Introduction to the Special Issue “Advances in Computational Intelligence Applications in the Mining Industry”
Conflicts of Interest
References
- Both, C.; Dimitrakopoulos, R. Applied Machine Learning for Geometallurgical Throughput Prediction—A Case Study Using Production Data at the Tropicana Gold Mining Complex. Minerals 2021, 11, 1257. [Google Scholar] [CrossRef]
- Young, A.; Rogers, W.P. Modelling Large Heaped Fill Stockpiles Using FMS Data. Minerals 2021, 11, 636. [Google Scholar] [CrossRef]
- Olivier, J.; Aldrich, C. Use of Decision Trees for the Development of Decision Support Systems for the Control of Grinding Circuits. Minerals 2021, 11, 595. [Google Scholar] [CrossRef]
- Sarantsatsral, N.; Ganguli, R.; Pothina, R.; Tumen-Ayush, B. A Case Study of Rock Type Prediction Using Random Forests: Erdenet Copper Mine, Mongolia. Minerals 2021, 11, 1059. [Google Scholar] [CrossRef]
- de Carvalho, J.P.; Dimitrakopoulos, R. Integrating Production Planning with Truck-Dispatching Decisions through Reinforcement Learning While Managing Uncertainty. Minerals 2021, 11, 587. [Google Scholar] [CrossRef]
- Wilson, R.; Mercier, P.H.J.; Patarachao, B.; Navarra, A. Partial Least Squares Regression of Oil Sands Processing Variables within Discrete Event Simulation Digital Twin. Minerals 2021, 11, 689. [Google Scholar] [CrossRef]
- Park, S.; Jung, D.; Nguyen, H.; Choi, Y. Diagnosis of Problems in Truck Ore Transport Operations in Underground Mines Using Various Machine Learning Models and Data Collected by Internet of Things Systems. Minerals 2021, 11, 1128. [Google Scholar] [CrossRef]
- Talebi, E.; Rogers, W.P.; Morgan, T.; Drews, F.A. Modeling Mine Workforce Fatigue: Finding Leading Indicators of Fatigue in Operational Data Sets. Minerals 2021, 11, 621. [Google Scholar] [CrossRef]
- Ganguli, R.; Miller, P.; Pothina, R. Effectiveness of Natural Language Processing Based Machine Learning in Analyzing Incident Narratives at a Mine. Minerals 2021, 11, 776. [Google Scholar] [CrossRef]
- Chomacki, L.; Rusek, J.; Słowik, L. Selected Artificial Intelligence Methods in the Risk Analysis of Damage to Masonry Buildings Subject to Long-Term Underground Mining Exploitation. Minerals 2021, 11, 958. [Google Scholar] [CrossRef]
- Lachaud, A.; Marcus, A.; Vučetić, S.; Mišković, I. Study of the Influence of Non-Deposit Locations in Data-Driven Mineral Prospectivity Mapping: A Case Study on the Iskut Project in Northwestern British Columbia, Canada. Minerals 2021, 11, 597. [Google Scholar] [CrossRef]
- Sinaice, B.B.; Owada, N.; Saadat, M.; Toriya, H.; Inagaki, F.; Bagai, Z.; Kawamura, Y. Coupling NCA Dimensionality Reduction with Machine Learning in Multispectral Rock Classification Problems. Minerals 2021, 11, 846. [Google Scholar] [CrossRef]
- Iwaszenko, S.; Róg, L. Application of Deep Learning in Petrographic Coal Images Segmentation. Minerals 2021, 11, 1265. [Google Scholar] [CrossRef]
- Tungol, Z.P.L.; Toriya, H.; Owada, N.; Kitahara, I.; Inagaki, F.; Saadat, M.; Jang, H.D.; Kawamura, Y. Model Scaling in Smartphone GNSS-Aided Photogrammetry for Fragmentation Size Distribution Estimation. Minerals 2021, 11, 1301. [Google Scholar] [CrossRef]
- Dumakor-Dupey, N.K.; Arya, S.; Jha, A. Advances in Blast-Induced Impact Prediction—A Review of Machine Learning Applications. Minerals 2021, 11, 601. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganguli, R.; Dessureault, S.; Rogers, P. Introduction to the Special Issue “Advances in Computational Intelligence Applications in the Mining Industry”. Minerals 2022, 12, 67. https://doi.org/10.3390/min12010067
Ganguli R, Dessureault S, Rogers P. Introduction to the Special Issue “Advances in Computational Intelligence Applications in the Mining Industry”. Minerals. 2022; 12(1):67. https://doi.org/10.3390/min12010067
Chicago/Turabian StyleGanguli, Rajive, Sean Dessureault, and Pratt Rogers. 2022. "Introduction to the Special Issue “Advances in Computational Intelligence Applications in the Mining Industry”" Minerals 12, no. 1: 67. https://doi.org/10.3390/min12010067
APA StyleGanguli, R., Dessureault, S., & Rogers, P. (2022). Introduction to the Special Issue “Advances in Computational Intelligence Applications in the Mining Industry”. Minerals, 12(1), 67. https://doi.org/10.3390/min12010067