Mineralogical and Geochemical Characteristics of Carbonates and Their Geological Significance to the Fuli Pb-Zn Deposit, Yunnan Province
Abstract
:1. Introduction
2. Geological Setting of the Region and Deposit
2.1. Tectonic Features
2.2. Deposit Geology
3. Materials and Methods
3.1. Elemental Measurement by LA-ICP MS
3.2. C-O In Situ Isotopes
3.3. CL Analysis
4. Results
4.1. CL Images of Dolomite
4.2. Textural and Mineralogical Analyses
4.3. C-O Isotopic Characteristics
5. Discussion
5.1. Origin of Hydrothermal Dolomite
5.2. Sources of C and O
5.3. Properties of Ore-Forming Fluids
5.4. Ore Genesis Model
6. Conclusions
- (1)
- The dolomite from the Fuli deposit exhibits both dark and bright luminescence under CL, with primarily bright luminescence. Moving from early dolomite to late calcite, the luminescence shifts from dark to bright and back to dark.
- (2)
- The C-O isotopic data suggest that the source of C in the Fuli Pb-Zn deposit might be the dissolution of marine carbonates. In contrast, the O isotopic signature is related to the sedimentary rock contamination of the mantle multiphase system, while the relatively low δ18O might be attributed to O isotope exchange between the wall rock and the depleted δ18O ore-forming fluid.
- (3)
- For dolomite and calcite in the Fuli Pb-Zn deposit, the insignificant Eu anomaly evolved into a positive Eu anomaly, and the strongly negative Ce anomaly became a weakly negative Ce anomaly. These patterns indicate that the precipitation of sulfide and dolomite was due to the O fugacity of the fluid. Mineralization was also accompanied by a decrease in temperature and change in the fluid environment from alkaline to neutral to weakly acidic.
- (4)
- The Fuli Pb-Zn deposit might have formed due to the mixing of metal-rich,oxidized acidic fluid with sulfur-rich, reduced alkaline fluid.
- (5)
- A combination of the characteristics of stratum control and epigenetic ore-forming of the Fuli Pb-Zn deposit suggests that the Fuli Pb-Zn deposit is an MVT deposit.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.C. Emeishan Basalt and Pb-Zn Metallogenesis. Geol. Explor. 1995, 31, 1–6. [Google Scholar]
- Huang, Z.L.; Chen, J.; Han, R.S.; Li, W.B.; Liu, C.Q.; Zhang, Z.L.; Ma, D.Y.; Gao, D.R.; Yang, H.L. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China: Discussion on the Relationship between Emeishan Flood Basalts and Lead-zinc Mineralization; Geological Publishing House: Beijing, China, 2004. [Google Scholar]
- Huang, Z.L.; Zhong, H.U.R.; Shu, W.; Wen, H.; Liu, S.; Fu, Y. A Study on the Large-Scale Low-Temperature Metallogenic Domain in Southwestern China—Significance, History and New Progress. Acta Mineral. Sin. 2011, 31, 309–314. [Google Scholar]
- Hu, R.U.; Zhou, M.E. Multiple Mesozoic Mineralization Events in South China—An Introduction to the Thematic Issue. Miner. Depos. 2012, 47, 579–588. [Google Scholar] [CrossRef]
- Hu, R.; Fu, S.; Huang, Y.; Zhou, M.F.; Fu, S.; Zhao, C.; Wang, Y.; Bi, X.; Xiao, J. The Giant South China Mesozoic Low-Temperature Metallogenic Domain: Reviews and a New Geodynamic Model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Zhou, J.X.; Xiang, Z.Z.; Zhou, M.F.; Feng, Y.X.; Luo, K.; Huang, Z.L.; Wu, T. The Giant Upper Yangtze Pb–Zn Province in SW China: Reviews, New Advances and a New Genetic Model. J. Asian Earth Sci. 2018, 154, 280–315. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.C.; Lin, W.D. Regularity Research of Ag, Zn, Pb Ore Deposits North-East Yunnan Province; Yunnan University Press: Kunming, China, 1999. [Google Scholar]
- Ore-forming model of Huize rich Pb-Zn deposit, Yunnan. Acta Mineral. Sin. 2001, 21, 674–680. Available online: https://www.researchgate.net/publication/286785197_Ore-forming_model_of_Huize_rich_Pb-Zn_deposit_Yunnan (accessed on 22 May 2022).
