; Longo, F. Platinum group minerals (PGM) in the Falcondo Ni-laterite deposit, Loma Caribe peridotite (Dominican Republic). Miner. Depos. 2014, 50, 105–123. [Google Scholar] [CrossRef]
- Proenza, J.A.; Zaccarini, F.; Lewis, J.F.; Longo, F.; Garuti, G. Chromian spinel composition and the platinum group minerals of the PGE-rich Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. Can. Mineral. 2007, 45, 631–648. [Google Scholar] [CrossRef]
- Gornostayev, S.S.; Crocket, J.H.; Mochalov, A.G.; Laajoki, K.V.O. The platinum-group minerals of the Baimka placer deposits, Aluchin Horst, Russian Far East. Can. Mineral. 1999, 37, 1117–1129. [Google Scholar]
- Mochalov, A.G.; Dmitrenko, G.G.; Khoroshilova, T.S.; Sakhyanov, L.O. Mineralogical and geochemical types of placers of platinoids and their industrial significance. In Proceedings of the Mineralogy and Geochemistry of Placers; Shilo, N.A., Patyk-Kara, N.G., Eds.; Nauka: Moscow, Russia, 1992; pp. 7–23. (In Russian). [Google Scholar]
- Zhmodik, S.M.; Nesterenko, G.V.; Airiyants, E.V.; Belyanin, D.K.; Kolpakov, V.V.; Podlipsky, M.Y.; Karmanov, N.S. Alluvial platinum-group minerals as indicators of primary PGE mineralization (placers of southern Siberia). Russ. Geol. Geophys. 2016, 57, 1437–1464. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Nikiforov, A.A.; Tolstykh, N.D.; Shvedov, G.I.; Korolyuk, V.N. Compounds of Ru–Se–S, alloys of Os–Ir, framboidal Ru nanophases, and laurite–clinochlore intergrowths in the Pados-Tundra complex, Kola Peninsula, Russia. Eur. J. Mineral. 2017, 29, 613–621. [Google Scholar] [CrossRef]
- Kiseleva, O.; Airiyants, E.; Zhmodik, S.; Belyanin, D. Ruthenium selenides in chromitites Dunzhugur ophiolite complex. In Proceedings of the Problems of Geology and Exploitation of Platinum Metal Deposits; Talovina, I., Ed.; Saint Petersburg Mining University: Saint Petersburg, Russia, 2016; pp. 71–74. (In Russian). [Google Scholar]
- Dey, S.; Jain, V.K. Platinum group metal chalcogenides: Their syntheses and applications in catalysis and materials science. Platin. Met. Rev. 2004, 48, 16–29. [Google Scholar]
- Guo, J.; Qi, Y.; Matsuishi, S.; Hosono, H. T c maximum in solid solution of pyrite IrSe2- RhSe2 induced by destabilization of anion dimers. J. Am. Chem. Soc. 2012, 134, 20001–20004. [Google Scholar] [CrossRef] [Green Version]
