Estimating Magma Crystallization Temperatures Using High Field Strength Elements in Igneous Rocks
Abstract
:1. Introduction
2. Source Data and Method
3. Zr Saturation Temperature, A Review
- CZr(melt) = Zr concentration in melt (ppm)
- T = Temperature (K)
- G = (3[Al2O3] + [SiO2])/([Na2O] + [K2O] + [CaO] + [MgO] + [FeO]) (molar proportion)
4. Results
4.1. Major Oxides Relationships with TZr
4.2. HFSEs Considerations in Magma Crystallization Temperature
4.2.1. Nb and Ta’s Relationship with TZr
4.2.2. Zr-Hf of Whole Rocks and Their Relationship to the TZr
4.2.3. Th and U of Whole Rocks and Their Relationship to Tzr
4.3. Geochemical Index Relationship to TZr
5. Discussion
5.1. Nb-Ta, Zr-Hf, and Th-U Values Are Related to Magma Composition and Temperature
5.2. Zr and Hf’s Relationship to the Magma Composition
5.3. Th and U Relationship to Whole-Rock and Magma Crystallization Temperatures
5.4. Suggestion Geothermometer
5.4.1. (Zr-Hf) Metalumous–Peralumous Temperature Model
5.4.2. Temperature Model Based on the HFSE Abundances in the Peralkaline–Alkaline Rocks
5.5. Testing the Equations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Wark, D.A.; Watson, E.B. TitaniQ: A titanium-in-quartz geothermometer. Contrib. Mineral. Petrol. 2006, 152, 743–754. [Google Scholar] [CrossRef]
- Essene, E.J. The current status of thermobarometry in metamorphic rocks. Geol. Soc. Spec. Publ. 1989, 43, 1–44. [Google Scholar] [CrossRef]
- Tollari, N.; Toplis, M.J.; Barnes, S. Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature. Geochim. Cosmochim. Acta 2006, 70, 1518–1536. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L. Status of thermobarometry in granitic batholiths. Earth Environ. Sci. Trans. R. Soc. Edinburgh 1996, 87, 125–138. [Google Scholar] [CrossRef]
- Brown, W.L.; Parsons, I. Towards a more practical two-feldspar geothermometer. Contrib. Mineral. Petrol. 1981, 76, 369–377. [Google Scholar] [CrossRef]
- Green, N.L.; Usdansky, S.I. Ternary-feldspar mixing relations and thermobarometry. Am. Mineral. 1986, 71, 1100–1108. [Google Scholar]
- Fuhrman, M.L.; Lindsley, D.H. Ternary-feldspar modeling and thermometry. Am. Mineral. 1988, 73, 201–215. [Google Scholar]
- Powell, R.; Holland, T.J.B. An internally consistent thermodynamic dataset with uncertainties and correlations: 1. Methods and a worked example. J. Metamorph. Geol. 1985, 3, 327–342. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T. Calculated mineral equilibria in the pelite system, KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O). Am. Mineral. 1990, 75, 367–380. [Google Scholar]
- Zack, T.; von Eynatten, H.; Kronz, A. Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Glazner, A.F. Activities of olivine and plagioclase components in silicate melts and their application to geothermometry. Contrib. Mineral. Petrol. 1984, 88, 260–268. [Google Scholar] [CrossRef]