- Han, R.S.; Liu, C.Q.; Huang, Z.L.; Chen, J.; Ma, D.Y.; Li, Y. Genesis Modeling of Huize Lead-Zinc Ore Deposit in Yunnan. Acta Mineral. Sin. 2001, 21, 674–680. [Google Scholar]
- Xu, Y.; Huang, Z.; Zhu, D.; Luo, T. Origin of Hydrothermal Deposits Related to the Emeishan Magmatism. Ore Geol. Rev. 2014, 63, 1–8. [Google Scholar] [CrossRef]
- Zhou, J.-X.; Huang, Z.L.; Zhou, M.-F.; Zhu, X.-K.; Muchez, P. Zinc, Sulfur and Lead Isotopic Variations in Carbonate-Hosted Pb–Zn Sulfide Deposits, Southwest China. Ore Geol. Rev. 2014, 58, 41–54. [Google Scholar] [CrossRef]
- Zhou, J.X.; Bai, J.H.; Huang, Z.L.; Zhu, D.; Yan, Z.F.; Lv, Z.C. Geology, Isotope Geochemistry and Geochronology of the Jinshachang Carbonate-Hosted Pb–Zn Deposit, Southwest China. J. Asian Earth Sci. 2015, 98, 272–284. [Google Scholar] [CrossRef]
- Zhou, J.X.; Luo, K.; Wang, X.C.; Wilde, S.A.; Wu, T.; Huang, Z.L.; Cui, Y.L.; Zhao, J.X. Ore Genesis of the Fule Pb Zn Deposit and Its Relationship with the Emeishan Large Igneous Province: Evidence from Mineralogy, Bulk COS and in Situ SPb Isotopes. Gondwana Res. 2018, 54, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.G.; Zhou, J.X.; Huang, Z.L.; Luo, K.; Gao, J.G.; Peng, S.; Wang, B.; Chen, X.L. Ore genesis of the Nayongzhi Pb-Zn deposit, Puding City, Guizhou Province, China: Evidences from S and in situ Pb isotopes. Acta Petrol. Sin. 2016, 32, 3441–3455. [Google Scholar]
- Li, Z.L. Geological Geochemical Characteristics and Prospecting Directions in the Fule Lead-Zinc Deposit, Yunnan Province. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2016. [Google Scholar]
- Cui, Y.L.; Zhou, J.X.; Huang, Z.L.; Luo, K.; Nian, H.L.; Lin, Y.; Li, Z.L. Geology, geochemistry and ore genesis of the Fule Pb-Zn deposit, Yunnan Province, Southwest China. Acta Petrol. Sin. 2018, 34, 194–206. [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. In Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 2005; Volume 100, pp. 561–607. [Google Scholar]
- Peng, J.; Zhang, D.L.; Hu, R.Z.; Wu, M.J.; Liu, X.M.; Qi, L.; Yu, Y.L. Inhomogeneous Distribution of Rare Earth Elements (Rees) in Scheelite from the Zhazixi w-Sb Deposit, Western Hunan and Its Geological Implications. Geol. Rev. 2010, 56, 810–819. [Google Scholar]
- Heinrich, C.A.; Pettke, T.; Halter, W.E.; Aigner-Torres, M.; Audétat, A.; Günther, D.; Hattendorf, B.; Bleiner, D.; Guillong, M.; Horn, I. Quantitative Multi-Element Analysis of Minerals, Fluid and Melt Inclusions by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry. Geochim. Cosmochim. Acta 2003, 67, 3473–3497. [Google Scholar] [CrossRef]
- Lyu, C.; Gao, J.F.; Qi, L.; Huang, X.W. Re-Os Isotope System of Sulfide from the Fule Carbonate-Hosted Pb-Zn Deposit, SW China: Implications for Re-Os Dating of Pb-Zn Mineralization. Ore Geol. Rev. 2020, 121, 103558. [Google Scholar] [CrossRef]
