Dissolution of the Eudialyte-Group Minerals: Experimental Modeling of Natural Processes
Abstract
:1. Introduction
- N(1–5) = Na, H3O+, K, Sr, REE, Y, Ba, Mn, Ca, □ (vacancy);
- M(1) = Ca, Mn, REE, Na, Fe;
- M(2) = IV,VFe2+, V,VIFe3+, V,VIMn2+, V,VINa, IV,VZr;
- M(3) and M(4) = IVSi, VINb, VITi, VIW6+, □;
- Z = Zr, Ti, Nb;
- Ø = O, (OH);
- X = Cl, F, S2−, H2O, CO3, and SO4.
2. Geological and Petrography Backgrounds
- (1)
- Layered complex (77% massif’s volume; thickness about 1700 m). This complex consists of numerous sub-horizontal layers or “rhythms” (Figure 1). Each rhythm is a sequence of rocks (from top to bottom): lujavrite–foyaite–urtite or lujavrite–foyaite. Lujavrite is meso- to melanocratic nepheline syenite with a trachytoid texture; foyaite is leucocratic nepheline syenite, and urtite is an almost monomineral nepheline rock. The transitions between different rocks within the same rhythm are gradual, and the boundaries between the rhythms are sharp and are often marked by pegmatites.
- (2)
- Eudialyte complex (18% massif’s volume; thickness varies from 100 to 800 m). This complex overlies the layered complex (Figure 1) and mainly consists of lujavrite enriched in eudialyte-group minerals, co-called eudialyte lujavrite. Lenses and sheet-like bodies of foyaite, as well as fine-grained/porphyritic nepheline syenites, are irregularly located among eudialyte lujavrite.
- (3)
- Poikilitic complex (5% massif’s volume) consists of leucocratic feldspathoid syenites, in which grains of feldspathoids are poikilitically incorporated into large crystals of alkali feldspar. These rocks form lenses, or irregularly shaped bodies, which are located in both the layered and eudialyte complexes.
3. Materials and Methods
3.1. Materials and Design of the Experimental Study
3.2. Chemical Composition of Minerals
3.3. Experimental Conditions
3.4. Powder X-ray Diffraction
3.5. Compositions of the Solutions
4. Results
4.1. Fresh EGMs from Rocks of the Lovozero Massif
4.2. Partially Dissolved EGMs from the Rocks of the Lovozero Massif (Natural Prototype for the Experiments)
4.3. Results of Experiments (Fresh → Partially Dissolved EGM)
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stromeyer, F. Summary of Meeting 16 December 1819. Göttingische Gelehrte Anz. 1819, 3, 1993–2000. [Google Scholar]
- Sjöqvist, A.S.L. The Tale of Greenlandite: Commemorating the Two-Hundredth Anniversary of Eudialyte (1819–2019). Minerals 2019, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Aksenov, S.M.; Kabanova, N.A.; Chukanov, N.V.; Panikorovskii, T.L.; Blatov, V.A.; Krivovichev, S.V. The Role of Local Heteropolyhedral Substitutions in the Stoichiometry, Topological Characteristics and Ion-Migration Paths in the Eudialyte-Related Structures: A Quantitative Analysis. Acta Crystallogr. Sect. B 2022, 78, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Rastsvetaeva, R.K.; Chukanov, N.V.; Aksenov, S.M. Minerals of Eudialyte Group: Crystal Chemistry, Properties, Genesis; University of Nizhni Novgorod: Nizhniy Novgorod, Russia, 2012. (In Russian) [Google Scholar]
- Rastsvetaeva, R.K. Structural Mineralogy of the Eudialyte Group: A Review. Crystallogr. Rep. 2007, 52, 47–64. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Rastsvetaeva, R.K.; Rozenberg, K.A.; Aksenov, S.M.; Pekov, I.V.; Belakovsky, D.I.; Kristiansen, R.; Van, K.V. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2∙3H2O, a New Mineral of the Eudialyte Group. Geol. Ore Depos. 2017, 59, 592–600. [Google Scholar] [CrossRef]
- Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K.; Rozenberg, K.A. Davinciite, Na12K3Ca6Fe32+Zr3(Si26O73OH)Cl2, a New K,Na-Ordered Mineral of the Eudialyte Group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2013, 55, 532–540. [Google Scholar] [CrossRef]
- Mikhailova, J.A.; Stepenshchikov, D.G.; Kalashnikov, A.O.; Aksenov, S.M. Who Is Who in the Eudialyte Group: A New Algorithm for the Express Allocation of a Mineral Name Based on the Chemical Composition. Minerals 2022, 12, 224. [Google Scholar] [CrossRef]
- Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K.; Rozenberg, K.A. Andrianovite, Na12(K,Sr,Ce)3Ca6Mn3Zr3Nb(Si25O73)(O,H2O,OH)5, a New Potassium-Rich Mineral Species of the Eudialyte Group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2008, 50, 705–712. [Google Scholar] [CrossRef]
- Mclemore, V.T. Background and Perspectives on the Pajarito Mountain Yttrium-Zirconium Deposit, Mescalero Apache Indian Reseruation, Otero Gounty, New Mexico. New Mex. Geol. 1990, 12, 22. [Google Scholar]
- Kogarko, L.N. Ore-Forming Potential of Alkaline Magmas. Lithos 1990, 26, 167–175. [Google Scholar] [CrossRef]
- Sørrensen, H. Agpaitic Nepheline Syenites: A Potential Source of Rare Elements. Appl. Geochem. 1992, 7, 417–427. [Google Scholar] [CrossRef]
- Schilling, J.; Marks, M.A.W.; Wenzel, T.; Vennemann, T.; Horváth, L.; Tarassoff, P.; Jacob, D.E.; Markl, G. The Magmatic to Hydrothermal Evolution of the Intrusive Mont Saint-Hilaire Complex: Insights into the Late-Stage Evolution of Peralkaline Rocks. J. Petrol. 2011, 52, 2147–2185. [Google Scholar] [CrossRef]
- Sjöqvist, A.S.L.; Cornell, D.H.; Andersen, T.; Erambert, M.; Ek, M.; Leijd, M. Three Compositional Varieties of Rare-Earth Element Ore: Eudialyte-Group Minerals from the Norra Kärr Alkaline Complex, Southern Sweden. Minerals 2013, 3, 94–120. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s Rare Earth Element Resource Potential: An Overview of REE Metallogenetic Provinces and Their Geodynamic Setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Stark, T.; Silin, I.; Wotruba, H. Mineral Processing of Eudialyte Ore from Norra Kärr. J. Sustain. Metall. 2017, 3, 32–38. [Google Scholar] [CrossRef]
- Davris, P.; Stopic, S.; Balomenos, E.; Panias, D.; Paspaliaris, I.; Friedrich, B. Leaching of Rare Earth Elements from Eudialyte Concentrate by Suppressing Silica Gel Formation. Min. Eng. 2017, 108, 115–122. [Google Scholar] [CrossRef]
- Lebedev, V.N. Sulfuric Acid Technology for Processing of Eudialyte Concentrate. Russ. J. Appl. Chem. 2003, 76, 1559–1563. [Google Scholar] [CrossRef]
- Balinski, A.; Atanasova, P.; Wiche, O.; Kelly, N.; Reuter, M.A.; Scharf, C. Selective Leaching of Rare Earth Elements (REEs) from Eudialyte Concentrate after Sulfation and Thermal Decomposition of Non-Ree Sulfates. Minerals 2019, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, O.; Ferraris, G.; Gault, R.A.; Grice, J.D.; Kampf, A.R.; Pekov, I.V. The Nomenclature of Eudialyte-Group Minerals. Can. Mineral. 2003, 41, 785–794. [Google Scholar] [CrossRef]
- Marks, M.A.; Markl, G. A Global Review on Agpaitic Rocks. Earth Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