- Tolstykh, N.D.; Sidorov, E.G.; Krivenko, A.P. Platinum-Group Element Placers Associated with Ural-Alaska Type Complexes. In Mineralogical Association of Canada Short Course Series Volume 35; Mungall, J.E., Ed.; The Mineralogical Association of Canada: Quebec City, QC, Canada, 2005; pp. 113–143. ISBN 0921294352. [Google Scholar]
- Tolstykh, N.; Krivenko, A.; Sidorov, E.; Laajoki, K.; Podlipsky, M. Ore mineralogy of PGM placers in Siberia and the Russian Far East. Ore Geol. Rev. 2002, 20, 1–25. [Google Scholar] [CrossRef]
- Weiser, T.W.; Bachmann, H.G. Platinum-group minerals from the Aikora River area, Papua New Guinea. Can. Mineral. 1999, 37, 1131–1145. [Google Scholar]
- O’Driscoll, B.; González-Jiménez, J.M. Petrogenesis of the Platinum-Group Minerals. Rev. Mineral. Geochem. 2016, 81, 489–578. [Google Scholar] [CrossRef] [Green Version]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Mishkin, M.A. Amphibole geobarometr for metabasites. Dokl. AN SSSR 1990, 312, 944–946. (In Russian) [Google Scholar]
- Hammarstrom, J.M.; Zen, E. Aluminum in hornblende: An empirical igneous geobarometer. Am. Mineral. 1986, 71, 1297–1313. [Google Scholar]
- Hollister, L.S.; Grissom, G.C.; Peters, E.K.; Stowell, H.H.; Sisson, V.B. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. 1987, 72, 231–239. [Google Scholar]
- Johnson, M.C.; Rutherford, M.J. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 1989, 17, 837–841. [Google Scholar] [CrossRef]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Lorand, J.P.; Alard, O.; Luguet, A.; Keays, R.R. Sulfur and selenium systematics of the subcontinental lithospheric mantle: Inferences from the Massif Central xenolith suite (France). Geochim. Cosmochim. Acta 2003, 67, 4137–4151. [Google Scholar] [CrossRef]
- Smith, J.W.; Holwell, D.A.; McDonald, I.; Boyce, A.J. The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex. Ore Geol. Rev. 2016, 73, 148–174. [Google Scholar] [CrossRef] [Green Version]
- Bowles, J.F.W. The development of platinum-group minerals in laterites. Econ. Geol. 1986, 81, 1278–1285. [Google Scholar] [CrossRef]
- Bowles, J.F.W.; Lyon, I.C.; Saxton, J.M.; Vaughan, D.J. The Origin of Platinum Group Minerals from the Freetown Intrusion, Sierra Leone, Inferred from Osmium Isotope Systematics. Econ. Geol. 2000, 95, 539–548. [Google Scholar] [CrossRef]
- Xiong, Y.; Wood, S.A. Experimental quantification of hydrothermal solubility of platinum-group elements with special reference to porphyry copper environments. Mineral. Petrol. 2000, 68, 1–28. [Google Scholar] [CrossRef]
