Coastal Environment Impact on the Construction Materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt
Abstract
:1. Introduction
2. The Geographical and Archaeological Context of Anfushi’s Necropolis
3. Geological Context and Ancient Quarries in Alexandria
4. Coastal Geodynamics Context
4.1. Sea Level Rise
4.2. Earthquakes and Land Subsidence
4.3. Environmental Factors
4.3.1. Storminess
4.3.2. Flooding
4.3.3. Meteorological Context
4.4. Anthropogenic Damage
5. Materials and Methods
6. Results
6.1. In-Situ Recordings
6.2. Sea Level Rise Impact (SRL) and Future Scenarios
6.3. Construction Materials Characterization
6.3.1. Petrographic Description
6.3.2. Mineralogical and Chemical Characterization
6.3.3. Macroscopic and Microscopic Investigation
6.4. Digital Mapping
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sullivan, S.; Mackay, R. Archaeological Sites: Conservation and Management; J. Paul Getty Trust: Los Angeles, CA, USA, 2012; Available online: https://www.getty.edu/publications/resources/virtuallibrary/9781606061244.pdf (accessed on 5 May 2022).
- Vousdoukas, M.I.; Clarke, J.; Ranasinghe, R.; Reimann, L.; Khalaf, N.; Duong, T.M.; Ouweneel, B.; Sabour, S.; Iles, C.E.; Trisos, C.H.; et al. African Heritage Sites Threatened as Sea-Level Rise Accelerates. Nat. Clim. Chang. 2022, 12, 256–262. [Google Scholar] [CrossRef]
- Cassar, M.; Pender, R. The impact of climate change on cultural heritage: Evidence and response. In Proceedings of the 14th Triennial Meeting, The Hague, The Netherlands, 12–16 September 2005; pp. 610–616. Available online: https://discovery.ucl.ac.uk/id/eprint/5059/ (accessed on 12 May 2022).
- Gehrels, R.; Garrett, E. Rising sea levels as an indicator of global change. In Climate Change; Elsevier B.V.: Amsterdam, The Netherlands, 2021; pp. 205–217. [Google Scholar] [CrossRef]
- Nicholls, R.J. Adapting to Sea-Level Rise. Resilience; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 13–30. [Google Scholar] [CrossRef]
- Marzeion, B.; Levermann, A. Loss of Cultural World Heritage and Currently Inhabited Places to Sea-Level Rise. Environ. Res. Lett. 2014, 9, 034001. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Liu, Z.; Zhao, L.; Sheng, P. The potential impact of rising sea levels on China’s coastal cultural heritage: A GIS risk assessment. Antiquity 2022, 96, 406–421. [Google Scholar] [CrossRef]
- Lewis, R. Sea-Level Rise and Subsidence Effects on Gulf Coast Archaeological Site Distributions. Am. Antiq. 2000, 65, 525–541. [Google Scholar] [CrossRef]
- Daly, C. Climate Change and the Conservation of Archaeological Sites: A Review of Impacts Theory. Conserv. Manag. Archaeol. Sites 2011, 12, 293–310. [Google Scholar] [CrossRef]
- Dawson, T.; Hambly, J.; Kelley, A.; Lees, W.; Miller, S. Coastal heritage, global climate change, public engagement, and citizen science. Proc. Natl. Acad. Sci. USA 2020, 117, 8280–8286. [Google Scholar] [CrossRef]
- Fluck, H.; Dawson, M. The Historic Environment: Policy & Practice Climate Change and the Historic Environment. Hist. Environ. Policy Pract. 2021, 12, 263–270. [Google Scholar] [CrossRef]
- Bickler, S.; Clough, R.; Macready, S. The Impact of Climate Change on the Archaeology of New Zealand’s Coastline A Case Study from the Whangarei District; Publishing Team. Department of Conservation: Wellington, New Zealand, 2013. Available online: https://www.doc.govt.nz/documents/science-and-technical/sfc322high_res.pdf (accessed on 16 May 2022).