- Sorensen, H. The Agpaitic Rocks—An Overview. Miner. Mag. 1997, 61, 485–498. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. The Mineralogy of Ba- and Zr-Rich Alkaline Pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): Comparisons between Potassic and Sodic Agpaitic Pegmatites. Contrib. Mineral. Petrol. 2002, 143, 93–114. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Santi, P.; Upton, B.G.J. Evolutionary Stages of Crystallization of Weakly Peralkaline Syenites: Evidence from Ejecta in the Plinian Deposits of Agua de Pau Volcano (São Miguel, Azores Islands). Miner. Mag. 2003, 67, 749–767. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Orlova, M.P.; Woolley, A.R. Alkaline Rocks and Carbonatites Part 2: Former USSR; Springer Science + Business Media: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Harris, C.; Marsh, J.S.; Milner, S.C. Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia: Evidence for the Progressively Decreasing Effect of Crustal Contamination. J. Petrol. 1999, 40, 1377–1397. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Liferovich, R.P. Subsolidus Deuteric/Hydrothermal Alteration of Eudialyte in Lujavrite from the Pilansberg Alkaline Complex, South Africa. Lithos 2006, 91, 352–372. [Google Scholar] [CrossRef]
- Coulson, I.M. Post-Magmatic Alteration in Eudialyte from the North Qoroq Centre, South Greenland. Miner. Mag. 1997, 61, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.H.; Chakrabarty, A. Paragenesis and Decomposition Assemblage of a Mn-Rich Eudialyte from the Sushina Peralkaline Nepheline Syenite Gneiss, Paschim Banga, India. Lithos 2012, 152, 218–226. [Google Scholar] [CrossRef]
- Estrade, G.; Salvi, S.; Béziat, D. Crystallization and Destabilization of Eudialyte-Group Minerals in Peralkaline Granite and Pegmatite: A Case Study from the Ambohimirahavavy Complex, Madagascar. Miner. Mag. 2018, 82, 375–399. [Google Scholar] [CrossRef]
- Borst, A.M.; Friis, H.; Andersen, T.; Nielsen, T.F.D.; Waight, T.E.; Smit, M.A. Zirconosilicates in the Kakortokites of the Ilímaussaq Complex, South Greenland: Implications for Fluid Evolution and HFSE-REE Mineralisation in Agpaitic Systems. Miner. Mag. 2016, 80, 5–30. [Google Scholar] [CrossRef] [Green Version]
- van de Ven, M.A.J.; Borst, A.M.; Davies, G.R.; Hunt, E.J.; Finch, A.A. Hydrothermal Alteration of Eudialyte-Hosted Critical Metal Deposits: Fluid Source and Implications for Deposit Grade. Minerals 2019, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Salvi, S. Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Econ. Geol. 2000, 95, 559–576. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Nielsen, T.F.D. Compositional Variation of Eudialyte-Group Minerals from the Lovozero and Ilímaussaq Complexes and on the Origin of Peralkaline Systems. Minerals 2021, 11, 548. [Google Scholar] [CrossRef]
- Pekov, I.V. Genetic Mineralogy and Crystal Chemistry of Rare Elements in Highly Alkaline Postmagmatic Systems. Ph.D. Thesis, Moscow State University, Moskow, Russia, 2005. (In Russian). [Google Scholar]
- Sokolova, M.N. Typomorphism of Minerals of Ultraagpaitic Associations; Nauka: Moskow, Russia, 1986. (In Russian) [Google Scholar]
- Semenov, E.I. Mineralogy of the Lovozero Alkaline Massif; Nauka: Moscow, Russia, 1972. (In Russian) [Google Scholar]
- Khomyakov, A.P. Mineralogy of Hyperagpaitic Alkaline Rocks; Oxford Scientific Publications: Oxford, UK, 1995. [Google Scholar]
- Pekov, I.V. Lovozero Massif: History, Pegmatites, Minerals; Ocean Pictures Ltd.: Moscow, Russia, 2002. (In Russian) [Google Scholar]