- Zong, K.; Klemd, R.; Yuan, Y.; He, Z.; Guo, J.; Shi, X.; Liu, Y.; Hu, Z.; Zhang, Z. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, W.; Liu, Y.; Gao, S.; Li, M.; Zong, K.; Chen, H.; Hu, S. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2014, 87, 1152–1157. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Hu, Z.; Gao, S.; Zong, K.; Chen, H. Accurate Determinations of Fifty-Four Major and Trace Elements in Carbonate by LA–ICP-MS Using Normalization Strategy of Bulk Components as 100%. Chem. Geol. 2011, 284, 283–295. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Comparative Study of Yttrium and Rare-Earth Element Behaviours in Fluorine-Rich Hydrothermal Fluids. Contrib. Mineral. Petrol. 1995, 119, 213–223. [Google Scholar] [CrossRef]
- Bau, M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour during near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater. Chem. Geol. 1999, 155, 77–90. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Zhang, X.Y.; Wayne, N.K.; Watson, E.B. Sr, Y, and REE Diffusion in Fluorite. Chem. Geol. 2001, 181, 99–111. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Liu, C.; Cai, Y.; Tan, J.; Qiu, X.; Zhang, L.; Zhu, S. Lab Strontium and Sulfur Isotopic Characteristics of the Tangjiazhai Pb-Zn Deposit in Western Hunan Province, China: Denotative Significance for Ore-Forming Materials Source. Geol. China 2018, 45, 564–572. [Google Scholar]
- Wang, Q.; Tong, H.; Huang, C.-Y.; Chen, D. Tracing Fluid Sources and Formation Conditions of Miocene Hydrocarbon-Seep Carbonates in the Central Western Foothills, Central Taiwan. J. Asian Earth Sci. 2018, 168, 186–196. [Google Scholar] [CrossRef]
- Nozaki, Y.; Zhang, J.; Amakawa, H. The Fractionation between Y and Ho in the Marine Environment. Earth Planet. Sci. Lett. 1997, 148, 329–340. [Google Scholar] [CrossRef]
- Kamber, B.S.; Greig, A.; Collerson, K.D. A New Estimate for the Composition of Weathered Young Upper Continental Crust from Alluvial Sediments, Queensland, Australia. Geochim. Cosmochim. Acta 2005, 69, 1041–1058. [Google Scholar] [CrossRef]
- Jakubowicz, M.; Dopieralska, J.; Belka, Z. Tracing the Composition and Origin of Fluids at an Ancient Hydrocarbon Seep (Hollard Mound, Middle Devonian, Morocco): A Nd, REE and Stable Isotope Study. Geochim. Cosmochim. Acta 2015, 156, 50–74. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Z.; Zhou, M.; Li, X.; Jin, Z. Constraints of C–O–S–Pb Isotope Compositions and Rb–Sr Isotopic Age on the Origin of the Tianqiao Carbonate-Hosted Pb–Zn Deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Zhou, J.X.; Wang, X.C.; Wilde, S.A.; Luo, K.; Huang, Z.L.; Wu, T.; Jin, Z.G. New Insights into the Metallogeny of MVT Zn-Pb Deposits: A Case Study from the Nayongzhi in South China, Using Field Data, Fluid Compositions, and in Situ S-Pb Isotopes. Am. Mineral. 2018, 103, 91–108. [Google Scholar] [CrossRef]