- Putirka, K.D. Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. Am. J. Sci. 2005, 90, 336–346. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Waters, L.E.; Lange, R.A. An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am. Mineral. 2015, 100, 2172–2184. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Evans, B.W. Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am. J. Sci. 2008, 308, 957–1039. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Gervasoni, F.; Klemme, S.; Rocha-Júnior, E.R.V.; Berndt, J. Zircon saturation in silicate melts: A new and improved model for aluminous and alkaline melts. Contrib. Mineral. Petrol. 2016, 171, 12. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, Z.; Zhu, D.; Mo, X. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth Sci. Rev. 2013, 127, 96–110. [Google Scholar] [CrossRef]
- Barnes, C.G.; Werts, K.; Memeti, V.; Ardill, K. Most Granitoid Rocks are Cumulates: Deductions from Hornblende Compositions and Zircon Saturation. J. Petrol. 2020, 60, 2227–2240. [Google Scholar] [CrossRef]
- Clemens, J.D.; Stevens, G. What controls chemical variation in granitic magmas? Lithos 2012, 134–135, 317–329. [Google Scholar] [CrossRef]
- Anderson, J.; Barth, P.; Wooden, J.L.; Mazdab, F. Thermometers and thermobarometers in Granitic Systems. Rev. Mineral. Geochem. 2008, 69, 121–142. [Google Scholar] [CrossRef]
- Benisek, A.; Dachs, E.; Kroll, H. A ternary feldspar-mixing model based on calorimetric data: Development and application. Contrib. Mineral. Petrol. 2010, 160, 327–337. [Google Scholar] [CrossRef]
- Siegel, C.; Bryan, S.; Gust, D. Use and abuse of zircon-based thermometers: A critical review and a recommended approach to identify antecrystic zircons. Earth-Sci. Rev. 2018, 176, 87–116. [Google Scholar] [CrossRef]
- Fourcade, S.; Allegre, C.J. Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France). Contrib. Mineral. Petrol. 1981, 76, 177–195. [Google Scholar] [CrossRef]
- Gromet, L.P.; Silver, L.T. Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim. Cosmochim. Acta 1983, 47, 925–939. [Google Scholar] [CrossRef]
- Harrison, T.M.; Watson, E.B.; Rapp, R.P. Does anatexis deplete the lower crust in heat-producing elements? Implications from experimental studies. Eos 1986, 67, 386. [Google Scholar]
- Liu, H.; Sun, W.; Zartman, R.; Tang, M. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago. Nat. Commun. 2019, 10, 3408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyer, S.; Münker, C.; Mezger, K. Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system. Earth Planet. Sci. Lett. 2003, 205, 309–324. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Kolmogorov, A. Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari Giorn. 1933, 4, 83–91. [Google Scholar]
- Baker, D.R.; Conte, A.; Freda, C.; Ottolini, L. The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. Contrib. Mineral. Petrol. 2002, 142, 666–678. [Google Scholar] [CrossRef]
- Zen, E.-A. Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. J. Petrol. 1986, 27, 1095–1117. [Google Scholar] [CrossRef]
- Shao, T.; Xia, Y.; Ding, X.; Cai, Y.; Song, M. Zircon saturation model in silicate melts: A review and update. Acta Geochim. 2020, 39, 387–403. [Google Scholar] [CrossRef]
- Shao, T.; Xia, Y.; Ding, X.; Cai, Y.; Song, M. Zircon saturation in terrestrial basaltic melts and its geological implications. Solid Earth Sci. 2019, 4, 27–42. [Google Scholar] [CrossRef]