- Westley, K.; Mcneary, R. Assessing the Impact of Coastal Erosion on Archaeological Sites: A Case Study from Northern Ireland Assessing the Impact of Coastal Erosion on Archaeological Sites: A Case Study from Northern Ireland. Conserv. Manag. Archaeol. Sites 2014, 16, 185–211. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.G.; Bissett, T.G.; Yerka, S.J.; Wells, J.J.; Kansa, C.; Kansa, S.W.; Myers, K.N.; Demuth, R.C.; White, D.A. Sea-level rise and archaeological site destruction: An example from the southeastern United States using DINAA (Digital Index of North American Archaeology). PLoS ONE 2017, 12, e0188142. [Google Scholar] [CrossRef]
- Harkin, D.; Davies, M.; Hyslop, E.; Fluck, H.; Wiggins, M.; Merritt, O. Impacts of climate change on cultural heritage. MCCIP Sci. Rev. 2020, 16, 24–39. [Google Scholar] [CrossRef]
- Andreou, G.M. Monitoring the impact of coastal erosion on archaeological sites: The Cyprus Ancient Shoreline Project. Antiquity 2018, 92, e4. [Google Scholar] [CrossRef]
- Andreou, G.; Blue, L.; Breen, C.; Safadi, C.; El Huigens, H.O.; Nikolaus, J.; Ortiz-Vazquez, R.; Westley, K. Maritime endangered archaeology of the Middle East and North Africa: The MarEA project. Antiquity 2020, 94, e36. [Google Scholar] [CrossRef]
- Bolton, J. An Assessment of the Vulnerability of Coastal Stone Monuments in Ireland. Doctoral Thesis, Technological University Dublin, Dublin, Ireland, 2009. Available online: https://arrow.tudublin.ie/builtdoc/9/ (accessed on 19 May 2022).
- Morillas, H.; França, F.; Filho, D.M.; Derluyn, H.; Maguregui, M.; Grégoire, D.; Manuel, J. Decay processes in buildings close to the sea induced by marine aerosol: Salt depositions inside construction materials. Sci. Total Environ. 2020, 721, 137687. [Google Scholar] [CrossRef] [PubMed]
- Morillas, H.; Maguregui, M.; García-Florentino, C.; Marcaida, I.; Madariaga, J.M. Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci. Total Environ. 2016, 550, 285–296. [Google Scholar] [CrossRef]
- Chameides, W.L.; Stelson, A.W. Aqueous-phase chemical processes in deliquescent sea salt aerosols: A mechanism that couples the atmospheric cycles of S and sea salts. J. Geophys. Res.-Atmos. 1992, 97, 20565–20580. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Easa, S.M.; Lachemi, M. Evaluation of the effect of marine salts on urban built infrastructure. Build. Environ. 2009, 44, 713–722. [Google Scholar] [CrossRef]
- Silva, A.; Neves, L.C.; Gaspar, P.L.; De Brito, J. Probabilistic transition of condition: Render facades. Build. Res. Inf. 2016, 44, 301–318. [Google Scholar] [CrossRef]
- Cardell, C.; Delalieux, F.; Roumpopoulos, K.; Moropoulou, A.; Auger, F.; Van Grieken, R. Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr. Build. Mater. 2003, 17, 165–179. [Google Scholar] [CrossRef]
- Fahmy, A.; Molina-Piernas, E.; Martínez-López, J.; Domínguez-Bella, S. Salt weathering impact on Nero/Ramses II Temple at El-Ashmonein archaeological site (Hermopolis Magna), Egypt. Herit. Sci. 2022, 10, 125. [Google Scholar] [CrossRef]
- El-Raey, M. Vulnerability assessment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise. Ocean. Coast. Manag. 1998, 37, 29–40. [Google Scholar] [CrossRef]
- Elsharkawy, H.; Rashed, H.; Rached, I. Climate Change: The Impacts of Sea Level Rise on Egypt. In Proceedings of the 45th ISOCARP Congress, Porto, Portugal, 18–22 October 2009; pp. 1–11. Available online: https://www.isocarp.net/data/case_studies/1456.pdf (accessed on 3 May 2022).
- Bekheet, R.A.; El Raey, M.; Yassin, A. The crest line approach for assessing the development of coastal flooding due to sea level rise. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 1113–1130. [Google Scholar] [CrossRef]
- El-Raey, M.; Regional Center for Disaster Risk Reduction (RCDRR). Impact of Sea Level Rise on the Arab Region; UNDP Regional Bureau for the Arab States (UNDP-RBAS): Cairo, Egypt, 2010; Available online: https://research.fit.edu/media/site-specific/researchfitedu/coast-climate-adaptation-library/africa/morocco-algeria-tunisia/El-Raey.-2010.-SLR-Impacts-on-Arab-Region.pdf (accessed on 5 May 2022).