- Kramm, U.; Kogarko, L.N. Nd and Sr Isotope Signatures of the Khibina and Lovozero Agpaitic Centres, Kola Alkaline Province, Russia. Lithos 1994, 32, 225–242. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Wu, F.Y.; Yang, Y.H. In Situ U-Pb, Sr and Nd Isotopic Analysis of Loparite by LA-(MC)-ICP-MS. Chem. Geol. 2011, 280, 191–199. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Marks, M.A.W.; Liu, Z.C.; Zhou, Q.; Ge, W.C.; Yang, J.S.; Zhao, Z.F.; Mitchell, R.H.; Markl, G. In Situ U-Pb, Sr, Nd and Hf Isotopic Analysis of Eudialyte by LA-(MC)-ICP-MS. Chem. Geol. 2010, 273, 8–34. [Google Scholar] [CrossRef]
- Korchak, Y.A.; Men’shikov, Y.P.; Pakhomovskii, Y.A.; Yakovenchuk, V.N.; Ivanyuk, G.Y. Trap Formation of the Kola Peninsula. Petrology 2011, 19, 87–101. [Google Scholar] [CrossRef]
- Eliseev, N.A. Devonian Volcanic Rocks of the Lovozero Tundras. ZVMO 1946, 75, 113. (In Russian) [Google Scholar]
- Gerasimovsky, V.I.; Volkov, V.P.; Kogarko, L.N.; Polyakov, A.I.; Saprykina, T.V.; Balashov, Y.A. Geochemistry of the Lovozero Alkaline Massif; Nauka: Moscow, Russia, 1966. (In Russian) [Google Scholar]
- Bussen, I.V.; Sakharov, A.S. Petrology of the Lovozero Alkaline Massif; Nauka: Leningrad, Russia, 1972. (In Russian) [Google Scholar]
- Vlasov, K.A.; Kuzmenko, M.V.; Eskova, E.M. Lovozero Alkaline Massif; Academy of sciences SSSR: Moskow, Russia, 1959. (In Russian) [Google Scholar]
- Fersman, A.E. Minerals of the Khibina and Lovozero Tundras; Academy of Sciences of the USSR: Moscow-Leningrad, Russia, 1937. (In Russian) [Google Scholar]
- Kogarko, L.; Nielsen, T.F.D. Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia. Minerals 2020, 10, 1036. [Google Scholar] [CrossRef]
- Panikorovskii, T.L.; Mikhailova, Y.A.; Pakhomovsky, Y.A.; Ivanyuk, G.Y. Crystal Chemistry of the Eudialyte Group Minerals from the Lovozero Eudialyte Complex, Kola Peninsula, Russia. In Proceedings of the Magmatism of the Earth and Related Strategic Metal Deposits—2019, St Petersburg, Russia, 23–26 May 2019; pp. 221–223. [Google Scholar]
- Mikhailova, J.A.; Pakhomovsky, Y.A.; Panikorovskii, T.L.; Bazai, A.V.; Yakovenchuk, V.N. Eudialyte Group Minerals from the Lovozero Alkaline Massif, Russia: Occurrence, Chemical Composition, and Petrogenetic Significance. Minerals 2020, 10, 1070. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Chukanov, N.V.; Van, K.V. New Data on the Isomorphism in Eudialyte-Group Minerals. VII: Crystal Structure of the Eudialyte–Sergevanite Series Mineral from the Lovozero Alkaline Massif. Crystallogr. Rep. 2020, 65, 554–559. [Google Scholar] [CrossRef]
- Borneman-Starynkevich, I.D. Eudialyte. In Isomorphism in Minerals; Nauka: Moscow, Russia, 1975. (In Russian) [Google Scholar]
- Bussen, I.V.; Rogachev, D.A. Rock-Forming Eudialyte of the Lovozero Alkaline Massif. Mater. Mineral. Kola Penins. 1967, 194. (In Russian) [Google Scholar]
- Kostyleva, E.E. Eudialyte as Zirconium Ore in the Khibiny and Lovozero Tundras. Khibiny’s Apatites 1933, 5, 148–153. (In Russian) [Google Scholar]
- Kostyleva, E.E. Isomorphic Eudialyte-Eucolith Series from Khibiny and Lovozero Tundras. Proc. Mineral. Mus. Acad. Sci. USSR 1929, 3, 169–222. (In Russian) [Google Scholar]
- Warr, L.N. IMA-CNMNC Approved Mineral Symbols. Miner. Mag 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Pekov, I.V.; Krivovichev, S.V.; Zolotarev, A.A.; Yakovenchuk, V.N.; Armbruster, T.; Pakhomovsky, Y.A. Crystal Chemistry and Nomenclature of the Lovozerite Group. Eur. J. Mineral. 2009, 21, 1061–1071. [Google Scholar] [CrossRef] [Green Version]