- Oberthür, T. The Fate of Platinum-Group Minerals in the Exogenic Environment—From Sulfide Ores via Oxidized Ores into Placers: Case Studies Bushveld Complex, South Africa, and Great Dyke, Zimbabwe. Minerals 2018, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Zaccarini, F.; Proenza, J.A.; Ortega-Gutiérrez, F.; Garuti, G. Platinum group minerals in ophiolitic chromitites from Tehuitzingo (Acatlán complex, southern Mexico): Implications for post-magmatic modification. Mineral. Petrol. 2005, 84, 147–168. [Google Scholar] [CrossRef]
- Bowles, J.F.W.; Suárez, S.; Prichard, H.M.; Fisher, P.C. The mineralogy, geochemistry and genesis of the alluvial platinum-group minerals of the Freetown Layered Complex, Sierra Leone. Mineral. Mag. 2018, 82, S223–S246. [Google Scholar] [CrossRef] [Green Version]
- Auge, T.; Legendre, O. Platinum-group element oxides from the Pirogues ophiolitic mineralization, New Caledonia; origin and significance. Econ. Geol. 1994, 89, 1454–1468. [Google Scholar] [CrossRef]
No. | Ru | Os | Ir | Rh | Pt | Fe | Ni | Cu | Total | |
---|---|---|---|---|---|---|---|---|---|---|
1 | Ru-dominant | 25.74 | 39.16 | 28.08 | 0.85 | 3.38 | 0.33 | bdl | bdl | 97.21 |
2 | 25.58 | 38.7 | 32.9 | 0.91 | bdl | 0.14 | bdl | bdl | 98.09 | |
3 | 30.96 | 34.35 | 29.45 | 0.82 | 2.56 | 0.23 | bdl | bdl | 98.14 | |
4 | 30.93 | 34.94 | 28.22 | 1.13 | 3.96 | 0.3 | 0.28 | bdl | 99.18 | |
5 | 29.34 | 36.88 | 29.51 | bdl | bdl | 0.43 | bdl | bdl | 95.73 | |
6 | 26.77 | 39.19 | 26.83 | 2.55 | 4.02 | 0.33 | bdl | bdl | 99.36 | |
7 | Os-dominant | 10.31 | 50.62 | 36.3 | 0.65 | bdl | 0.41 | bdl | bdl | 97.88 |
8 | 11.26 | 49.87 | 37.05 | 0.22 | bdl | 0.05 | bdl | bdl | 98.4 | |
9 | 23.17 | 51.21 | 20.68 | 0.8 | 1.55 | 0.2 | bdl | bdl | 97.41 | |
10 | matrix | 14.95 | 47.31 | 36.46 | 0.59 | bdl | 0.48 | bdl | bdl | 99.79 |
Inclusion | bdl | bdl | bdl | 2.18 | 81.35 | 10.03 | 1.61 | 2.2 | 97.37 | |
11 | Os-Ir-Ru | 18.86 | 43.83 | 34.55 | 0.12 | bdl | 0.36 | 0.37 | bdl | 97.36 |
12 | 16.76 | 44.47 | 34.22 | bdl | 1.79 | 0.29 | bdl | bdl | 97.24 | |
13 | 15.63 | 44.45 | 34.38 | 0.28 | 1.6 | 0.275 | 0.4 | bdl | 96.34 | |
14 | matrix | 21.27 | 40.3 | 34.69 | 1.52 | 1.23 | 0.43 | 0.44 | bdl | 99.01 |
Inclusion | bdl | bdl | bdl | 1.18 | 82.4 | 10.29 | 1.38 | 2.42 | 97.67 | |
Atomic proportions (per a total of 100 at%) | ||||||||||
Ru | Os | Ir | Rh | Pt | Fe | Ni | Cu | Total | ||
1 | Ru-dominant | 39.9 | 32.27 | 22.89 | 1.3 | 2.72 | 0.92 | 0 | 100 | |
2 | 39.61 | 31.85 | 26.77 | 1.38 | 0 | 0.39 | 0 | 100 | ||
3 | 46.03 | 27.14 | 23.06 | 1.19 | 1.97 | 0.61 | 0 | 100 | ||