- Belov, A. Navigational Aspects of Calling to the Great Harbour of Alexandria. 2014. Available online: https://halshs.archives-ouvertes.fr/halshs00845524/file/Belov.A._forthcoming_Navigational_aspects_of_calling_to_the_Great_Harbour_of_Alexandria.pdf (accessed on 22 May 2022).
- Ivanov, S.V. Russian underwater archaeological mission to Alexandria. General report (2003–2015). Egypt Neigbouring Ctries. 2019, 3, 1–31. [Google Scholar] [CrossRef]
- Abdelnaby, A.E.; Elnashai, A.S. Integrity assessment of the Pharos of Alexandria during the AD 1303 earthquake Integrity assessment of the Pharos of Alexandria during the AD 1303 earthquake. Eng. Fail. Anal. 2013, 33, 119–138. [Google Scholar] [CrossRef]
- Hemeda, S.; Pitilakis, K.; Bandis, S. Geotechnical, geophysical investigations and seismic response analysis of the underground tombs in Mustafa Kamil Necropolis, Alexandria, Egypt. Mediterr. Archaeol. Archaeom. 2015, 15, 191–207. [Google Scholar]
- Hemeda, S. Geotechnical modelling of the climate change impact on world heritage properties in Alexandria, Egypt. Herit. Sci. 2021, 9, 73. [Google Scholar] [CrossRef]
- Kamal, I.; Fekri, M.; Abou, I. Mapping the impacts of projected sea-level rise on Cultural heritage sites in Egypt: Case study (Alexandria). J. Fac. Tour. Hostel. Univ. Sadat City 2021, 5, 1–20. Available online: https://mfth.journals.ekb.eg/article_190350_9dbe1272982c21ec55d603fe0787213f.pdf (accessed on 10 June 2022).
- Sousa, R.; Céu Fialho, M.; Haggag, M.; Rodrigues, N. Alexandrea ad Aegyptvm the Legacy of Multiculturalism in Antiquity. 2013. Available online: https://ler.letras.up.pt/uploads/ficheiros/16940.pdf (accessed on 9 May 2022).
- Kyriakos, S. Alexandrea in Aegyptvm. The Role of the Egyptian Tradition in the Hellenistic and Roman Periods: Ideology, Culture, Identity, and Public Life. Doctoral Thesis, Faculty of Archaeology, Universiteit Leiden, Leiden, The Netherlands, 2011. Available online: https://scholarlypublications.universiteitleiden.nl/handle/1887/16395 (accessed on 10 May 2022).
- Kyriakos, S. The Polyvalent Nature of the Alexandrian Elite Hypogea: A case Study in the Greco-Egyptian Cultural Interaction in the Hellenistic and Roman Periods. Porto. 2013. Available online: https://digitalis-dsp.uc.pt/handle/10316.2/36162 (accessed on 9 May 2022).
- Hosny, A.; Ali, S.M.; Abed, A. Study of the 26 December 2011 Aswan earthquake, Aswan area, South of Egypt. Arab. J. Geosci. 2014, 7, 4553–4562. [Google Scholar] [CrossRef]
- El-Sharkawi, M.; Hamimi, Z.; El-Barkooky, A.; Martínez Frías, J.; Fritz, H.; Abd El-Rahman, Y. The Geology of Egypt. Regional Geology Reviews; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ibrahim, M.I.A.; Mansour, A.M.S. Biostratigraphy and palaeoecological interpretation of the Miocene–Pleistocene sequence at El-Dabaa, north-western Egypt. J. Micropalaeontol. 2002, 21, 51–65. [Google Scholar] [CrossRef]
- Stanley, J.D.; Jorstad, T.F.; Goddio, F. Human impact on sediment mass movement and submergence of ancient sites in the two harbours of Alexandria, Egypt. Nor. Geol. Tidsskr. 2006, 86, 337–350. [Google Scholar]
- Mohamed, A.A.; Helal, A.M.A.; Mohamed, A.M.E.; Shokry, M.M.F.; Ezzelarab, M. Effects of surface geology on the ground-motion at New Borg El-Arab City, Alexandria, Northern Egypt. NRIAG J. Astron. Geophys. 2016, 5, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Torab, M.M. Paleo-geomorphological map of Alexandria site, Egypt by using submerged archaeological and other evidence. In Proceedings of the International Conference on Agriculture, Science and Engineering, Umunze, Nigeria, 21–26 April 2013; Federal College of Education: Umunze, Nigeria, 2013. Available online: http://www.damanhour.edu.eg/pdf/artsfac/PALEO-GEOMORPHOLOGICAL%20MAP%20OF%20ALEXANDRIA%20SITE,%20EGYPT%20BY%20USING%20SUBMERGED%20ARCHAEOLOGICAL%20AND%20OTHER%20EVIDENCE2.pdf (accessed on 21 May 2022).