- Taylor, H.P.; Frechen, J.; Degens, E.T. Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochim. Cosmochim. Acta 1967, 31, 407–430. [Google Scholar] [CrossRef]
- Grandia, F.; Cardellach, E.; Canals, A.; Banks, D.A. Geochemistry of the Fluids Related to Epigenetic Carbonate-Hosted Zn-Pb Deposits in the Maestrat Basin, Eastern Spain: Fluid Inclusion and Isotope (Cl, C, O, S, Sr) Evidence. Econ. Geol. 2003, 98, 933–954. [Google Scholar] [CrossRef]
- Grandia, F.; Canals, A.; Cardellach, E.; Banks, D.A.; Perona, J. Origin of Ore-Forming Brines in Sediment-Hosted Zn-Pb Deposits of the Basque-Cantabrian Basin, Northern Spain. Econ. Geol. 2003, 98, 1397–1411. [Google Scholar] [CrossRef]
- Veizer, J.; Hoefs, J. The Nature of O18/O16 and C13/C12 Secular Trends in Sedimentary Carbonate Rocks. Geochim. Cosmochim. Acta 1976, 40, 1387–1395. [Google Scholar] [CrossRef]
- Spangenberg, J.; Fontboté, L.; Sharp, Z.D.; Hunziker, J. Carbon and Oxygen Isotope Study of Hydrothermal Carbonates in the Zinc-Lead Deposits of the San Vicente District, Central Peru: A Quantitative Modeling on Mixing Processes and CO2 Degassing. Chem. Geol. 1996, 133, 289–315. [Google Scholar] [CrossRef]
- Liu, J.M.; Liu, J.J. Basin fluid genetic model of sediment-hosted micro-disseminated gold deposits in the gold-triangle area between Guizhou, Guangxi and Yunnan. Acta Mineral. Sin. 1997, 17, 448–456. [Google Scholar]
- Kump, L.R.; Arthur, M.A. Interpreting Carbon-Isotope Excursions: Carbonates and Organic Matter. Chem. Geol. 1999, 161, 181–198. [Google Scholar] [CrossRef]
- Bau, M. Rare-Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Bau, M.; Moeller, P. Rare Earth Elements Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite. Mineral. Petrol. 1992, 45, 231–246. [Google Scholar] [CrossRef]
- Wenbo, L.; Zhilong, H.; Liang, Q. REE Geochemistry of Sulfides from the Huize Zn-Pb Ore Field, Yunnan Province: Implication for the Sources of Ore-Forming Metals. Acta Geol. Sin.-Engl. Ed. 2007, 81, 442–449. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Bi, X.W.; He, L.P.; Wu, L.Y.; Feng, C.X.; Zou, Z.C.; Tao, Y.; Hu, R.Z. Geochemical Characteristics of Trace Elements, Fluid Inclusions and Carbon-Oxygen Isotopes of Calcites in the Jinding Zn-Pb Deposit, Lanping, China. Acta Petrol. Sin. 2011, 27, 2635–2645. [Google Scholar]
- Michard, A. Rare Earth Element Systematics in Hydrothermal Fluids. Geochim. Cosmochim. Acta 1989, 53, 745–750. [Google Scholar] [CrossRef]
- Bau, M.; Romer, R.L.; Lüders, V.; Dulski, P. Tracing Element Sources of Hydrothermal Mineral Deposits: REE and Y Distribution and Sr-Nd-Pb Isotopes in Fluorite from MVT Deposits in the Pennine Orefield, England. Miner. Depos. 2003, 38, 992–1008. [Google Scholar] [CrossRef]