- Collins, W.J.; Huang, H.Q.; Jiang, X. Water-fluxed crustal melting produces Cordilleran batholiths. Geology 2016, 44, 143–146. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites: Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Duan, M.; Niu, Y.L.; Sun, P.; Chen, S.; Kong, J.J.; Li, J.Y.; Zhang, Y.; Hu, Y.; Shao, F.L. A simple and robust method for calculating temperatures of granitoid magmas. Mineral. Petrol. 2021, 116, 93–103. [Google Scholar] [CrossRef]
- Harrison, T.M.; Watson, E.B.; Aikman, A.B. Temperature spectra of zircon crystallization in plutonic rocks. Geology 2007, 35, 635–638. [Google Scholar] [CrossRef]
- Shand, S.J. Eruptive rocks: Their genesis, composition, classification, and their relation to ore deposits with a chaper on meteorites. J. Geol. 1943, 56, 593. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. J. Chem. Soc. 1937, 74, 655–673. [Google Scholar] [CrossRef]
- Zaraisky, G.P.; Korzhinskaya, V. Experimental studies of Ta2O5 and columbite–tantalite solubility in fluoride solutions from 300 to 550 °C and 50 to 100 MPa. Mineral. Petrol. 2010, 99, 287–300. [Google Scholar] [CrossRef]
- Barth, M.G.; Mcdonough, W.F.; Rudnick, R.L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Parker, R.L.; Fleischer, M. Geochemistry of niobium and tantalum. US Geol. Surv. Prof. Pap. 1968, 612. [Google Scholar] [CrossRef]
- Linnen, R.L.; Samson, I.M.; Chakhmouradian, A.R. Geochemistry of the REE, Nb, Ta, Hf, and Zr Deposits, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; ISBN 9780080959757. [Google Scholar]
- Richards, J.P.; Porter, T.M. Cumulative factors in the genration of giant calc-alkaline porphyry Cu deposits. In Super Porphyry Copper and Gold Deposits: A Global Perspective; Porter Geoscience Consulting Publishing: Adelaide, Australia, 2004; pp. 7–25. [Google Scholar]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Study of Inter Atomic Distances in Halides and Chalcogenides in Halides and Chaleogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Pearce, J. Sources and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, D.J.; Hanchar, J.M.; Watson, E.B. Diffusion of tetravalent cations in zircon. Contrib. Mineral. Petrol. 1997, 127, 383–390. [Google Scholar] [CrossRef]
- Troitzsch, U.; Ellis, D.J. Crystal structural changes in titanite along the join TiO-AlF High-PT study of solid solutions in the system ZrO2-TiO2: The stability of srilankite. Eur. J. Mineral. 2004, 16, 577–584. [Google Scholar] [CrossRef]
- Zack, T.; Moraes, R.; Kronz, A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol. 2004, 148, 471–488. [Google Scholar] [CrossRef]
- Miller, C.; Zanetti, A.; Thoni, M.; Konzett, J. Eclogitisation of gabbroic rocks: Redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps). Chem. Geol. 2007, 239, 96–123. [Google Scholar] [CrossRef]
- Hayden, L.A.; Watson, E.B.; Wark, D.A. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 2008, 155, 529–540. [Google Scholar] [CrossRef]
- Sweeney, R.J.; Prozesky, V.; Przybylowicz, W. Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18–46 kb pressure. Geochim. Cosmochim. Acta 1995, 59, 3671–3683. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Alkaline granite-syenite-hosted rare metal deposits. Rare-Elem. Geochem. Mineral. Depos. Geol. Assoc. Can. GAC Short Course Notes 2005, 17, 269–297. [Google Scholar]