- Evelpidou, N.; Repapis, C.; Zerefos, C.; Tzalas, H.; Synolakis, C. Geophysical Phenomena and the Alexandrian Littoral. Geophys. Phenom. Alex. Littoral 2019, 10, 1–146. [Google Scholar] [CrossRef]
- Arthur, D.G. The four harbours of Alexandria. J. Inst. Civ. Eng. 1940, 1. Available online: https://www.ancientportsantiques.com/wp-content/uploads/Documents/PLACES/Egypt-Libya/Alexandria/Alexandria-Tyr-Savile1940.pdf (accessed on 10 May 2022).
- Fahmy, A.; Molina-Piernas, E.; Domínguez-Bella, S.; Martínez-López, J.; Helmi, F. Geoenvironmental investigation of Sahure’s pyramid, Abusir archaeological site, Giza, Egypt. Herit. Sci. 2022, 10, 61. [Google Scholar] [CrossRef]
- Hemeda, S.; Fahmy, A.; Sonbol, A. Geo-Environmental and Structural Problems of the First Successful True Pyramid, (Snefru Northern Pyramid) in Dahshur, Egypt. Geotech. Geol. Eng. 2019, 37, 2463–2484. [Google Scholar] [CrossRef]
- Hemeda, S.; Fahmy, A.; Moustafa, A.; Abd, M.; Hafez, E. The Early Basilica Church, El-Ashmonein Archaeological Site, Minia, Egypt: Geo-Environmental Analysis and Engineering Characterization of the Building Materials. Open J. Geol. 2019, 9, 91162. [Google Scholar] [CrossRef]
- Harrell, J.A.; Storemyr, P. Ancient Egyptian quarries—An illustrated overview. In Quarry Scapes: Ancient Stone Quarry Landscapes in the Eastern Mediterranean; Abu-Jaber, N., Bloxam, E.G., Degryse, P., Heldal, T., Eds.; Geological Survey of Norway Special Publication: Trondheim, Norway, 2009; Volume 12, pp. 7–50. Available online: https://www.ngu.no/upload/Publikasjoner/Special%20publication/SP12_s7-50.pdf (accessed on 12 June 2022).
- Akarish, A.; Dessandier, D. Characterization and Source of Sedimentary Rocks of the Alexandria Lighthouse Archaeological Objects, Egypt. J. Appl. Sci. 2011, 11, 2513–2524. [Google Scholar] [CrossRef]
- Dessandier, D.; Akarish, A.; Antonelli, F.; Lazzarini, L.; Leroux, A. Atlas of the Stones of Alexandria Light House (Egypt). Final Report BRGM/RP-56218-FR. 2008. Available online: https://www.lrmh.fr/Default/doc/SYRACUSE/50575/atlas-of-the-stones-of-alexandria-lighthouse-egypt-final-report?_lg=fr-FR (accessed on 16 June 2022).
- Global Climate Change. Available online: https://climate.nasa.gov/vital-signs/sea-level/ (accessed on 13 May 2022).
- Dawod, G.; Resrach, W.; Mohamed, H.F.; Haggag, G.G. Mean Sea Level and Tides Variations at Alexandria, Egypt Over 1906–2020. J. Eng. Sci. 2022, 50, 175–188. [Google Scholar] [CrossRef]
- Eldeberky, Y. Coastal adaptation to sea level rise along the Nile delta, Egypt. Coast. Process. II 1996, 149, 41–52. [Google Scholar] [CrossRef]
- Fitzgerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef]
- Agrawala, S.; Moehner, A.; El Raey, M.; Conway, D.; Aalst, M.; Van Hagenstad, M.; Smith, J. Development and climate change in Egypt: Focus on coastal resources and the Nile. Organ. Econ. Co-Oper. Dev. 2004, 1, 1–68. Available online: http://www.oecd.org/env/cc/33330510.pdf (accessed on 31 August 2022).