- Zhong, S.; Mucci, A. Partitioning of Rare Earth Elements (REEs) between Calcite and Seawater Solutions at 25 °C and 1 Atm, and High Dissolved REE Concentrations. Geochim. Cosmochim. Acta 1995, 59, 443–453. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Stetzenbach, K.J.; Hodge, V.F. Hodge Rare Earth Elements as Geochemical Tracers of Regional Groundwater Mixing. Geochim. Cosmochim. Acta 1997, 61, 3605–3618. [Google Scholar] [CrossRef]
- Huang, Z.L.; Li, W.; Jin, C.; Jing, W.; Han, R.; Liu, C. REE Geochemistry of Calcites from Fault Zone of Huize Superlarge Pb-Zn Deposits in Yunnan Province. Miner. Depos. 2003, 22, 199–207. [Google Scholar]
- Debruyne, D.; Hulsbosch, N.; Muchez, P. Unraveling Rare Earth Element Signatures in Hydrothermal Carbonate Minerals Using a Source–Sink System. Ore Geol. Rev. 2016, 72, 232–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Yuan, F.; Deng, Y.; Wang, F.; White, N.C.; Huizenga, J.M.; Li, Y.; Li, X.; Zhou, T. Ore-Fluid Geochemistry of the Hehuashan Pb–Zn Deposit in the Tongling Ore District, Anhui Province, China: Evidence from REE and C–H–O Isotopes of Calcite. Ore Geol. Rev. 2020, 117, 103279. [Google Scholar] [CrossRef]
- Hu, Y.S.; Ye, L.; Wei, C.; Huang, Z.L.; Wang, H.Y. REE Geochemistry of the Hydrothermal Calcites from the Huayuan Orefield, in the Western Hunan, China. Acta Mineral. Sin. 2020, 40, 441–449. [Google Scholar]
- Wang, Z.G.; Yu, X.Y.; Zhao, Z.H. Rare Earth Element Geochemistry; Science Press: Beijing, China, 1989. [Google Scholar]
- Lüders, V.; Mller, P.; Dulski, P. REE Fractionation in Carbonates and Fluorite. In Formation of Hydrothermal Vein Deposits: A case study of the Pb-Zn-, barite and fluorite deposits of 1993; Gebrüder Borntraeger: Stuttgart, Germany, 1993; Volume 30, pp. 133–150. [Google Scholar]
- Möller, P.; Bau, M.; Dulski, P.; Lüders, V. REE and Yttrium Fractionation in Fluorite and Their Bearing on Fluorite Formation. In Proceedings of the Ninth Quadrennial IAGOD Symposium, Beijing, China, 12–18 August 1998; pp. 575–592. [Google Scholar]
- Sverjensky, D.A. Europium Redox Equilibria in Aqueous Solution. Earth Planet. Sci. Lett. 1984, 67, 70–78. [Google Scholar] [CrossRef]
- Wood, S.A. The Aqueous Geochemistry of the Rare-Earth Elements and Yttrium. Chem. Geol. 1990, 82, 159–186. [Google Scholar] [CrossRef]
- Elderfield, H.; Sholkovitz, E.R. Rare Earth Elements in the Pore Waters of Reducing Nearshore Sediments. Earth Planet. Sci. Lett. 1987, 82, 280–288. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Rare Earth Elements and Hydrothermal Ore Formation Processes. Ore Geol. Rev. 1992, 7, 25–41. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Anderson, G. Precipitation of Mississippi Valley-Type Ores. Econ. Geol. 1975, 70, 937–942. [Google Scholar] [CrossRef]
- Spirakis, C.S.; Heyl, A.V. Evaluation of Proposed Precipitation Mechanisms for Mississippi Valley-Type Deposits. Ore Geol. Rev. 1995, 10, 1–17. [Google Scholar] [CrossRef]
