Large Amount of Excess Argon in Hydrothermal Quartz from the Vangtat Orogenic Gold Belt, Southern Laos: New In-Sight from K-Ar and Noble Gas Isotope Analyses
Abstract
:1. Introduction
2. Background Geology
2.1. Regional Geology
2.2. Deposit Geology and Mineralization
3. Sample Preparation
4. Fluid Inclusion Microthermometry
5. Potassium-Argon Analyses
6. Noble Gases Isotope Analyses
7. Discussion
Implications for the Origin of the Ore-Forming Fluids and Host of the Excess Ar
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Itaya, T. K-Ar phengite geochronology of HP-UHP metamorphic rocks-An in-depth review. J. Miner. Petrol. Sci. 2020, 115, 44–58. [Google Scholar] [CrossRef]
- Wanless, R.K.; Stevens, R.D.; Loveridge, W.D. Anomalous parent-daughter isotopic relationships in rocks adjacent to the Grenville Front near Chibougamau, Quebec. Eclogae Geol. Helv. 1970, 63, 345–364. [Google Scholar]
- Hyodo, H.; York, D. The discovery and significance of a fossilized radiogenic argon wave (argonami) in the earth’s crust. Geophys. Res. Lett. 1993, 20, 61–64. [Google Scholar] [CrossRef]
- Itaya, T.; Hyodo, H.; Tsujimori, T.; Wallis, S.; Aoya, M.; Kawakami, T.; Gouzu, C. Regional-Scale Excess Ar wave in a Barrovian type metamorphic belt, eastern Tibetan Plateau. Isl. Arc. 2009, 18, 293–305. [Google Scholar] [CrossRef]
- Itaya, T.; Tsujimori, T. White mica K-Ar geochronology of the Sanbagawa eclogites in SW Japan: Implications on deformation-controlled K-Ar closure temperature. Int. Geol. Rev. 2005, 57, 1014–1022. [Google Scholar] [CrossRef]
- Itaya, T.; Hyodo, H.; Uruno, K.; Mikoshiba, M.U. Ultra-high excess Argon in Kyanites: Implications for ultra-high pressure metamorphism in Northeast Japan. Gondwana Res. 2005, 8, 617–621. [Google Scholar] [CrossRef]
- Itaya, T.; Yagi, K.; Gouzu, C.; Thanh, N.X.; Groppo, C. Preliminary report on the excess argon bearing K-feldspar from metagranite in the Brossasco-Isasca UHP Unit of Dora-Maira Massif, Italy. J. Miner. Petrol. Sci. 2017, 112, 36–39. [Google Scholar] [CrossRef]
- Bounliyong, P.; Arribas, A.; Watanabe, Y.; Echigo, T.; Wong, H. A new orogenic gold belt in Southeast Asia: Geology, mineralogy, and genesis of the Vangtat gold deposit, Southeastern Laos. Resour. Geol. 2022, 72, e12283. [Google Scholar] [CrossRef]
- Bounliyong, P.; Itaya, T.; Arribas, A.; Watanabe, Y.; Wong, H.; Echigo, T. K-Ar geochronology of orogenic gold mineralization in the Vangtat gold belt, southeastern Laos: Effect of excess argon in hydrothermal quartz. Resour. Geol. 2021, 71, 161–175. [Google Scholar] [CrossRef]
- Rama, S.N.I.; Hart, S.R.; Roedder, E. Excess radiogenic argon in fluid inclusions. J. Geophys. Res. 1965, 70, 509–511. [Google Scholar] [CrossRef]
- Kelley, S.; Turner, G.; Butterfield, A.; Shepherd, T.J. The source and significance of argon isotopes in fluid inclusions from areas of mineralization. Earth Planet. Sci. Lett. 1986, 79, 303–318. [Google Scholar] [CrossRef]
- Wahler, W. Über die in Kristallen eingeschlossenen Flüssigkeiten und Gase. Geochim. Cosmochim. Acta 1956, 9, 105–135, (In German with English abstract). [Google Scholar] [CrossRef]
- Turner, G.; Bannon, M.P. Argon isotope geochemistry of inclusion fluids from granite-associated mineral veins in southwest and northeast England. Geochim. Cosmochim. Acta 1992, 56, 227–243. [Google Scholar] [CrossRef]
- Kelley, S. Excess argon in K–Ar and Ar-Ar geochronology. Chem. Geol. 2002, 188, 1–22. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Burgess, R.; Pattrick, R.A.D.; Turner, G. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralising fluids. Geochim. Cosmochim. Acta 2001, 65, 2651–2668. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Burnard, P. Noble gases and halogens in fluid inclusions: A journey through the Earth’s crust. In The Noble Gases as Geochemical Tracers; Burnard, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 319–369. [Google Scholar]