- Sawires, R.; Peláez, J.; Fat-Helbary, R.; Ibrahim, H.; García Hernández, M. An Updated Seismic Source Model for Egypt. In Earthquake Engineering—From Engineering Seismology to Optimal Seismic Design of Engineering Structures; Intech Open: London, UK, 2015. [Google Scholar] [CrossRef]
- El-Sayed, A.; Korrat, I.; Hussein, H.M. Pure and Applied Geophysics Seismicity and Seismic Hazard in Alexandria (Egypt) and Its Surroundings; Birkhäuser Basel: Basel, Switzerland, 2004; Volume 161, pp. 1003–1019. [Google Scholar] [CrossRef]
- Badawy, A.; Gaber, H.; Ibrahim, H. Earthquake risk assessment of Alexandria, Egypt. J. Seismol. 2015, 19, 159–170. [Google Scholar] [CrossRef]
- Fergany, E.; Omar, K.; Mohammed, G.A.; Fergany, E.; Omar, K.; Mohammed, G.A. Evolution in seismic monitoring system and updating seismic zones of Egypt. NRIAG J. Astron. Geophys. 2020, 9, 548–557. [Google Scholar] [CrossRef]
- Darwish, N.; Kaiser, M.; Koch, M. Assessing the Accuracy of ALOS/PALSAR-2 and Sentinel-1 Radar Images in Estimating the Land Subsidence of Coastal Areas: A Case Study in Alexandria City, Egypt. Remote Sens. 2021, 13, 1838. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Le Cozannet, G.; De Michele, M.; Raucoules, D.; Cazenave, A.; Garcin, M.; Hanson, S.; Marcos, M. Is land subsidence increasing the exposure to sea level rise in Alexandria, Egypt? Geophys. Res. Lett. 2013, 40, 2953–2957. [Google Scholar] [CrossRef]
- Hamouda, A.Z.; El-gharabawy, S.M.; Fekry, A.; Nassar, M.A.; Salah, M. Subsidence model of the ancient Alexandria Royal port linked to sea-level rise and natural hazards using integrated geophysical methods. Egypt. J. Aquat. Res. 2021, 47, 283–292. [Google Scholar] [CrossRef]
- Zaghloul, E.A. Physical Geology and Historical Settlement in North Western Nile Delta Region, Egypt. 2016. Available online: https://www.researchgate.net/publication/305950323_PHYSICAL_geology_and_historical_settlement_in_North_Western_Nile_delta_Region_Egypt (accessed on 11 August 2022).
- Frihy, O.E.; Deabes, E.A.; Gindy, A.A.E. Wave Climate and Nearshore Processes on the Mediterranean Coast of Egypt. J. Coast. Res. 2010, 26, 103–112. Available online: http://www.jstor.org/stable/27752790 (accessed on 31 August 2022). [CrossRef]
- Sea Level Rise Projection Map—Alexandria. Available online: https://earth.org/data_visualization/sea-level-rise-by-the-end-of-the-century-alexandria/ (accessed on 31 August 2022).
- Zevenbergen, C.; Bhattacharya, B.; Wahaab, R.A.; Elbarki, W.A.I.; Busker, T.; Rodriguez, C.N.A.S. In the aftermath of the October 2015 Alexandria Flood Challenges of an Arab city to deal with extreme rainfall storms. Nat. Hazards 2017, 86, 901–917. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Zevenbergen, C.; Wahaab, R.A.W.R.A.; Elbarki, W.A. Characterization of Flooding in Alexandria in October 2015 and Suggested Mitigating Measures. EGU Gen. Assem. Conf. Abstr. 2017, 19, 14230. Available online: https://ui.adsabs.harvard.edu/abs/2017EGUGA.1914230B/abstract (accessed on 18 August 2022).
- Young, A. A rainfall threshold-based approach to early warnings in urban data-scarce regions: A case study of pluvial flooding in Alexandria, Egypt. J. Flood Risk Manag. 2021, 14, e12702. [Google Scholar] [CrossRef]
- Ali, N.A. Alexandria Drowns: A Philosophical Reading of Flood Management in Post-Revolution Egypt. Online Report. 2015. Available online: https://doi.org/10.13140/RG.2.1.2635.9129 (accessed on 31 August 2022).