- Liu, Y.C.; Hou, Z.Q.; Yang, Z.S.; Tian, S.H.; Song, Y.C.; Yang, Z.M.; Wang, Z.L.; Zheng, L.I. Some Insights and Advances in Study of Mississippi Valley-Type(MVT) Lead-Zinc Deposits. Miner. Depos. 2008, 27, 253–264. [Google Scholar]
- Machel, H.G. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights. Sedim. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Anderson, G.M.; Thom, J. The Role of Thermochemical Sulfate Reduction in the Origin of Mississippi Valley-Type Deposits. II. Carbonate–Sulfide Relationships. Geofluids 2007, 8, 27–34. [Google Scholar] [CrossRef]
- Thom, J.; Anderson, G.M. The Role of Thermochemical Sulfate Reduction in the Origin of Mississippi Valley-Type Deposits. I. Experimental Results. Geofluids 2007, 8, 16–26. [Google Scholar] [CrossRef]
- Anderson, G.M. Some Geochemical Aspects of Sulfide Precipitation in Carbonate Rocks; James Cook University of North Queensland: Townsville, Australia, 1983. [Google Scholar]
- Taylor, M.; Kesler, S.E.; Cloke, P.L.; Kelly, W.C. Fluid Inclusion Evidence for Fluid Mixing, Mascot-Jefferson City Zinc District, Tennessee. Econ. Geol. 1983, 78, 1425–1439. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Leach, D.L.; Hofstra, A.H.; Landis, G.P.; Rowan, E.L.; Viets, J.G. Chemical Reaction Path Modeling of Ore Deposition in Mississippi Valley-Type Pb-Zn Deposits of the Ozark Region, U.S. Midcontinent. Econ. Geol. 1994, 89, 1361–1383. [Google Scholar] [CrossRef]
- Gleeson, S.A.; Turner, W.A. Fluid Inclusion Constraints on the Origin of the Brines Responsible for Pb-Zn Mineralization at Pine Point and Coarse Non-Saddle and Saddle Dolomite Formation in Southern Northwest Territories. Geofluids 2007, 7, 51–68. [Google Scholar] [CrossRef]
- Pfaff, K.; Hildebrandt, L.H.; Leach, D.L.; Jacob, D.E.; Markl, G. Formation of the Wiesloch Mississippi Valley-Type Zn-Pb-Ag Deposit in the Extensional Setting of the Upper Rhinegraben, SW Germany. Miner. Depos. 2010, 45, 647–666. [Google Scholar] [CrossRef]
- Corbella, M.; Ayora, C.; Cardellach, E. Hydrothermal Mixing, Carbonate Dissolution and Sulfide Precipitation in Mississippi Valley-Type Deposits. Miner. Depos. 2004, 39, 344–357. [Google Scholar] [CrossRef]
- Shelton, K.L.; Gregg, J.M.; Johnson, A.W. Replacement Dolomites and Ore Sulfides as Recorders of Multiple Fluids and Fluid Sources in the Southeast Missouri Mississippi Valley-Type District: Halogen-87Sr/86Sr-18O-34S Systematics in the Bonneterre Dolomite. Econ. Geol. 2009, 104, 733–748. [Google Scholar] [CrossRef]
Types | Statistics | Na | Al | Si | Mn | Fe | Zn | Sr | Ba | Pb | La | Ce | Pr | Nd | Sm | Eu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 (n = 8) | max | 516.21 | 754.03 | 1504.98 | 137.45 | 642.03 | 53.67 | 42.34 | 3.42 | 21.78 | 1.61 | 2.25 | 0.32 | 0.94 | 0.18 | 0.04 |