4 | 45.14 | 27.1 | 21.66 | 1.62 | 2.99 | 0.79 | 0.7 | 100 | ||
5 | 44.61 | 30.62 | 23.59 | 0 | 0 | 1.18 | 0 | 100 | ||
6 | 39.94 | 31.25 | 21.05 | 3.73 | 3.04 | 0.99 | 0 | 100 | ||
7 | Os-dominant | 17.86 | 46.64 | 33.1 | 1.11 | 0 | 1.29 | 0 | 100 | |
8 | 19.61 | 45.75 | 33.97 | 0.67 | 0 | 0 | 0 | 100 | ||
9 | 37.15 | 43.76 | 16.77 | 1.41 | 0.63 | 0.28 | 0 | 100 | ||
10 | matrix | 17.86 | 46.64 | 33.1 | 1.11 | 0 | 1.29 | 0 | 100 | |
Inclusion | 3.11 | 61.33 | 26.43 | 4.03 | 5.09 | 100 | ||||
11 | Os-Ir-Ru | 30.81 | 37.18 | 29.69 | 0.19 | 0 | 1.08 | 1.05 | 100 | |
12 | 28.01 | 39.49 | 30.07 | 0 | 1.55 | 0.88 | 0 | 100 | ||
13 | 26.21 | 39.64 | 30.32 | 0.46 | 1.39 | 0.83 | 1.15 | 100 | ||
14 | matrix | 33.26 | 32.41 | 28.52 | 2.33 | 1.1 | 1.22 | 1.16 | 100 | |
Inclusion | 1.69 | 62.14 | 27.12 | 3.46 | 5.60 | 100 |
Mineral | SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | MgO | NiO | CaO | Na2O | K2O | Total | Matrix | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The authors’ data | olivine | 40.63 | 5.85 | 52.16 | 0.47 | 99.11 | Os-Ir-Ru | |||||||
olivine | 41.61 | 5.99 | 52.02 | 0.55 | 100.17 | |||||||||
amphibole | 47.87 | 0.47 | 10.13 | 3.11 | 0.16 | 17.99 | 0.26 | 11.28 | 3.01 | 95.08 | ||||
amphibole | 48.18 | 12.85 | 2.74 | 0.12 | 17.58 | 0.32 | 11.28 | 1.51 | 94.58 | |||||
amphibole | 46.53 | 11.56 | 2.76 | 0.05 | 20.82 | 0.62 | 12.31 | 1.59 | 96.24 | |||||
amphibole | 49.42 | 5.74 | 0.34 | 3.44 | 19.45 | 0.46 | 12.96 | 2.97 | 94.78 | |||||
Placers of the Aunik River (3) | olivine | 39.3 | 6.10 | 0.1 | 48.7 | 0.3 | 94.5 | Os-Ir-Ru | ||||||
olivine | 41.9 | 7.80 | 0.2 | 51.7 | 0.3 | 101.9 | ||||||||
amphibole | 48.10 | 10.10 | 0.40 | 8.60 | 0.20 | 35.20 | 1.10 | 10.30 | 2.00 | 97.80 | ||||
amphibole | 49.90 | 7.10 | 0.30 | 11.00 | 35.00 | 1.10 | 7.20 | 1.60 | 0.10 | 97.80 | ||||
Mayarí-Cristal ophiolitic massif (1) | olivine | 41.37 | 0.02 | 0.47 | 4.01 | 0.06 | 53.85 | 1.00 | 0.01 | 100.79 | chromite | |||
amphibole | 46.41 | 0.7 | 10.19 | 2.84 | 2.30 | 0.05 | 20.3 | 11.86 | 2.67 | 0.08 | 99.5 | |||
amphibole | 47.38 | 0.6 | 8.9 | 2.58 | 1.97 | 0.01 | 22.12 | 10.37 | 2.44 | 0.16 | 98.69 | |||
amphibole | 44.63 | 0.5 | 11.7 | 2.95 | 2.23 | 0.07 | 19.61 | 0.18 | 12.21 | 2.76 | 0.07 | 99.05 | ||
Alapaevsk ophiolitic massif (2) | olivine | 42.92 | 0.47 | 3.10 | 0.01 | 53.97 | 0.34 | 100.81 | chromite | |||||
amphibole | 44.40 | 0.41 | 9.81 | 3.25 | 2.78 | 0.09 | 19.65 | 0.05 | 12.34 | 3.30 | 0.66 | 96.76 | ||