- Khomyakov, A.P. New in the Mineralogy of the Lovozerite Group. Proc. USSR Acad. Sci. 1977, 237, 199–202. [Google Scholar]
- Rozenberg, K.A.; Rastsvetaeva, R.K.; Khomyakov, A.P. Decationized and Hydrated Eudialytes. Oxonium Problem. Eur. J. Mineral. 2005, 17, 875–882. [Google Scholar] [CrossRef]
- Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K. Aqualite, a New Mineral Species of the Eudialyte Group from the Inagli Alkaline Pluton, Sakha-Yakutia, Russia, and the Problem of Oxonium in Hydrated Eudialytes. Geol. Ore Depos. 2007, 49, 739–751. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Khomyakov, A.P. Structural Characteristics of Na,Fe-Decationated Eudialyte with the Symmetry R3. Crystallogr. Rep. 2002, 47, 232–236. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Viktorova, K.A.; Aksenov, S.M. New Data on the Isomorphism in Eudialyte-Group Minerals. II. Refinement of the Aqualite Crystal Structure at 110 K. Crystallogr. Rep. 2018, 63, 891–896. [Google Scholar] [CrossRef]
- Ekimenkova, I.A.; Rastsvetaeva, R.K.; Chukanov, N.V. Crystal Structure of the Oxonium-Containing Analogue of Eudialyte. Proc. Russ. Acad. Sci. 2000, 371, 625–628. [Google Scholar]
- Chukanov, N.V.; Vigasina, M.F.; Rastsvetaeva, R.K.; Aksenov, S.M.; Mikhailova, J.A.; Pekov, I.v. The Evidence of Hydrated Proton in Eudialyte-Group Minerals Based on Raman Spectroscopy Data. J. Raman Spectrosc. 2022, 53, 1188–1203. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Aksenov, S.M.; Rozenberg, K.A. Crystal Structure and Genesis of the Hydrated Analog of Rastsvetaevite. Crystallogr. Rep. 2015, 60, 831–840. [Google Scholar] [CrossRef]
Abbreviation [57] | Mineral | IMA Formula |
---|---|---|
Ab | albite | Na(AlSi3O8) |
Aeg | aegirine | NaFe3+Si2O6 |
Ctp | catapleiite | Na2Zr(Si3O9)·2H2O |
EGM | eudialyte-group mineral | [20] |
Epd | elpidite | Na2ZrSi6O15·3H2O |
Gdn | gaidonnayite | Na2ZrSi3O9·2H2O |
LGM | lovozerite-group mineral | [58] |
Lop-Ce | loparite-(Ce) | (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6 |
Lvz | lovozerite | Na3CaZrSi6O15(OH)3 |
Marf | magnesio-arfvedsonite | NaNa2(Mg4Fe3+)Si8O22(OH)2 |
Mcc | microcline | K(AlSi3O8) |
Nph | nepheline | Na3K(Al4Si4O16) |
Ntr | natrolite | Na2(Si3Al2)O10·2H2O |
Rha-Ca | rhabdophane-(Ce) | Ce(PO4)·H2O |
Ter | terskite | Na4ZrSi6O16·2H2O |
Vsv | vlasovite | Na2ZrSi4O11 |
Wöh | wöhlerite | Na2Ca4Zr(Nb,Ti)(Si2O7)2(O,F)4 |
Zrn | zircon | Zr(SiO4) |
Zsl | zirsinalite | Na6CaZrSi6O18 |
Series of Experiments | Solution | Experiment | Volume of Solution, mL | Mass of EGM Grains, g | Temperature, °C | Time, Days |
---|---|---|---|---|---|---|
1 | H2O pH = 5.6 | Aks. 5 | 15 | 0.4000 | 230 | 10 |
Aks. 6 | 15 | 0.4009 | 230 | 20 | ||
Aks. 7 | 15 | 0.4072 | 230 | 30 | ||
Aks. 8 | 15 | 0.4000 | 230 | 40 | ||
2 | 0.5 mol/L NaCl pH = 3.4 | Aks. 1 | 15 | 0.4012 | 230 | 10 |
Aks. 2 | 15 | 0.4014 | 230 | 20 | ||
Aks. 3 | 15 | 0.4010 | 230 | 30 | ||
Aks. 4 | 15 | 0.4000 | 230 | 40 | ||
3 | 0.1 mol/L HCl pH = 1.8 | Aks. 9 | 15 | 0.4052 | 230 | 10 |
Aks. 10 | 15 | 0.4000 | 230 | 20 | ||
Aks. 11 | 15 | 0.4005 | 230 | 30 | ||
Aks. 12 | 15 | 0.4000 | 230 | 40 |
Sample | LV-230/210 | LV-32/128 | LV-309 | LV-156/36 |
---|---|---|---|---|
Analysis point | point 3, Figure 4a,b | point 4, Figure 4c,d | point 5, Figure 4e | point 6, Figure 4f |
Rock | eudialyte lujavrite | eudialyte lujavrite | foyaite | eudialyte lujavrite |