- Linnen, R.L.; Cuney, M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In Rare-Element Geochemistry and Mineral Deposits; Short Course; Linnen, R.L., Samson, I.M., Eds.; Geological Association of Canada (GAC): Ottawa, ON, Canada, 2005. [Google Scholar]
- Linnen, R.L.; Keppler, H. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib. Mineral. Petrol. 1997, 128, 213–227. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R. High-field-strength elements in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol. 2006, 235, 138–160. [Google Scholar] [CrossRef]
- Linnen, R.L.; Keppler, H. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim. Cosmochim. Acta 2002, 66, 3293–3301. [Google Scholar] [CrossRef]
- Vilà, M.; Fernández, M.; Jiménez-Munt, I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 2010, 490, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Schofield, A. Potential for Magmatic-Related Uranium Mineral Systems in Australia. Geoscience Australia: Canberra, Australia, 2010. [Google Scholar]
- Mysen, B.O. The structure of silicate melts. Annu. Rev. Earth Planet. Sci. 1983, 11, 75–97. [Google Scholar] [CrossRef]
- Linthout, K. Alkali-zirconosilicates in peralkaline rocks. Contrib. Mineral. Petrol. 1984, 86, 155–158. [Google Scholar] [CrossRef]
- Gholipour, S.; Azizi, H.; Masoudi, F.; Asahara, Y.; Tsuboi, M. Zircon U-Pb ages, geochemistry, and Sr-Nd isotope ratios for early cretaceous magmatic rocks, southern Saqqez, northwestern Iran. Geochemistry 2021, 81, 125687. [Google Scholar] [CrossRef]
- Rezaei, F.; Azizi, H.; Asahara, Y. Tectonic significance of the late Eocene (Bartonian) calc-alkaline granitoid body in the Marivan area, Zagros suture zone, northwest Iran. Int. Geol. Rev. 2021, 64, 1081–1096. [Google Scholar] [CrossRef]
- Mcdowell, S.M.; Overton, S.; Fisher, C.M.; Frazier, W.O.; Miller, C.F.; Miller, J.S.; Economos, R.C. Hafnium, oxygen, neodymium, strontium, and lead isotopic constraints on magmatic evolution of the supereruptive southern Black Mountains volcanic center, Arizona, USA: A combined LASS zircon-whole-rock study. Am. Mineral. 2016, 101, 311–327. [Google Scholar] [CrossRef]
- Vogel, T.A.; Noble, D.C.; Younker, L.W. Evolution of a chemically zoned magma body: Black Mountain volcanic center, southwestern Nevada. J. Geophys. Res. 1989, 94, 6041–6058. [Google Scholar] [CrossRef]
- MacDonald, R.; Bagiński, B.; Belkin, H.E.; White, J.C.; Noble, D.C. The Gold Flat Tuff, Nevada: Insights into the evolution of peralkaline silicic magmas. Lithos 2019, 328, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cousens, B.L.; Henry, C.D.; Stevens, C.; Varve, S.; John, D.A.; Wetmore, S. Igneous rocks in the Fish Creek Mountains and environs, Battle Mountain area, north-central Nevada: A microcosm of Cenozoic igneous activity in the northern Great Basin, Basin and Range Province, USA. Earth-Sci. Rev. 2019, 192, 403–444. [Google Scholar] [CrossRef]
- Germa, A.; Koebli, D.; Wetmore, P.; Atlas, Z.; Arias, A.; Savov, I.P.; Diez, M.; Greaves, V.; Gallant, E. Crystallization and Segregation of Syenite in Shallow Mafic Sills: Insights from the San Rafael Subvolcanic Field, Utah. J. Petrol. 2020, 61, egaa092. [Google Scholar] [CrossRef]