- Hafez, M.E. Assessment of Climate Change Impact on Urban Heavy Rainfall Extremes Alexandria, Egypt Case Study. 2017. Available online: https://journals.ekb.eg/article_154964_3faef7daa2e9bac56a7a241cb0586400.pdf (accessed on 12 May 2022).
- Mohamed, B.; Navy, T.E.; Osman, A.; Saber, S.A.; Allah, H.M. Assessment of weather and climate variability over Western Harbor of the climate. Egypt. J. Aquat. Biol. Fish. 2020, 24, 323–339. [Google Scholar] [CrossRef]
- El-Geziry, T.M. Analysis of long-term rainfall and air temperature patterns in Alexandria (Egypt). Arab. J. Geosci. 2021, 14, 1199. [Google Scholar] [CrossRef]
- Khedr, A.M.; Abdelrahman, S.M.; El-din, K.A.A. Currents and Sea Level Variability of Alexandria Coast in Association with Wind Forcing Currents and Sea Level Variability of Alexandria Coast in Association with Wind Forcing. J. King Abdulaziz Univ. 2018, 28, 27–42. [Google Scholar] [CrossRef]
- Amr, A. Alexandria in Antiquity A Topographical Reconstruction. Ph.D. Thesis, The Autonomous University of Barcelona, Departament de Ciències de l’Antiguitat i de l’Edat Mitjana, Barcelona, Spain, 1996. Available online: https://www.tesisenred.net/bitstream/handle/10803/670088/amab1de5.pdf?sequence=1&isAllowed=y (accessed on 17 May 2022).
- Venit, M. Egypt as Metaphor: Visual Bilingualism in the Monumental Tombs of Ancient Alexandria. In Visualizing the Afterlife in the Tombs of Graeco-Roman Egypt; Cambridge University Press: Cambridge, UK, 2015; pp. 50–86. [Google Scholar] [CrossRef]
- Ioannides, M.; Fink, E.; Cantoni, L.; Champion, E.; Goos, G. Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. In Proceedings of the 8th International Conference, EuroMed 2020, Virtual Event, 2–5 November 2020. [Google Scholar] [CrossRef]
- Jozef, L.; Oostwegel, N.; Jaud, Š.; Muhič, S.; Rebec, K.M. Digitalization of culturally significant buildings: Ensuring high—Quality data exchanges in the heritage domain using Open BIM. Herit. Sci. 2022, 10, 10. [Google Scholar] [CrossRef]
- Stanley, J.D.; Carslon, R.W.; Van Beek, G.; Jorstad, T.F.; Landau, E.A. Alexandria, Egypt, before Alexander the Great: A multidisciplinary approach yields rich discoveries. GSA Today 2007, 17, 4–10. [Google Scholar] [CrossRef]
- Shaltout, M.; Tonbol, K.; Omstedt, A. Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 2015, 57, 293–307. [Google Scholar] [CrossRef]
- The World Bank. Climate Change Adaptation and Natural Disasters Preparedness in the Coastal Cities of North Africa Phase 1: Risk Assessment for the Present Situation and Horizon 2030—Alexandria Area. 2011. Available online: http://web.worldbank.org/archive/website01418/WEB/IMAGES/ALEXANDR.PDF (accessed on 20 May 2022).
- Jondet, G. Les Portssubmergés de l’Ancienneîle de Pharos. Le Caire. 1916. Available online: https://www.ancientportsantiques.com/wp-content/uploads/Documents/PLACES/Egypt-Libya/AlexPharos-Jondet1916/JONDET-Texteintegral.pdf (accessed on 10 May 2022).