- Lepvrier, C.; Van Vuong, N.; Maluski, H.; Thi, P.T.; Van Vu, T. Indosinian tectonics in Vietnam. C. R. Geoscience 2008, 340, 94–111. [Google Scholar] [CrossRef]
- Vilayhack, S.; Duangsurigna, S.; Voravong, A.; Vilaysan, P.; Khounchanthida, T.; Phommakaysone, K.; Goto, M.; Negishi, Y.; Tsuda, K.; Watanabe, Y.; et al. 1:200,000 Geological Map of B. Dakyoy with Report on Geology of B. Dakyoy District; Japan International Cooperation Agency and Department of Geology, Ministry of Energy and Mines: Vientiane, Laos, 2008; pp. 1–44. [Google Scholar]
- Lepvrier, C.; Maluski, H.; Van Tich, V.; Leyreloup, A.; Thi, P.T.; Van Vuong, N. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 2004, 393, 87–118. [Google Scholar] [CrossRef]
- Osanai, Y.; Nakano, N.; Owada, M.; Miyamoto, T.; Nam, T.N.; Minh, N.T.; Nam, N.V.; Tri, T.V. Collision zone metamorphism in Vietnam and adjacent South-eastern Asia: Proposition for trans-Vietnam orogenic belt. J. Miner. Petrol. Sci. 2008, 103, 226–241. [Google Scholar] [CrossRef]
- Manaka, T. A Study of Mineralogical, Geochemical and Geochronological Characteristics and Ore Genesis in Phuoc Son Gold Deposit Area, Central Vietnam. Ph.D. Thesis, ARC Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Australia, 2014; p. 285. [Google Scholar]
- Tran, H.T.; Zaw, K.; Halpin, J.A.; Manaka, T.; Meffre, S.; Lai, C.K.; Lee, Y.; Van Le, H.; Dinh, S. The Tam Ky-Phuoc Son shear zone in Central Vietnam: Tectonic and metallogenic implications. Gond. Res. 2014, 26, 144–164. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Miner. 1984, 12, 11–46. [Google Scholar]
- Chi, G.; Diamond, L.W.; Lu, H.; Lai, J.; Chu, H. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals 2020, 11, 7. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Itaya, T.; Doi, M.; Ohira, T. Very low potassium analysis by flame photometry using ultra low blank chemical lines: An application of K-Ar method to ophiolites. Geochem. J. 1996, 30, 31–39. [Google Scholar] [CrossRef]
- Itaya, T.; Nagao, K.; Inoue, K.; Honjou, Y.; Okada, T.; Ogata, A. Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Miner. J. 1991, 15, 203–221. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jager, E. Subcommission on Geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Sumino, H.; Nagao, K.; Notsu, K. Highly sensitive and precise measurement of helium isotopes using a mass spectrometer with double collector system. J-Stage 2001, 49, 61–68. [Google Scholar] [CrossRef]
- Matsuda, J.; Matsumoto, T.; Sumino, H.; Nagao, K.; Yamamoto, J.; Miura, Y.; Kaneoka, I.; Takahata, N.; Sano, Y. The 3He/4He ratio of the new internal He Standard of Japan (HESJ). Geochem. J. 2002, 36, 191–195. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Burnard, P.G. Production, release and transport of noble gases in the continental crust. Rev. Minereal. Geochem. 2002, 47, 481–538. [Google Scholar] [CrossRef]
- Turner, G.; Burnard, P.; Ford, J.; Gilmour, J.D.; Lyon, I.C.; Stuart, F.M. Tracing fluid sources and interactions. Philos. Trans. R. Soc. London Ser. A Phys. Eng. Sci. 1993, 344, 127–140. [Google Scholar]
- Stuart, F.M.; Burnard, P.G.; Taylor, R.E.A.; Turner, G. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochim. Cosmochim. Acta 1995, 59, 4663–4673. [Google Scholar] [CrossRef]
- Burnard, P.G.; Hu, R.Z.; Turner, G.; Bi, X.W. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta 1999, 63, 1595–1604. [Google Scholar] [CrossRef]