- Bradshaw, T.K.; Hawkesworth, C.J.; Gallagher, K. Basaltic volcanism in the Southern Basin and Range: No role for a mantle plume. Earth Planet. Sci. Lett. 1993, 116, 45–62. [Google Scholar] [CrossRef]
- Van Kooten, G.K. Mineralogy, petrology, and geochemistry of an ultrapotassic basaltic suite, central Sierra Nevada, California, USA. J. Petrol. 1980, 21, 651–684. [Google Scholar] [CrossRef]
- Farmer, G.L.; Glazner, A.F.; Manley, C.R. Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California? Geol. Soc. Am. Bull. 2002, 114, 754–768. [Google Scholar] [CrossRef]
- Askren, D.R.; Roden, M.F.; Whitney, J.A. Petrogenesis of Tertiary andesite lava flows interlayered with large-volume felsic ash-flow tuffs of the western USA. J. Petrol. 1997, 38, 1021–1046. [Google Scholar] [CrossRef]
- Valentine, G.A.; Perry, F.V. Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet. Sci. Lett. 2007, 261, 201–216. [Google Scholar] [CrossRef]
- Beard, B.L.; Glazner, A.F. Petrogenesis of isotopically unusual Pliocene olivine leucitites from Deep Springs Valley, California. Contrib. Mineral. Petrol. 1998, 133, 402–417. [Google Scholar] [CrossRef]
SAMPLE NAME | ROCK NAME | SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Zr | Nb | Th | U | Ta | Hf | M | W&H83 | B13 | S20-1 | T Suggested Model |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | ppm | ppm | ppm | ppm | ppm | ppm | (°C) | (°C) | (°C) | (°C) | |||
HMP-7 | Rhyolite | 76.0 | 0.140 | 13.6 | 1.59 | 1.43 | 0.050 | 0.310 | 0.160 | 3.52 | 3.55 | 0.050 | 1.02 | 89.0 | 12.1 | 9.34 | 2.12 | 0.986 | 3.22 | 1.00 | 764 | 727 | 759 | 726 |
HMP-9 | Rhyolite | 73.7 | 0.170 | 14.6 | 2.30 | 2.07 | 0.050 | 0.320 | 0.810 | 5.08 | 1.77 | 0.050 | 1.11 | 101 | 20.0 | 8.11 | 2.18 | 1.48 | 3.42 | 1.14 | 764 | 724 | 758 | 738 |
HMP-10 | Rhyolite | 69.9 | 0.330 | 14.4 | 2.57 | 2.31 | 0.100 | 0.980 | 3.02 | 2.68 | 2.19 | 0.050 | 3.85 | 61.8 | 9.05 | 7.31 | 1.86 | 0.689 | 2.17 | 1.22 | 719 | 669 | 706 | 681 |
HMP-17 | Dacite | 69.2 | 0.420 | 15.0 | 3.38 | 3.04 | 0.050 | 1.31 | 2.66 | 4.38 | 2.00 | 0.150 | 1.42 | 78.7 | 4.18 | 5.76 | 1.52 | 0.272 | 2.47 | 1.42 | 724 | 670 | 711 | 702 |
PKM-1 | Granodiorite | 68.1 | 0.580 | 15.8 | 4.37 | 3.93 | 0.080 | 1.47 | 2.14 | 3.39 | 2.16 | 0.050 | 1.81 | 49.0 | 6.72 | 6.92 | 1.62 | 0.402 | 1.90 | 1.11 | 708 | 660 | 695 | 661 |
PKM-4 | Granite | 75.1 | 0.320 | 14.3 | 0.760 | 0.684 | 0.050 | 0.410 | 0.85 | 7.15 | 0.05 | 0.050 | 0.700 | 169 | 9.94 | 5.30 | 1.71 | 0.771 | 4.92 | 1.34 | 794 | 752 | 789 | 797 |
PKM-5 | Granodiorite | 63.2 | 0.900 | 16.2 | 5.90 | 5.31 | 0.120 | 1.93 | 4.53 | 4.91 | 0.27 | 0.110 | 1.91 | 34.7 | 10.5 | 6.56 | 1.46 | 0.801 | 1.41 | 1.64 | 650 | 584 | 628 | 627 |
PGM-23 | Granodiorite | 68.3 | 0.530 | 14.2 | 4.67 | 4.20 | 0.100 | 1.47 | 4.15 | 3.48 | 0.79 | 0.050 | 2.29 | 10.1 | 3.97 | 3.16 | 0.72 | 0.235 | 0.60 | 1.46 | 585 | 515 | 557 | 532 |
PGM-24 | Granodiorite | 68.8 | 0.570 | 14.9 | 3.55 | 3.20 | 0.150 | 2.37 | 3.06 | 4.05 | 0.52 | 0.050 | 2.06 | 17.0 | 4.51 | 4.41 | 0.876 | 0.263 | 1.04 | 1.28 | 626 | 563 | 602 | 578 |