- Kázmér, M. Damage to Ancient Buildings from Earthquakes. Encyclopedia of Earthquake Engineering; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Benavente, D.; García del Cura, M.A.; García- Guinea, J.; Sanchez-Moral, S.; Ordonez, S. Role of pore structure in salt crystallization in unsatured porous stone. J. Cryst. Growth 2004, 260, 532–544. [Google Scholar] [CrossRef]
- Sato, M.; Hattanji, T. A laboratory experiment on salt weathering by humidity change: Salt damage induced by deliquescence and hydration. Prog. Earth Planet. Sci. 2018, 5, 84. [Google Scholar] [CrossRef]
- Charola, A.E.; Puhringer, J.; Steiger, M. Gypsum: A review of its role in the deterioration of building materials. Environ. Geol. 2007, 52, 339–352. [Google Scholar] [CrossRef]
- Zurbriggen, R.; Herwegh, M. Daily and seasonal thermal stresses in tilings: A field survey combined with numeric modeling. Mater. Struct. 2016, 49, 1917–1933. [Google Scholar] [CrossRef]
- Mart, J.; Arizzi, A.; Benavente, D. The Role of Calcite Dissolution and Halite Thermal Expansion as Secondary Salt Weathering Mechanisms of Calcite-Bearing Rocks in Marine Environments. Minerals 2021, 11, 911. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P.; Menéndez, B.; Benavente, D.; Harris, I.; Déqué, M. Science of the Total Environment Climatology of salt transitions and implications for stone weathering. Sci. Total Environ. 2011, 409, 2577–2585. [Google Scholar] [CrossRef]
- Doehne, E.; Price, C.A. Stone Conservation: An Overview of Current Research; Getty Conservation Insitute: Los Angeles, CA, USA, 2010. [Google Scholar] [CrossRef]
- Robert, K.; Kvande, T.; Olav, H.; Vincent, J.; Harstveit, K. A frost decay exposure index for porous, mineral building materials. Build. Environ. 2007, 42, 3547–3555. [Google Scholar] [CrossRef]
- Loperte, A.; National, I.; Proto, M.; National, I.; Bavusi, M. Geosciences Building damage caused by tree roots: Laboratory experiments of GPR and ERT surveys. Adv. Geosci. 2010, 24, 133–137. [Google Scholar] [CrossRef] [Green Version]
No | Storm Name | Expected Date | Approximate Duration |
---|---|---|---|
1 | Nawat El-Saliba | September | 3 days |
2 | Nawat El-Maknassa | November | 3 days |
3 | Nawat Kassem and El-Fida | December | 5 days |
4 | Nawat El-Ghatas, El-Fida El-Kabira and El-Karam | January | 10 days |
5 | Nawat El-Hosoum, El-Shams El-Kabira and El-Aowa | March | 16 days |
Wind Speed (km/h). | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | 26 | 26 | 31 | 40 | 39 | 37 | 36 | 44 | 36 | 34 | 30 | 23 |
Min | 7 | 8 | 10 | 9 | 16 | 18 | 24 | 22 | 18 | 19 | 13 | 7 |
Cal | Qz | Gp | Ar | Hal | |
---|---|---|---|---|---|
BR | +++ | − | − | ++ | + |
CS | +++ | − | + | + | ++ |
CRM | ++ | +++ | − | − | + |
FRM | +++ | + | + | + | + |
CaO | SiO2 | Cl | Fe2O3 | MgO | Na2O | K2O | Al2O3 | SO3 | Sr | |
---|---|---|---|---|---|---|---|---|---|---|
BR | 93 | 1 | 2 | 1 | 1 | 2 | ||||
CS | 83 | 3 | 1 | 1 | 4 | 1 | 5 | 1 | ||
CRM | 36 | 54 | 1 | 2 | 1 | 1 | 1 | 4 | ||
FRM | 70 | 18 | 2 | 1 | 3 | 1 | 4 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, A.; Molina-Piernas, E.; Martínez-López, J.; Machev, P.; Domínguez-Bella, S. Coastal Environment Impact on the Construction Materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt. Minerals 2022, 12, 1235. https://doi.org/10.3390/min12101235
Fahmy A, Molina-Piernas E, Martínez-López J, Machev P, Domínguez-Bella S. Coastal Environment Impact on the Construction Materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt. Minerals. 2022; 12(10):1235. https://doi.org/10.3390/min12101235
Chicago/Turabian StyleFahmy, Abdelrhman, Eduardo Molina-Piernas, Javier Martínez-López, Philip Machev, and Salvador Domínguez-Bella. 2022. "Coastal Environment Impact on the Construction Materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt" Minerals 12, no. 10: 1235. https://doi.org/10.3390/min12101235
APA StyleFahmy, A., Molina-Piernas, E., Martínez-López, J., Machev, P., & Domínguez-Bella, S. (2022). Coastal Environment Impact on the Construction Materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt. Minerals, 12(10), 1235. https://doi.org/10.3390/min12101235