min | 293.14 | 255.54 | 721.40 | 79.68 | 342.28 | 4.92 | 15.58 | 2.03 | 0.52 | 0.35 | 1.00 | 0.17 | 0.44 | 0.11 | 0.02 | |
mean | 390.299 | 499.680 | 1204.138 | 110.954 | 476.725 | 22.115 | 26.064 | 2.653 | 4.936 | 1.092 | 1.365 | 0.214 | 0.615 | 0.131 | 0.031 | |
D2 (n = 8) | max | 302.930 | 31.590 | 399.330 | 110.240 | 539.230 | 161.040 | 16.860 | 1.100 | 7.980 | 3.152 | 3.412 | 0.513 | 1.729 | 0.304 | 0.091 |
min | 108.590 | 16.650 | 302.710 | 98.520 | 314.170 | 3.190 | 7.820 | 0.040 | 0.320 | 0.631 | 1.067 | 0.194 | 0.615 | 0.135 | 0.033 | |
mean | 196.100 | 26.556 | 348.129 | 103.578 | 413.076 | 37.204 | 11.809 | 0.575 | 2.454 | 1.910 | 2.303 | 0.358 | 1.214 | 0.232 | 0.065 | |
HD3 (n = 8) | max | 177.570 | 30.150 | 488.160 | 118.050 | 433.760 | 168.670 | 12.980 | 0.980 | 1.320 | 3.881 | 3.582 | 0.537 | 1.884 | 0.321 | 0.126 |
min | 113.130 | 19.970 | 347.400 | 106.280 | 341.690 | 6.730 | 8.090 | 0.230 | 0.146 | 1.556 | 1.575 | 0.294 | 0.822 | 0.174 | 0.072 | |
mean | 145.939 | 23.939 | 389.444 | 110.488 | 383.175 | 36.743 | 10.006 | 0.719 | 0.396 | 2.356 | 2.287 | 0.376 | 1.243 | 0.239 | 0.090 | |
HD4 (n = 8) | max | 93.080 | 242.920 | 363.950 | 128.420 | 92.270 | 17.470 | 86.470 | 1.010 | 0.390 | 1.729 | 2.935 | 0.495 | 1.838 | 0.317 | 0.115 |
min | 29.110 | 132.300 | 271.960 | 101.320 | 64.470 | 1.930 | 75.540 | 0.150 | 0.049 | 0.983 | 1.197 | 0.250 | 0.722 | 0.146 | 0.034 | |
mean | 62.875 | 179.826 | 330.801 | 116.775 | 73.861 | 5.269 | 79.956 | 0.549 | 0.227 | 1.305 | 2.014 | 0.361 | 1.261 | 0.230 | 0.066 | |
C5 (n = 8) | max | 6.00 | 12.26 | 474.44 | 34.40 | 133.43 | 3.91 | 336.94 | 0.32 | 0.75 | 2.98 | 3.76 | 0.57 | 2.14 | 0.33 | 0.13 |
min | 0.13 | 5.02 | 343.10 | 25.06 | 105.78 | 0.70 | 244.63 | 0.00 | 0.07 | 0.41 | 0.60 | 0.14 | 0.53 | 0.15 | 0.06 | |
mean | 2.58 | 9.36 | 408.13 | 30.61 | 116.68 | 2.05 | 305.03 | 0.15 | 0.31 | 1.75 | 2.18 | 0.36 | 1.25 | 0.26 | 0.10 | |
Types | Statistics | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Υ | ΣREE | LREE | HREE | δEu | δCe | Y/Ho |
D1 (n = 8) | max | 0.15 | 0.03 | 0.14 | 0.03 | 0.07 | 0.02 | 0.08 | 0.01 | 0.97 | 5.86 | 5.35 | 0.51 | 1.01 | 1.14 | 51.47 |
min | 0.07 | 0.02 | 0.07 | 0.02 | 0.05 | 0.01 | 0.01 | 0.00 | 0.55 | 2.56 | 2.30 | 0.26 | 0.68 | 0.58 | 23.74 | |
mean | 0.106 | 0.026 | 0.093 | 0.024 | 0.063 | 0.012 | 0.054 | 0.007 | 0.763 | 3.831 | 3.448 | 0.383 | 0.828 | 0.726 | 33.211 | |
D2 (n = 8) | max | 0.300 | 0.051 | 0.243 | 0.044 | 0.131 | 0.018 | 0.098 | 0.013 | 2.321 | 9.858 | 9.064 | 0.814 | 1.227 | 0.804 | 56.718 |
min | 0.093 | 0.022 | 0.085 | 0.020 | 0.053 | 0.007 | 0.029 | 0.002 | 0.971 | 3.117 | 2.768 | 0.349 | 0.682 | 0.531 | 39.538 | |
mean | 0.210 | 0.037 | 0.163 | 0.036 | 0.090 | 0.013 | 0.059 | 0.009 | 1.714 | 6.697 | 6.082 | 0.616 | 0.913 | 0.695 | 47.964 | |