PGM-29 | Rhyolite | 77.2 | 0.180 | 12.3 | 1.24 | 1.12 | 0.050 | 0.180 | 0.290 | 4.05 | 4.01 | 0.050 | 0.44 | 73.4 | 5.25 | 7.70 | 1.66 | 0.384 | 2.42 | 1.28 | 729 | 678 | 716 | 697 |
PGM-30 | Rhyolite | 73.0 | 0.390 | 14.7 | 2.42 | 2.18 | 0.050 | 0.120 | 0.230 | 6.83 | 1.67 | 0.060 | 0.51 | 127 | 6.37 | 5.88 | 1.38 | 0.494 | 3.90 | 1.34 | 769 | 723 | 761 | 761 |
PKH-1 | Granite | 70.3 | 0.430 | 15.4 | 2.95 | 2.66 | 0.080 | 0.680 | 1.88 | 4.58 | 2.34 | 0.050 | 1.31 | 57.6 | 10.2 | 9.51 | 1.81 | 0.689 | 2.43 | 1.29 | 709 | 656 | 694 | 683 |
PKH-2 | Granodiorite | 67.5 | 0.370 | 17.2 | 3.24 | 2.92 | 0.080 | 0.900 | 2.35 | 3.16 | 3.20 | 0.050 | 1.81 | 174 | 17.8 | 9.14 | 2.37 | 1.31 | 4.74 | 1.14 | 811 | 779 | 812 | 797 |
PKH-4 | Granite | 69.7 | 0.440 | 15.3 | 3.57 | 3.21 | 0.070 | 1.58 | 0.480 | 4.42 | 2.39 | 0.050 | 2.02 | 103 | 5.69 | 5.20 | 1.17 | 0.400 | 3.01 | 1.03 | 773 | 738 | 770 | 731 |
PKH-5 | Granite | 71.6 | 0.390 | 15.6 | 2.64 | 2.38 | 0.050 | 1.31 | 0.160 | 4.04 | 2.31 | 0.050 | 1.90 | 55.4 | 6.42 | 6.00 | 1.29 | 0.515 | 2.01 | 0.875 | 734 | 695 | 726 | 670 |
KMG-9 | Granite | 70.5 | 0.362 | 15.2 | 3.22 | 2.90 | 0.059 | 0.950 | 2.25 | 3.28 | 4.17 | 0.102 | 0.540 | 122 | 12.8 | 14.0 | 2.38 | 1.29 | 3.58 | 1.37 | 763 | 716 | 755 | 753 |
KMG-10 | Granite | 69.5 | 0.361 | 15.1 | 3.14 | 2.83 | 0.058 | 0.950 | 2.30 | 3.32 | 4.13 | 0.101 | 0.420 | 103 | 12.9 | 13.4 | 1.70 | 1.31 | 3.43 | 1.39 | 748 | 698 | 737 | 739 |
KMG-11 | Granite | 71.7 | 0.331 | 15.3 | 2.90 | 2.61 | 0.049 | 0.840 | 1.82 | 2.72 | 3.50 | 0.095 | 0.670 | 138 | 13.2 | 13.5 | 1.58 | 0.400 | 4.11 | 1.09 | 795 | 762 | 794 | 770 |
KMG-14 | Granite | 72.5 | 0.188 | 14.0 | 2.37 | 2.13 | 0.029 | 0.420 | 1.44 | 3.47 | 4.85 | 0.062 | 124 | 5.16 | 10.8 | 2.42 | 0.930 | 4.12 | 1.40 | 762 | 714 | 753 | 763 | |
MGF-10 | Granite | 67.1 | 0.523 | 16.2 | 3.96 | 3.56 | 0.070 | 1.39 | 3.00 | 3.36 | 3.95 | 0.137 | 0.620 | 140 | 15.4 | 14.4 | 2.25 | 0.900 | 3.96 | 1.46 | 767 | 719 | 759 | 769 |
KMG-1 | Granite | 75.0 | 0.128 | 13.6 | 0.910 | 0.819 | 0.009 | 0.160 | 0.780 | 3.09 | 5.32 | 0.025 | 0.520 | 73.9 | 8.46 | 24.0 | 3.96 | 2.62 | 1.27 | 731 | 680 | 718 | 702 | |
KMG-2 | Granite | 76.8 | 0.031 | 13.1 | 0.740 | 0.666 | 0.011 | 0.060 | 0.620 | 3.39 | 4.95 | 0.017 | 0.250 | 77.9 | 9.10 | 25.2 | 3.87 | 3.98 | 1.27 | 735 | 685 | 722 | 731 | |
KMG-4 | Granite | 72.7 | 0.209 | 13.9 | 2.05 | 1.85 | 0.060 | 0.460 | 1.62 | 3.42 | 4.05 | 0.052 | 0.510 | 79.6 | 10.1 | 13.6 | 1.79 | 1.24 | 2.69 | 1.33 | 732 | 681 | 719 | 708 |
KMG-6 | Granite | 73.1 | 0.202 | 14.1 | 1.88 | 1.69 | 0.038 | 0.380 | 1.49 | 3.23 | 4.73 | 0.048 | 0.580 | 96.9 | 9.85 | 17.9 | 2.01 | 1.57 | 3.17 | 1.33 | 747 | 698 | 737 | 730 |
MGF-7 | Granite | 73.9 | 0.147 | 14.4 | 1.76 | 1.58 | 0.009 | 0.360 | 1.34 | 2.85 | 5.19 | 0.033 | 0.690 | 136 | 6.96 | 11.0 | 1.55 | 0.660 | 4.07 | 1.26 | 781 | 739 | 775 | 769 |
Rock Name | SiO2 | TiO2 | Al2O3 | FeOT | CaO | MgO | MnO | K2O | Na2O | P2O5 | Y | Zr | Nb | Ce | Nd | Yb | Hf | Ta | Th | U | M | G | S20-2 | T Suggested Model |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | Wt.% | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | (°C) | (°C) | |
56.6 | 1.14 | 17.1 | 6.41 | 6.98 | 3.91 | 0.090 | 2.95 | 3.59 | 0.490 | 25.0 | 273 | 15.2 | 184 | 87.0 | 2.18 | 6.20 | 0.800 | 18.8 | 2.10 | 2.06 | 3.62 | 750 | 752 | |