Nb2O5 | 0.96 | 0.75 | 0.73 | 0.60 |
SiO2 | 49.52 | 51.84 | 52.81 | 52.60 |
TiO2 | 0.65 | 0.43 | 0.46 | 0.59 |
ZrO2 | 12.21 | 12.43 | 12.77 | 14.04 |
Al2O3 | 0.17 | 0.19 | 0.19 | 0.35 |
La2O3 | 0.30 | 0.55 | 0.66 | 0.26 |
Ce2O3 | 0.86 | 1.21 | 1.52 | 0.59 |
Nd2O3 | 0.40 | 0.37 | 0.50 | 0.30 |
FeO | 1.58 | 1.66 | 1.29 | 2.96 |
MnO | 2.44 | 3.09 | 3.40 | 2.42 |
MgO | b.d.l. | b.d.l. | b.d.l. | 0.10 |
CaO | 8.10 | 8.15 | 6.99 | 7.33 |
SrO | 2.20 | 2.19 | 1.43 | 2.04 |
BaO | 0.33 | 0.23 | 0.37 | 0.13 |
Na2O | 16.39 | 7.87 | 6.19 | 5.43 |
K2O | 0.30 | 0.49 | 1.07 | 0.59 |
Cl | 1.40 | 1.14 | 0.77 | 1.41 |
–O=Cl | 0.32 | 0.26 | 0.17 | 0.30 |
sum | 97.49 | 92.33 | 90.98 | 91.44 |
Formula based on (Si + Al + Zr + Ti + Hf + Nb + Ta + W) = 29 apfu | ||||
Nb | 0.22 | 0.17 | 0.16 | 0.13 |
Si | 25.37 | 25.57 | 25.55 | 25.18 |
Ti | 0.25 | 0.16 | 0.17 | 0.21 |
Zr | 3.05 | 2.99 | 3.01 | 3.28 |
Al | 0.10 | 0.11 | 0.11 | 0.20 |
La | 0.06 | 0.10 | 0.12 | 0.04 |
Ce | 0.16 | 0.22 | 0.27 | 0.10 |
Nd | 0.07 | 0.06 | 0.09 | 0.05 |
Fe | 0.68 | 0.68 | 0.52 | 1.19 |
Mn | 1.06 | 1.29 | 1.39 | 0.98 |
Mg | – | – | – | 0.07 |
Ca | 4.45 | 4.31 | 3.62 | 3.76 |
Sr | 0.65 | 0.63 | 0.40 | 0.57 |
Ba | 0.06 | 0.04 | 0.07 | 0.02 |
Na | 16.28 | 7.53 | 5.81 | 5.04 |
K | 0.20 | 0.31 | 0.66 | 0.36 |
Cl | 1.22 | 0.95 | 0.63 | 1.15 |
Experiment | Deionized H2O | 0.5 mol/L NaCl | ||||||
---|---|---|---|---|---|---|---|---|
Sample | Aks. 5 | Aks. 6 | Aks. 7 | Aks. 8, Point 9 in Figure 6a | Aks. 1 | Aks. 2 | Aks. 3 | Aks. 4, Point 10 in Figure 6b |
Nb2O5 | 0.82 | 0.58 | 0.79 | 0.64 | 0.73 | 0.72 | 0.73 | 0.78 |
SiO2 | 49.10 | 49.21 | 49.17 | 49.39 | 48.90 | 49.13 | 48.94 | 49.02 |
TiO2 | 0.74 | 0.79 | 0.78 | 0.69 | 0.75 | 0.68 | 0.76 | 0.89 |
ZrO2 | 14.17 | 14.65 | 13.36 | 14.03 | 14.22 | 14.01 | 14.66 | 15.28 |
HfO2 | 0.44 | 0.40 | 0.30 | 0.44 | 0.34 | 0.37 | 0.42 | 0.44 |
Al2O3 | 0.26 | 0.24 | 0.17 | 0.24 | 0.24 | 0.24 | 0.27 | 0.29 |
La2O3 | 0.36 | 0.30 | 0.56 | 0.27 | 0.29 | 0.21 | 0.29 | 0.18 |
Ce2O3 | 0.71 | 0.54 | 0.45 | 0.55 | 0.63 | 0.59 | 0.69 | 0.53 |
Nd2O3 | 0.38 | 0.34 | 0.51 | 0.30 | 0.32 | 0.27 | 0.20 | 0.26 |
FeO | 4.07 | 3.84 | 3.97 | 4.27 | 3.92 | 4.21 | 3.90 | 3.59 |
MnO | 1.89 | 1.85 | 1.95 | 1.82 | 1.86 | 1.86 | 1.75 | 1.83 |
MgO | 0.15 | 0.18 | 0.17 | 0.13 | 0.11 | 0.12 | 0.14 | 0.13 |
CaO | 5.85 | 5.53 | 6.07 | 5.97 | 5.81 | 5.96 | 5.46 | 5.10 |
SrO | 1.13 | 0.89 | 0.90 | 1.25 | 1.15 | 1.20 | 1.05 | 0.85 |
BaO | 0.02 | 0.06 | b.d.l. | b.d.l. | 0.01 | 0.07 | 0.02 | 0.01 |
Na2O | 15.31 | 14.72 | 15.60 | 15.00 | 15.17 | 15.21 | 14.81 | 14.20 |
K2O | 0.58 | 0.53 | 0.67 | 0.63 | 0.61 | 0.59 | 0.50 | 0.57 |
SO3 | 0.37 | 0.40 | 0.42 | 0.29 | 0.33 | 0.30 | 0.40 | 0.37 |
Cl | 0.68 | 0.72 | 0.80 | 0.75 | 0.70 | 0.69 | 0.82 | 0.74 |
–O=Cl | 0.16 | 0.16 | 0.18 | 0.17 | 0.16 | 0.15 | 0.18 | 0.17 |
Sum | 96.87 | 95.61 | 96.46 | 96.49 | 95.93 | 96.28 | 95.63 | 94.89 |
Formula based on (Si + Al + Zr + Ti + Hf + Nb + Ta + W) = 29 apfu | ||||||||
Nb | 0.19 | 0.13 | 0.18 | 0.15 | 0.17 | 0.17 | 0.17 | 0.18 |
Si | 24.82 | 24.77 | 25.05 | 24.93 | 24.83 | 24.91 | 24.71 | 24.53 |
Ti | 0.28 | 0.30 | 0.30 | 0.26 | 0.29 | 0.26 | 0.29 | 0.33 |
Zr | 3.49 | 3.60 | 3.32 | 3.45 | 3.52 | 3.46 | 3.61 | 3.73 |
Hf | 0.06 | 0.06 | 0.04 | 0.06 | 0.05 | 0.05 | 0.06 | 0.06 |
Al | 0.15 | 0.14 | 0.10 | 0.14 | 0.14 | 0.14 | 0.16 | 0.17 |
La | 0.07 | 0.06 | 0.11 | 0.05 | 0.05 | 0.04 | 0.05 | 0.03 |