HD3 (n = 8) | max | 0.354 | 0.047 | 0.219 | 0.041 | 0.090 | 0.015 | 0.042 | 0.010 | 2.424 | 11.143 | 10.331 | 0.812 | 1.753 | 0.705 | 65.250 |
min | 0.171 | 0.023 | 0.107 | 0.024 | 0.046 | 0.010 | 0.014 | 0.003 | 1.376 | 4.994 | 4.528 | 0.443 | 0.944 | 0.521 | 49.676 | |
mean | 0.233 | 0.036 | 0.153 | 0.032 | 0.072 | 0.012 | 0.032 | 0.006 | 1.854 | 7.164 | 6.589 | 0.575 | 1.194 | 0.598 | 57.916 | |
HD4 (n = 8) | max | 0.340 | 0.056 | 0.269 | 0.055 | 0.136 | 0.027 | 0.110 | 0.019 | 2.514 | 8.194 | 7.287 | 0.907 | 1.223 | 0.878 | 53.065 |
min | 0.102 | 0.021 | 0.090 | 0.024 | 0.058 | 0.008 | 0.024 | 0.002 | 1.025 | 3.795 | 3.439 | 0.356 | 0.671 | 0.531 | 34.079 | |
mean | 0.209 | 0.037 | 0.174 | 0.039 | 0.094 | 0.017 | 0.065 | 0.010 | 1.771 | 5.882 | 5.236 | 0.646 | 0.912 | 0.714 | 45.242 | |
C5 (n = 8) | max | 0.43 | 0.06 | 0.29 | 0.06 | 0.14 | 0.02 | 0.10 | 0.02 | 3.67 | 10.78 | 9.84 | 1.03 | 1.56 | 0.86 | 72.56 |
min | 0.18 | 0.04 | 0.15 | 0.04 | 0.07 | 0.01 | 0.02 | 0.00 | 2.13 | 2.46 | 1.89 | 0.58 | 0.63 | 0.55 | 42.24 | |
mean | 0.32 | 0.05 | 0.20 | 0.05 | 0.10 | 0.01 | 0.05 | 0.01 | 2.77 | 6.68 | 5.89 | 0.79 | 1.04 | 0.67 | 59.26 |
Mineral Deposit | Sample No. | Period | δ13CPDB (‰) | δ18OSMOW (‰) |
---|---|---|---|---|
Fuli | FL3-6 | Wall rock | 4.08 | 19.56 |
FL1-6 | D1 | 3.50 | 20.55 | |
FL8-2 | D1 | 2.59 | 16.98 | |
FL9-I | D1 | 2.62 | 17.05 | |
FL6-4 | D2 | 2.92 | 16.91 | |
FL-8-3 | HD3 | 1.97 | 16.46 | |
FL3-3 | HD3 | 2.95 | 16.76 | |
FL3-1 | HD3 | 2.84 | 16.33 | |
FL3-2 | HD3 | 2.82 | 16.70 | |
FL14-1 | HD3 | −4.13 | 15.02 | |
FL 4-6 | HD4 | 2.78 | 16.18 | |
FL4-2 | HD4 | 3.02 | 16.64 | |
FL1-2 | HD4 | 1.08 | 13.29 | |
FL6-1 | HD4 | −2.54 | 15.51 | |
FL8-1 | HD4 | −3.18 | 14.76 | |
FLASCAL | C5 | −0.85 | 22.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Li, B.; Zhang, C.; Qin, H.; Li, G.; Zhang, X. Mineralogical and Geochemical Characteristics of Carbonates and Their Geological Significance to the Fuli Pb-Zn Deposit, Yunnan Province. Minerals 2022, 12, 1317. https://doi.org/10.3390/min12101317
Liang X, Li B, Zhang C, Qin H, Li G, Zhang X. Mineralogical and Geochemical Characteristics of Carbonates and Their Geological Significance to the Fuli Pb-Zn Deposit, Yunnan Province. Minerals. 2022; 12(10):1317. https://doi.org/10.3390/min12101317
Chicago/Turabian StyleLiang, Xingyu, Bo Li, Chengnan Zhang, Huaikun Qin, Gao Li, and Xinyue Zhang. 2022. "Mineralogical and Geochemical Characteristics of Carbonates and Their Geological Significance to the Fuli Pb-Zn Deposit, Yunnan Province" Minerals 12, no. 10: 1317. https://doi.org/10.3390/min12101317
APA StyleLiang, X., Li, B., Zhang, C., Qin, H., Li, G., & Zhang, X. (2022). Mineralogical and Geochemical Characteristics of Carbonates and Their Geological Significance to the Fuli Pb-Zn Deposit, Yunnan Province. Minerals, 12(10), 1317. https://doi.org/10.3390/min12101317