Pantellerite | 67.7 | 0.31 | 10.5 | 4.70 | 3.10 | 0.280 | 0.160 | 4.16 | 4.83 | 0.140 | 227 | 3450 | 313 | 676 | 228 | 29.7 | 90.4 | 19.6 | 140 | 23.8 | 2.26 | 5.75 | 1096 | 1118 |
55.7 | 1.32 | 17.1 | 7.68 | 5.90 | 3.25 | 0.170 | 3.86 | 4.78 | 0.710 | 43.0 | 434 | 39.0 | 154 | 4.16 | 10.3 | 1.800 | 9.50 | 2.19 | 3.48 | 788 | 766 | |||
65.9 | 0.250 | 12.2 | 2.41 | 6.44 | 0.250 | 0.130 | 4.40 | 4.77 | 0.100 | 105 | 579 | 88.0 | 292 | 9.32 | 18.0 | 4.100 | 32.0 | 2.72 | 5.23 | 859 | 923 | |||
50.0 | 0.070 | 10.5 | 1.00 | 3.64 | 1.09 | 0.010 | 3.94 | 8.45 | 0.010 | 59.0 | 165 | 69.0 | 47.4 | 41.7 | 5.56 | 7.70 | 4.900 | 69.0 | 14.7 | 3.46 | 4.02 | 718 | 842 | |
Basalt | 44.5 | 1.42 | 13.5 | 9.11 | 9.25 | 12.4 | 0.173 | 2.63 | 5.43 | 0.772 | 30.0 | 295 | 56.7 | 227 | 86.8 | 2.57 | 5.66 | 3.15 | 20.6 | 4.51 | 4.60 | 1.59 | 687 | 755 |
Basalt | 47.8 | 1.03 | 16.7 | 8.89 | 7.65 | 10.2 | 0.280 | 2.98 | 2.99 | 0.658 | 25.8 | 257 | 37.7 | 195 | 83.2 | 2.05 | 5.79 | 2.19 | 15.5 | 3.34 | 2.60 | 2.17 | 701 | 756 |
Basalt | 48.5 | 1.30 | 15.1 | 8.53 | 10.28 | 9.54 | 0.130 | 3.10 | 1.84 | 0.853 | 25.1 | 236 | 33.9 | 309 | 16.8 | 2.03 | 5.25 | 1.54 | 15.6 | 2.97 | 3.24 | 2.08 | 691 | 761 |
Basalt | 40.5 | 1.23 | 16.6 | 9.84 | 9.71 | 14.0 | 0.314 | 2.58 | 3.50 | 0.903 | 33.4 | 315 | 57.7 | 173 | 72.6 | 2.93 | 6.48 | 3.34 | 12.5 | 2.87 | 3.74 | 1.57 | 690 | 755 |
Basalt | 43.0 | 1.04 | 18.2 | 8.82 | 9.69 | 12.5 | 0.275 | 2.03 | 2.80 | 0.773 | 36.4 | 366 | 46.8 | 301 | 116 | 3.24 | 8.31 | 3.51 | 38.5 | 7.68 | 2.96 | 1.86 | 716 | 797 |
Basalt | 48.5 | 1.20 | 15.0 | 8.17 | 12.9 | 7.14 | 0.144 | 3.68 | 2.08 | 0.498 | 33.8 | 383 | 46.8 | 161 | 69.3 | 3.02 | 8.85 | 3.86 | 14.2 | 3.42 | 3.99 | 2.10 | 730 | 763 |
Syenite | 49.6 | 1.59 | 18.9 | 7.76 | 7.52 | 3.49 | 0.147 | 4.78 | 4.62 | 0.865 | 37.7 | 369 | 47.1 | 295 | 110 | 3.42 | 8.18 | 3.47 | 38.5 | 7.53 | 2.51 | 3.04 | 761 | 774 |
Basalt | 46.1 | 1.29 | 14.6 | 9.89 | 8.73 | 12.2 | 0.188 | 2.73 | 2.75 | 0.661 | 33.1 | 315 | 49.9 | 178 | 65.8 | 3.18 | 6.15 | 3.68 | 16.4 | 3.71 | 3.34 | 1.79 | 701 | 753 |
Basalt | 47.6 | 1.78 | 18.0 | 8.56 | 8.55 | 4.96 | 0.164 | 3.47 | 4.90 | 1.18 | 27.9 | 341 | 48.2 | 227 | 96.1 | 2.12 | 7.36 | 3.32 | 11.2 | 2.63 | 2.87 | 2.59 | 739 | 751 |
Andesite | 55.4 | 1.38 | 15.2 | 6.49 | 6.48 | 4.23 | 0.100 | 3.70 | 3.02 | 0.630 | 35.0 | 474 | 37.0 | 195 | 85.1 | 2.60 | 10.9 | 2.03 | 24.9 | 2.20 | 3.44 | 795 | 776 | |
Basanite | 51.7 | 1.80 | 12.7 | 6.50 | 6.40 | 5.70 | 0.130 | 8.40 | 2.00 | 1.50 | 105 | 652 | 82.0 | 43.0 | 1.30 | 18.3 | 1.30 | 3.40 | 1.40 | 3.24 | 2.64 | 798 | 771 | |
Basanite | 53.3 | 1.57 | 12.3 | 6.02 | 4.65 | 7.36 | 0.100 | 8.22 | 2.16 | 1.56 | 31.0 | 803 | 50.0 | 25.0 | 1.20 | 17.4 | 0.800 | 2.70 | 0.00 | 2.87 | 2.65 | 818 | 751 | |
Basanite | 51.0 | 1.50 | 11.6 | 7.40 | 7.40 | 9.20 | 0.160 | 7.00 | 2.00 | 1.60 | 25.0 | 575 | 91.0 | 48.0 | 1.50 | 14.0 | 0.900 | 4.20 | 1.50 | 3.83 | 2.09 | 764 | 750 | |
Basalt | 43.7 | 1.40 | 10.8 | 9.60 | 10.2 | 15.0 | 0.210 | 3.00 | 2.80 | 1.60 | 45.0 | 382 | 134 | 68.0 | 1.70 | 8.80 | 1.10 | 6.50 | 1.80 | 5.43 | 1.37 | 694 | 752 | |