Ce | 0.13 | 0.10 | 0.08 | 0.10 | 0.12 | 0.11 | 0.13 | 0.10 |
Nd | 0.07 | 0.06 | 0.09 | 0.05 | 0.06 | 0.05 | 0.04 | 0.05 |
Fe | 1.72 | 1.62 | 1.69 | 1.80 | 1.66 | 1.79 | 1.65 | 1.50 |
Mn | 0.81 | 0.79 | 0.84 | 0.78 | 0.80 | 0.80 | 0.75 | 0.78 |
Mg | 0.11 | 0.14 | 0.13 | 0.10 | 0.08 | 0.09 | 0.11 | 0.10 |
Ca | 3.17 | 2.98 | 3.31 | 3.23 | 3.16 | 3.24 | 2.95 | 2.73 |
Sr | 0.33 | 0.26 | 0.27 | 0.37 | 0.34 | 0.35 | 0.31 | 0.25 |
Ba | – | 0.01 | – | – | – | 0.01 | – | – |
Na | 15.01 | 14.37 | 15.41 | 14.68 | 14.94 | 14.95 | 14.50 | 13.78 |
K | 0.37 | 0.34 | 0.44 | 0.41 | 0.40 | 0.38 | 0.32 | 0.36 |
Cl | 0.58 | 0.61 | 0.69 | 0.64 | 0.60 | 0.59 | 0.70 | 0.63 |
S | 0.14 | 0.15 | 0.16 | 0.11 | 0.13 | 0.11 | 0.15 | 0.14 |
Sample | Aks. 9 Point 12 Figure 6d | Aks. 9 Point 13 Figure 6d | Aks. 9 | Aks. 9 | Aks. 10 Point 14 Figure 6f | Aks. 10 Point 15 Figure 6f | Aks. 11 | Aks. 11 | Aks. 12 Point 16 Figure 6g | Aks. 12 Point 17 Figure 6g |
---|---|---|---|---|---|---|---|---|---|---|
Rim | Core | Rim | Core | Rim | Core | Rim | Core | Rim | Core | |
Nb2O5 | 0.71 | 0.70 | 0.72 | 0.60 | 0.84 | 0.68 | 0.87 | 0.65 | 0.65 | 0.69 |
SiO2 | 50.92 | 49.08 | 51.20 | 49.30 | 51.05 | 48.64 | 54.40 | 49.15 | 50.13 | 48.94 |
TiO2 | 0.94 | 0.88 | 0.66 | 0.62 | 0.93 | 0.92 | 0.89 | 0.79 | 0.85 | 0.75 |
ZrO2 | 16.49 | 15.20 | 14.35 | 13.41 | 16.00 | 14.86 | 16.21 | 14.76 | 15.43 | 14.28 |
HfO2 | 0.44 | 0.38 | 0.39 | 0.43 | 0.55 | 0.39 | 0.51 | 0.38 | 0.36 | 0.45 |
Al2O3 | 0.33 | 0.22 | 0.25 | 0.27 | 0.32 | 0.24 | 0.33 | 0.28 | 0.29 | 0.27 |
La2O3 | 0.28 | 0.39 | 0.30 | 0.28 | 0.28 | 0.27 | 0.33 | 0.25 | 0.24 | 0.34 |
Ce2O3 | 0.71 | 0.54 | 0.63 | 0.50 | 0.55 | 0.61 | 0.78 | 0.56 | 0.60 | 0.58 |
Nd2O3 | 0.27 | 0.30 | 0.31 | 0.32 | 0.35 | 0.24 | 0.32 | 0.32 | 0.27 | 0.32 |
FeO | 3.88 | 3.63 | 4.44 | 4.27 | 3.59 | 3.48 | 3.89 | 3.59 | 3.66 | 3.63 |
MnO | 1.97 | 1.75 | 1.87 | 1.87 | 2.11 | 1.99 | 2.29 | 2.09 | 2.07 | 1.99 |
MgO | 0.12 | 0.13 | 0.13 | 0.12 | 0.11 | 0.15 | 0.14 | 0.14 | 0.17 | 0.17 |
CaO | 6.32 | 5.27 | 6.92 | 6.40 | 5.72 | 5.09 | 6.15 | 5.43 | 6.31 | 5.69 |
SrO | 0.96 | 0.93 | 1.18 | 1.21 | 0.89 | 0.81 | 0.99 | 0.74 | 0.89 | 0.86 |
BaO | b.d.l. | 0.12 | 0.13 | 0.07 | 0.02 | b.d.l. | 0.03 | 0.03 | b.d.l. | 0.08 |
Na2O | 2.66 | 14.32 | 3.31 | 15.23 | 3.31 | 13.91 | 2.20 | 14.42 | 2.75 | 14.92 |
K2O | 0.26 | 0.57 | 0.24 | 0.62 | 0.32 | 0.50 | 0.30 | 0.55 | 0.32 | 0.53 |
SO3 | 0.39 | 0.37 | 0.24 | 0.32 | 0.38 | 0.42 | 0.42 | 0.34 | 0.34 | 0.35 |
Cl | 0.70 | 0.62 | 0.72 | 0.63 | 0.66 | 0.70 | 0.73 | 0.75 | 0.69 | 0.60 |
–O=Cl | 0.16 | 0.14 | 0.16 | 0.14 | 0.15 | 0.16 | 0.16 | 0.17 | 0.16 | 0.14 |
Sum | 88.17 | 95.26 | 87.83 | 96.33 | 87.83 | 93.70 | 91.62 | 95.05 | 85.82 | 95.30 |
Formula based on (Si + Al + Zr + Ti + Hf + Nb + Ta + W) = 29 apfu | ||||||||||
Nb | 0.15 | 0.16 | 0.16 | 0.14 | 0.18 | 0.16 | 0.18 | 0.15 | 0.14 | 0.16 |
Si | 24.41 | 24.61 | 24.99 | 25.07 | 24.48 | 24.63 | 24.69 | 24.71 | 24.63 | 24.80 |
Ti | 0.34 | 0.33 | 0.24 | 0.24 | 0.34 | 0.35 | 0.30 | 0.30 | 0.31 | 0.29 |
Zr | 3.85 | 3.72 | 3.41 | 3.33 | 3.74 | 3.67 | 3.59 | 3.62 | 3.70 | 3.53 |
Hf | 0.06 | 0.05 | 0.05 | 0.06 | 0.08 | 0.06 | 0.07 | 0.05 | 0.05 | 0.07 |
Al | 0.19 | 0.13 | 0.14 | 0.16 | 0.18 | 0.14 | 0.18 | 0.17 | 0.17 | 0.16 |
La | 0.05 | 0.07 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.04 | 0.06 |
Ce | 0.12 | 0.10 | 0.11 | 0.09 | 0.10 | 0.11 | 0.13 | 0.10 | 0.11 | 0.11 |
Nd | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.04 | 0.05 | 0.06 | 0.05 | 0.06 |