amphibole | 46.79 | 2.02 | 9.60 | 2.34 | 2.77 | 0.08 | 19.48 | 0.09 | 11.89 | 2.50 | 0.04 | 97.18 |
Ru | Os | Ir | Rh | Pt | Pd | Ni | As | S | Te | Bi | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Laurite | 52.25 | 6.87 | 2.29 | 1.71 | bdl | bdl | bdl | bdl | 36.35 | bdl | bdl | 99.47 |
Laurite | 53.87 | 3.29 | 2.32 | bdl | bdl | bdl | bdl | bdl | 36.31 | bdl | bdl | 95.79 |
(Ru,Ir,Os)S2 | 36.15 | 12.14 | 17.03 | bdl | bdl | bdl | 0.24 | bdl | 30.78 | bdl | bdl | 96.34 |
(Ru,Ir,Os)S2 | 39.95 | 6.54 | 17.87 | bdl | bdl | bdl | bdl | bdl | 32.13 | bdl | bdl | 96.49 |
(Ru,Ir,Os)S2 | 42.97 | 5.62 | 17.01 | bdl | bdl | bdl | bdl | bdl | 33.15 | bdl | bdl | 98.75 |
Irarsite | 8.08 | 27.41 | 23.45 | bdl | bdl | bdl | 1.15 | 26.64 | 10.65 | bdl | bdl | 97.38 |
Cherepanovite | bdl | bdl | bdl | 55.91 | bdl | bdl | 4.23 | 39.86 | bdl | bdl | bdl | 100 |
Telluropalladinite | bdl | bdl | bdl | bdl | bdl | 66 | bdl | bdl | bdl | 19.8 | 14.74 | 100.54 |
Atomic proportions (per a total of 100 at.%) | ||||||||||||
Ru | Os | Ir | Rh | Pt | Pd | Ni | As | S | Te | Bi | Total | |
Laurite | 31.45 | 1.02 | 0.71 | 0 | 0 | 0 | 0 | 0 | 66.82 | 0 | 0 | 100 |
Laurite | 29.32 | 2.13 | 0.7 | 0.98 | 0 | 0 | 0 | 0 | 66.87 | 0 | 0 | 100 |
(Ru,Ir,Os)S2 | 24.26 | 4.33 | 6.01 | 0 | 0 | 0 | 0.28 | 0 | 65.12 | 0 | 0 | 100 |
(Ru,Ir,Os)S2 | 25.92 | 2.26 | 6.1 | 0 | 0 | 0 | 0 | 0 | 65.72 | 0 | 0 | 100 |
(Ru,Ir,Os)S2 | 26.96 | 1.87 | 5.61 | 0 | 0 | 0 | 0 | 0 | 65.56 | 0 | 0 | 100 |
Irarsite | 7.59 | 13.68 | 11.59 | 0 | 0 | 0 | 1.86 | 33.75 | 31.53 | 0 | 0 | 100 |
Cherepanovite | 0 | 0 | 0 | 46.1 | 0 | 0 | 8.62 | 45.28 | 0 | 0 | 0 | 100 |
Telluropalladinite | 0 | 0 | 0 | 0 | 72.32 | 0 | 0 | 0 | 19.34 | 8.34 | 100 |
Garutiite (Ni,Fe,Ir), wt.% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
O | Fe | Co | Ni | Cu | Ru | Rh | Os | Ir | Total | |
garutiite | bdl | 9.58 | bdl | 42.57 | bdl | 0.67 | 0 | 2.89 | 40.84 | 96.54 |
garutiite | bdl | 36.58 | 1.16 | 15.73 | bdl | 1.34 | 0.37 | bdl | 43.9 | 99.07 |
garutiite | bdl | 9.58 | bdl | 42.57 | bdl | 0.67 | 0 | 2.89 | 40.84 | 96.54 |
Neoformation phases—Os0 and Os-Ir alloy, wt.% | ||||||||||
Os-Ir alloy | bdl | 0.44 | bdl | 1.16 | bdl | 4.57 | 0 | 74.39 | 19.2 | 99.76 |
Os-Ir alloy | bdl | 0.5 | bdl | 1.35 | bdl | 4.6 | 0 | 80.05 | 10.93 | 97.43 |
Os0 | bdl | 0.41 | bdl | 0.78 | bdl | 2.51 | 0 | 85 | 12.64 | 101.33 |
Atomic proportions (per a total of 100 at.%) | ||||||||||
O | Fe | Co | Ni | Cu | Ru | Rh | Os | Ir | Ni + Fe/∑PGE | |