Leucitite | 46.5 | 1.98 | 10.1 | 9.92 | 8.97 | 12.7 | 0.170 | 5.41 | 2.14 | 1.37 | 47.0 | 840 | 239 | 113 | 2.34 | 16.0 | 1.00 | 19.0 | 2.30 | 5.25 | 1.52 | 768 | 800 | |
Leucitite, | 46.6 | 1.81 | 10.6 | 9.17 | 9.13 | 12.1 | 0.160 | 4.75 | 1.99 | 1.30 | 51.0 | 798 | 214 | 102 | 2.34 | 16.0 | 1.80 | 17.0 | 2.20 | 4.79 | 1.61 | 769 | 798 | |
Leucitite | 49.0 | 1.53 | 14.4 | 8.41 | 9.63 | 9.05 | 0.160 | 3.58 | 2.17 | 0.950 | 45.0 | 479 | 161 | 76.8 | 2.55 | 11.0 | 1.30 | 14.0 | 2.20 | 3.31 | 2.11 | 749 | 766 | |
Absarokite | 45.3 | 1.21 | 11.7 | 8.67 | 10.0 | 12.6 | 0.180 | 4.20 | 3.18 | 2.00 | 29.0 | 471 | 25 | 208 | 95.0 | 2.10 | 11.0 | 1.10 | 9.90 | 2.60 | 5.04 | 1.55 | 721 | 784 |
Minette | 51.1 | 1.79 | 12.7 | 7.51 | 8.71 | 7.27 | 0.130 | 5.93 | 2.60 | 1.45 | 23.0 | 842 | 20 | 102 | 53.0 | 1.70 | 14.0 | 0.800 | 3.10 | 1.00 | 3.79 | 2.25 | 806 | 764 |
Absarokite | 49.6 | 1.57 | 11.2 | 6.47 | 8.71 | 12.0 | 0.100 | 5.94 | 2.08 | 1.62 | 21.0 | 678 | 25 | 194 | 94.0 | 1.10 | 14.0 | 1.00 | 7.30 | 1.90 | 4.43 | 1.81 | 765 | 786 |
Absarokite | 49.9 | 1.57 | 11.3 | 6.44 | 8.68 | 11.6 | 0.100 | 6.10 | 2.03 | 1.63 | 20.0 | 576 | 22 | 164 | 82.0 | 1.10 | 15.0 | 1.00 | 7.60 | 2.10 | 4.36 | 1.85 | 753 | 770 |
Trachyandesite | 57.1 | 1.04 | 15.5 | 7.52 | 6.68 | 4.29 | 0.080 | 3.84 | 2.95 | 0.480 | 34.0 | 290 | 12.0 | 145 | 2.74 | 6.43 | 0.810 | 16.0 | 2.20 | 3.36 | 749 | 752 | ||
Basalt | 48.8 | 1.79 | 16.9 | 10.5 | 9.19 | 5.73 | 0.180 | 1.64 | 3.44 | 1.10 | 37.0 | 426 | 204 | 2.46 | 8.09 | 1.62 | 12.3 | 2.69 | 2.49 | 754 | 759 | |||
Basalt | 50.9 | 1.44 | 17.0 | 9.29 | 8.47 | 5.09 | 0.170 | 1.69 | 3.16 | 0.990 | 28.0 | 379 | 199 | 2.35 | 7.61 | 1.47 | 11.7 | 2.34 | 2.84 | 756 | 761 | |||
Basalt | 50.6 | 1.53 | 17.3 | 9.84 | 8.61 | 5.23 | 0.180 | 1.87 | 3.27 | 1.10 | 37.0 | 392 | 209 | 2.33 | 7.56 | 1.41 | 11.6 | 2.42 | 2.74 | 756 | 764 | |||
Basalt | 49.1 | 1.61 | 17.2 | 9.91 | 8.70 | 5.20 | 0.170 | 1.66 | 3.35 | 1.14 | 15.0 | 408 | 213 | 2.30 | 7.79 | 1.50 | 10.8 | 2.47 | 2.68 | 757 | 759 | |||
Basalt | 47.1 | 2.17 | 16.1 | 10.6 | 9.34 | 5.35 | 0.170 | 2.00 | 3.81 | 1.35 | 29.0 | 428 | 258 | 2.30 | 7.88 | 1.67 | 9.65 | 3.03 | 2.37 | 750 | 758 | |||
Minette | 51.2 | 1.84 | 13.0 | 7.68 | 8.51 | 7.10 | 0.140 | 5.46 | 2.80 | 1.43 | 23.0 | 816 | 21.0 | 105 | 54.0 | 1.70 | 15.0 | 0.800 | 2.90 | 1.00 | 3.61 | 2.30 | 805 | 762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daneshvar, N.; Azizi, H.; Tsuboi, M. Estimating Magma Crystallization Temperatures Using High Field Strength Elements in Igneous Rocks. Minerals 2022, 12, 1260. https://doi.org/10.3390/min12101260
Daneshvar N, Azizi H, Tsuboi M. Estimating Magma Crystallization Temperatures Using High Field Strength Elements in Igneous Rocks. Minerals. 2022; 12(10):1260. https://doi.org/10.3390/min12101260
Chicago/Turabian StyleDaneshvar, Narges, Hossein Azizi, and Motohiro Tsuboi. 2022. "Estimating Magma Crystallization Temperatures Using High Field Strength Elements in Igneous Rocks" Minerals 12, no. 10: 1260. https://doi.org/10.3390/min12101260
APA StyleDaneshvar, N., Azizi, H., & Tsuboi, M. (2022). Estimating Magma Crystallization Temperatures Using High Field Strength Elements in Igneous Rocks. Minerals, 12(10), 1260. https://doi.org/10.3390/min12101260