- Heaton, T.; Vogel, J. “Excess air” in groundwater. J. Hydrol. 1981, 50, 201–216. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Burgess, R.; Marty, B. Tracing fluid origin, transport and interaction in the crust. Rev. Miner. Geochem. 2002, 47, 539–614. [Google Scholar] [CrossRef]
- Turner, G. Hydrothermal fluids and argon isotopes in quartz veins and cherts. Geochim. Cosmochim. Acta 1988, 52, 1443–1448. [Google Scholar] [CrossRef]
- Turner, G.; Songshan, W. Excess argon, crustal fluids and apparent isochrons from crushing K-feldspar. Earth Planet. Sci. Lett. 1992, 110, 193–211. [Google Scholar] [CrossRef]
Location | Inclusion Phase | Inclusion Size (μm) | Number of Fluid Inclusions | Tmice (°C) | Thtotal (°C) | Salinity (wt% NaCl) |
---|---|---|---|---|---|---|
Thongkai-Ok | L>V | 5–10 | 22 | –0.4 to –3.2 | 184–230 | 0.7–5.2 |
Sample | Mineral | K Content (wt%) | Rad. 40Ar (10−8 cc STP/g) | K-Ar Age (Ma) | Non-Rad. 40Ar (%) |
---|---|---|---|---|---|
TKO-1 20190404-5 | Quartz Quartz | 0.0455 ± 0.0023 0.0594 ± 0.0030 | 367.8 ± 4.7 324.1 ± 4.4 | 1385 ± 50 1040 ± 41 | 21.3 25.6 |
Sample | Weight (g) | Isotopic Ratios | Concentration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3He/4He | 20Ne/22Ne | 21Ne/22Ne | 38Ar/36Ar | 40Ar/36Ar | 3He | 4He | 20Ne | 36Ar | 40Ar | 84Kr | 132Xe | F4He | ||
R/Ra | (10−15 ccSTP/g) | (10−9 ccSTP/g) | (10−11 ccSTP/g) | (10−8 ccSTP/g) | (10−12 ccSTP/g) | (10−13 ccSTP/g) | ||||||||
TKO-1 (CR1) | 0.9088 | 0.215 ± 0.022 | 9.831 ± 0.018 | 0.02916 ± 0.00034 | 0.18778 ± 0.00052 | 601.7 ± 0.1 | 1.61 | 5.36 ± 0.27 | 118 ± 12 | 0.204 | 123.0 ± 6.2 | 55.7 ± 5.4 | 31.8 ± 3.2 | 15.84 |
TKO-1 (CR2) | 0.212 ± 0.027 | 9.823 ± 0.016 | 0.02910 ± 0.00044 | 0.1890 ± 0.0015 | 725.2 ± 1.4 | 1.07 | 3.61 ± 0.18 | 56.6 ± 5.7 | 0.088 | 63.9 ± 3.2 | 23.9 ± 2.4 | 13.9 ± 1.5 | 24.76 | |
TKO-1 (H) | 0.3295 | 0.00827 ± 0.0008 | 9.739 ± 0.022 | 0.02916 ± 0.00039 | 0.18750 ± 0.00094 | 1198.7 ± 5.4 | 7.17 | 619 ± 31 | 404 ± 41 | 0.420 | 504 ± 25 | 102 ± 11 | 63.4 ± 6.8 | 889.55 |
20190404-5 (CR1) | 0.9325 | 0.311 ± 0.051 | 9.799 ± 0.017 | 0.02897 ± 0.00034 | 0.18793 ± 0.0007 | 455.1 ± 0.7 | 1.05 | 2.42 ± 0.12 | 125 ± 13 | 0.241 | 110.0 ± 5.5 | 61.7 ± 6.2 | 27.8 ± 3.5 | 6.05 |
20190404-5 (CR2) | 0.217 ± 0.029 | 9.801 ± 0.015 | 0.02901 ± 0.00030 | 0.18804 ± 0.00082 | 594.6 ± 1.5 | 1.35 | 4.44 ± 0.22 | 161 ± 16 | 0.220 | 131.0 ± 6.6 | 53.7 ± 5.4 | 26.5 ± 3.4 | 12.18 | |
20190404-5 (H) | 0.3099 | 0.0191 ± 0.0013 | 9.762 ± 0.015 | 0.02923 ± 0.00036 | 0.1881 ± 0.001 | 1088.2 ± 6.4 | 5.56 | 208 ± 10 | 328 ± 34 | 0.414 | 451 ± 23 | 101 ± 11 | 103 ± 11 | 303.25 |
AIR | 1 | 9.8 | 0.029 | 0.188 | 296 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bounliyong, P.; Sumino, H.; Arribas, A. Large Amount of Excess Argon in Hydrothermal Quartz from the Vangtat Orogenic Gold Belt, Southern Laos: New In-Sight from K-Ar and Noble Gas Isotope Analyses. Minerals 2022, 12, 1205. https://doi.org/10.3390/min12101205
Bounliyong P, Sumino H, Arribas A. Large Amount of Excess Argon in Hydrothermal Quartz from the Vangtat Orogenic Gold Belt, Southern Laos: New In-Sight from K-Ar and Noble Gas Isotope Analyses. Minerals. 2022; 12(10):1205. https://doi.org/10.3390/min12101205
Chicago/Turabian StyleBounliyong, Patthana, Hirochika Sumino, and Antonio Arribas. 2022. "Large Amount of Excess Argon in Hydrothermal Quartz from the Vangtat Orogenic Gold Belt, Southern Laos: New In-Sight from K-Ar and Noble Gas Isotope Analyses" Minerals 12, no. 10: 1205. https://doi.org/10.3390/min12101205
APA StyleBounliyong, P., Sumino, H., & Arribas, A. (2022). Large Amount of Excess Argon in Hydrothermal Quartz from the Vangtat Orogenic Gold Belt, Southern Laos: New In-Sight from K-Ar and Noble Gas Isotope Analyses. Minerals, 12(10), 1205. https://doi.org/10.3390/min12101205