Fe | 1.56 | 1.52 | 1.81 | 1.82 | 1.44 | 1.47 | 1.48 | 1.51 | 1.50 | 1.54 |
Mn | 0.80 | 0.74 | 0.77 | 0.81 | 0.86 | 0.85 | 0.88 | 0.89 | 0.86 | 0.85 |
Mg | 0.09 | 0.10 | 0.09 | 0.09 | 0.08 | 0.11 | 0.09 | 0.10 | 0.12 | 0.13 |
Ca | 3.25 | 2.83 | 3.62 | 3.49 | 2.94 | 2.76 | 2.99 | 2.93 | 3.32 | 3.09 |
Sr | 0.27 | 0.27 | 0.33 | 0.36 | 0.25 | 0.24 | 0.26 | 0.22 | 0.25 | 0.25 |
Ba | – | 0.02 | 0.02 | 0.01 | – | – | 0.01 | 0.01 | – | 0.02 |
Na | 2.47 | 13.92 | 3.13 | 15.02 | 3.08 | 13.65 | 1.94 | 14.06 | 2.62 | 14.66 |
K | 0.16 | 0.36 | 0.15 | 0.40 | 0.20 | 0.32 | 0.17 | 0.35 | 0.20 | 0.34 |
S | 0.14 | 0.14 | 0.09 | 0.12 | 0.14 | 0.16 | 0.14 | 0.13 | 0.13 | 0.13 |
Cl | 0.57 | 0.53 | 0.60 | 0.54 | 0.54 | 0.60 | 0.56 | 0.64 | 0.57 | 0.52 |
Component, mg/L | Initial Deionized H2O | Aks. 5 | Aks. 6 | Aks. 7 | Aks. 8 |
---|---|---|---|---|---|
Ca | <0.004 | 0.146 | 0.129 | 0.106 | 2.176 |
Mn | 0.00048 | 0.0058 | 0.011 | 0.011 | 0.014 |
Fe | <0.001 | 0.141 | 0.239 | 0.307 | 0.251 |
La | 0.00019 | 0.00029 | 0.00046 | 0.00064 | 0.00020 |
Ce | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 |
Ti | 0.0001 | 0.0030 | 0.0081 | 0.0042 | 0.0036 |
Zr | <0.0006 | 0.0365 | 0.0043 | 0.0009 | <0.0006 |
Na | 1.519 | 95.00 | 108.33 | 132.26 | 122.89 |
pH | 5.6 | 9.3 | 9.2 | 10.5 | 10.5 |
Component, mg/L | Initial 0.5 mol/L NaCl Solution | Aks. 1 | Aks. 2 | Aks. 3 | Aks. 4 |
---|---|---|---|---|---|
Ca | 0.131 | 8.120 | 8.383 | 7.380 | 7.618 |
Mn | 0.0048 | 0.0053 | 0.0061 | 0.0091 | 0.0050 |
Fe | <0.001 | <0.001 | <0.001 | 0.042 | <0.001 |
La | <0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 |
Ce | <0.004 | <0.004 | <0.004 | <0.004 | <0.004 |
Ti | 0.0004 | 0.0038 | 0.0049 | 0.0053 | 0.0055 |
Zr | <0.0006 | 0.0240 | <0.0006 | <0.0006 | <0.0006 |
Na | 9441.77 | 9718.88 | 9518.07 | 9444.44 | 12239.38 |
pH | 3.4 | 6.6 | 7.5 | 7.3 | 7.2 |
Component, mg/L | Initial 0.1 mol/L HCl Solution | Aks. 9 | Aks. 10 | Aks. 11 | Aks. 12 |
---|---|---|---|---|---|
Ca | 0.153 | 46.244 | 14.243 | 84.232 | 40.362 |
Mn | 0.0015 | 0.0075 | 0.010 | 0.016 | 0.017 |
Fe | 0.0075 | 0.059 | 0.042 | 0.040 | 0.125 |
La | <0.00015 | <0.00015 | 0.00037 | <0.00015 | 0.00175 |
Ce | <0.004 | <0.004 | 0.00746 | <0.004 | 0.00940 |
Ti | 0.0001 | 0.0004 | 0.00173 | 0.0004 | 0.00146 |
Zr | <0.0006 | <0.0006 | 0.00267 | <0.0006 | <0.0006 |
Na | 0.267 | 336.6 | 406.81 | 475.00 | 372.52 |
pH | 1.8 | 6.4 | 7.6 | 7.2 | 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, J.A.; Pakhomovsky, Y.A.; Kalashnikova, G.O.; Aksenov, S.M. Dissolution of the Eudialyte-Group Minerals: Experimental Modeling of Natural Processes. Minerals 2022, 12, 1460. https://doi.org/10.3390/min12111460
Mikhailova JA, Pakhomovsky YA, Kalashnikova GO, Aksenov SM. Dissolution of the Eudialyte-Group Minerals: Experimental Modeling of Natural Processes. Minerals. 2022; 12(11):1460. https://doi.org/10.3390/min12111460
Chicago/Turabian StyleMikhailova, Julia A., Yakov A. Pakhomovsky, Galina O. Kalashnikova, and Sergey M. Aksenov. 2022. "Dissolution of the Eudialyte-Group Minerals: Experimental Modeling of Natural Processes" Minerals 12, no. 11: 1460. https://doi.org/10.3390/min12111460
APA StyleMikhailova, J. A., Pakhomovsky, Y. A., Kalashnikova, G. O., & Aksenov, S. M. (2022). Dissolution of the Eudialyte-Group Minerals: Experimental Modeling of Natural Processes. Minerals, 12(11), 1460. https://doi.org/10.3390/min12111460