garutiite | 0 | 15.17 | 0 | 64.12 | 0 | 0.59 | 0 | 1.34 | 18.79 | 3.83 |
garutiite | 0 | 55.14 | 1.66 | 22.56 | 0 | 1.12 | 0.3 | 0 | 19.23 | 3.76 |
garutiite | 0 | 15.17 | 0 | 64.12 | 0 | 0.59 | 0 | 1.34 | 18.79 | 3.83 |
Os-Ir alloy | 0 | 1.39 | 0 | 3.50 | 0 | 8.02 | 0 | 69.37 | 17.72 | 0 |
Os-Ir alloy | 0 | 1.41 | 0 | 4.14 | 0 | 7.20 | 2.20 | 74.82 | 10.24 | 0 |
Os0 | 0 | 1.31 | 0 | 2.38 | 0 | 4.45 | 0 | 80.08 | 11.78 | 0 |
PGE-Fe oxide phases, wt.% | ||||||||||
(Ir,Os,Ni,Fe,Cu,Ru)O2 | 15.67 | 2.05 | bdl | 3.79 | 1.92 | 1.34 | bdl | 19.08 | 48.74 | 92.59 |
O=1.98 | Atoms per formula unit (per a total of 3 apfu) | ∑ Ir,Os,Ni,Fe,Cu,Ru | ||||||||
(Ir,Os,Ni,Fe,Cu,Ru)O2 | 1.98 | 0.07 | 0 | 0.13 | 0.06 | 0.03 | 0 | 0.20 | 0.52 | 1.02 |
S | Ni | As | Se | Ru | Rh | Te | Os | Ir | Pt | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|
Selenides | |||||||||||
(Os,Ir,Ru)Se2 | bdl | 0.38 | 4.05 | 40.65 | 9.65 | bdl | 2.76 | 21.72 | 20.32 | bdl | 99.53 |
(Os,Ir,Ru)Se | bdl | bdl | 3.36 | 44.12 | 10.47 | bdl | 2.83 | 24.39 | 19.35 | bdl | 104.52 |
(Os,Ir,Ru)Se | bdl | bdl | 3,9 | 41.81 | 10.43 | bdl | 2.33 | 26.03 | 20.53 | bdl | 105.03 |
Arsenoselenides | |||||||||||
(Ir,Os,Ru,Rh)(Se,As) | 1.34 | bdl | 15.1 | 19.65 | 7.96 | 0.53 | 2.74 | 18.46 | 38.74 | bdl | 104.52 |
(Ir,Ru,Pt,Rh,Os)(Se,As) | 0.8 | bdl | 13.97 | 33.54 | 16.74 | 0.6 | 1.07 | 1.87 | 24.66 | 6.46 | 99.72 |
(Ir,Ru,Pt,Rh,Os)(Se,As) | 0.74 | 0.37 | 12.81 | 34.69 | 16.46 | 0.74 | 1.42 | 1.32 | 25.53 | 4.89 | 98.98 |
Tellurides | |||||||||||
(Ru,Ir)Te2 | bdl | bdl | 0.83 | 0.54 | 22.94 | bdl | 66.53 | 0 | 7.61 | bdl | 98.44 |
(Ir,Ru)Te2 | bdl | bdl | 2.1 | 4.24 | 10.16 | bdl | 53.31 | 17.39 | 11.56 | bdl | 98.76 |
(Ir,Ru)Te2 | bdl | 0.2 | 1.89 | 4.12 | 10.74 | bdl | 52.9 | 17.39 | 12.69 | bdl | 99.94 |
(Ru,Ir)Te2 | bdl | bdl | 3.25 | 7.07 | 23.25 | bdl | 56.45 | 2.46 | 12.2 | bdl | 99.94 |
Atomic proportions (per a total of 100 at%) | |||||||||||
S | Ni | As | Se | Ru | Rh | Te | Os | Ir | Pt | Total | |
Selenides | |||||||||||
(Os,Ir,Ru)Se | 0 | 0.71 | 5.92 | 56.43 | 10.46 | 0 | 2.37 | 12.52 | 11.59 | 0 | 100 |
(Os,Ir,Ru)Se | 0 | 0 | 4.68 | 58.31 | 10.81 | 0 | 2.31 | 13.38 | 10.51 | 0 | 100 |
(Os,Ir,Ru)Se | 0 | 0 | 5.5 | 55.93 | 10.9 | 0 | 1.93 | 14.46 | 11.28 | 0 | 100 |
Arsenoselenide | |||||||||||
(Ir,Os,Ru,Rh)(Se,As) | 4.66 | 0 | 22.49 | 27.77 | 8.79 | 0.57 | 2.4 | 10.83 | 22.49 | 0 | 100 |
(Ir,Ru,Pt,Rh,Os)(Se,As) | 2.53 | 0 | 18.89 | 43.02 | 16.77 | 0.59 | 0.85 | 1 | 13 | 3.35 | 100 |
(Ir,Ru,Pt,Rh,Os)(Se,As) | 2.34 | 0.64 | 17.35 | 44.57 | 16.52 | 0.73 | 1.13 | 0.7 | 13.48 | 2.54 | 100 |
Tellurides | |||||||||||
(Ru,Ir)Te2 | 0 | 0 | 1.37 | 0.85 | 28.16 | 0 | 64.7 | 0 | 4.91 | 0 | 100 |
(Ir,Ru)Te2 | 0 | 0 | 3.73 | 7.14 | 13.37 | 0 | 55.59 | 12.16 | 8 | 0 | 100 |
(Ir,Ru)Te2 | 0 | 0.45 | 3.32 | 6.87 | 14 | 0 | 54.61 | 12.04 | 8.7 | 0 | 100 |
(Ru,Ir)Te2 | 0 | 0 | 4.92 | 10.15 | 26.09 | 0 | 50.17 | 1.47 | 7.2 | 0 | 100 |
Formula | |||||||||||
ASe2 | (Os0.37Ir0.35Ru0.31Ni0.02)Σ1.06(Se1.69As0.18Te0.07)Σ1.94 | ||||||||||
(Os0.4Ir0.32Ru0.32)Σ1.04(Se1.75As0.14Te0.07)Σ1.96 | |||||||||||
(Os0.43Ir0.34Ru0.33)Σ1.09(Se1.68As0.16Te0.06)Σ1.9 | |||||||||||
A(Se,As) 2 | (Ir0.67Os0.32Ru0.26Rh0.02)Σ1.28(Se0.83As0.67S0.14Te0.07)Σ1.72 | ||||||||||
(Ir0.39Ru0.5Os0.03Rh0.02)Σ1.04(Se1.29As0.56S0.08Te0.03)Σ1.96 | |||||||||||
(Ir0.4Ru0.5 Pt0.08Os0.02Rh0.02Ni0.02)Σ1.04(Se1.33As0.52S0.07Te0.03)Σ1.96 | |||||||||||
ATe2 | (Ru0.84Ir0.15)Σ0.99(Te1.94As0.04S0.02)Σ2.01 | ||||||||||
(Os0.6Ru0.4Ir0.24)Σ1.01(Te1.67As0.21S0.11)Σ1.99 | |||||||||||
(Os0.6Ru0.4Ir0.24)Σ1.05(Te1.64As0.1S0.05)Σ1.94 | |||||||||||
(Ru0.78Ir0.06Os0.05)Σ1.04(Te1.5S0.3As0.1)Σ1.96 |
Amphiboles | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
magnesio-hornblende | 4 | 5 | 4.8 | 3.7 | 5 |
alumino-magnesio-hornblende | >7 | 7.9 | 8.1 | 6.2 | 7.9 |
tremolite | - | - | - | - | - |
magnesio-hornblende | 4 | 4.5 | 4.1 | 3.2 | 4.5 |
magnesio-hornblende | 3 | 4 | 3.5 | 2.7 | 4 |
alumino-magnesio-hornblende | 7 | 7.9 | 8.3 | 7.6 | 7.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Airiyants, E.V.; Kiseleva, O.N.; Zhmodik, S.M.; Belyanin, D.K.; Ochirov, Y.C. Platinum-Group Minerals in the Placer of the Kitoy River, East Sayan, Russia. Minerals 2022, 12, 21. https://doi.org/10.3390/min12010021
Airiyants EV, Kiseleva ON, Zhmodik SM, Belyanin DK, Ochirov YC. Platinum-Group Minerals in the Placer of the Kitoy River, East Sayan, Russia. Minerals. 2022; 12(1):21. https://doi.org/10.3390/min12010021
Chicago/Turabian StyleAiriyants, Evgenia V., Olga N. Kiseleva, Sergey M. Zhmodik, Dmitriy K. Belyanin, and Yuriy C. Ochirov. 2022. "Platinum-Group Minerals in the Placer of the Kitoy River, East Sayan, Russia" Minerals 12, no. 1: 21. https://doi.org/10.3390/min12010021
APA StyleAiriyants, E. V., Kiseleva, O. N., Zhmodik, S. M., Belyanin, D. K., & Ochirov, Y. C. (2022). Platinum-Group Minerals in the Placer of the Kitoy River, East Sayan, Russia. Minerals, 12(1), 21. https://doi.org/10.3390/min12010021