The Use of Lightweight Penetrometer PANDA for the Compaction Control of Classified Sand Tailings Dams
Abstract
:1. Introduction
2. Background
2.1. Compaction Control in a Classified Sand Tailings Dam
2.1.1. Criteria
- It requests limited and punctual information (matrix with six control points for each quarter).
- The E700 do not follow common control measures as to clearly characterise the in situ density and corresponding SP or Dr.
- Reported Dr or SP values have some degree of uncertainty concerning the reference values used for compaction control.
- The thickness of the compacted layer is not controlled.
2.1.2. Compaction Control Tests
2.2. Variability in the Geotechnical Properties of Sand Tailings
3. Materials and Methods
3.1. Variation in for Sand Tailings Dams
3.2. Geostatistical Analysis for the Characterization of Structural Variability in a Classified Sand Tailings Dam
3.3. Classified Sand Tailings Dam under Study
Field Study and Survey Grid
4. Results and Discussion
4.1. Physical Characteristics and Compaction Parameters of Classified Sand Tailings in the Study Area
4.2. Statistical Analysis of
4.3. Experimental and Theoretical Semivariograms
4.3.1. Calculation Parameters
4.3.2. Semivariogram Modeling
- -
- Results obtained in the vertical direction
- -
- Results obtained in the horizontal direction
4.4. Using the Ordinary Kriging (OK) Method to Estimate
- ◼
- The OK estimates of generally reflect an anisotropic internal structure for the embankment corresponding to layers with variable thicknesses. The values decrease towards the crest and increase in the downstream direction towards the foot of the embankment. These results reflect the spatial structural variability produced by the compaction process.
- ◼
- All the longitudinal and cross-sectional profiles show a clear decrease in at the beginning of test slab 4, which is associated with an increase in the layer thickness of the material with low deposited from 0.6 to 1.2 m and matches the range assessed using the spherical model for the experimental semivariogram. This is justified by the different behaviour of the experimental vertical variogram of slab 4.
4.5. Estimate of and % SP
- ◼
- The sand tailings mechanically compacted into layers exhibit in situ structural variability on a spatial scale directly associated with the construction and compaction process.
- ◼
- The estimated values range from 17 to 21.5 (kN/), and the % SP compaction ranges from 90 % to 100 %. These ranges are similar to the statistical analysis results for the data obtained from routine layer-by-layer compaction control.
- ◼
- The models have direct practical applications for performing post-construction control of an embankment of classified sand talings dams to identify areas with weak resistance or compaction percentages below the project design values (SP ≥ 95%) and optimize the compaction process.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cochilco. Proyección de la Producción de Cobre en Chile 2018–2029; Cochilco: Santiago, Chile, 2019. [Google Scholar]
- SERNAGEOMIN. Datos Públicos Depósito de Relaves. Catastro de Depósitos de Relaves en Chile. 2020. Available online: https://www.sernageomin.cl/datos-publicos-deposito-de-relaves/ (accessed on 5 November 2022).
- Villavicencio, G.; Espinace, R.; Palma, J.; Fourie, A.; Valenzuela, P. Failures of sand tailings dams in a highly seismic country. Can. Geotech. J. 2014, 51, 449–464. [Google Scholar] [CrossRef]
- Villavicencio, G.; Breul, P.; Bacconnet, C.; Fourie, A.; Espinace, R.A. Liquefaction potential of sand tailings dams evaluated using a probabilistic interpretation of estimated in-situ relative density. Rev. Constr. 2016, 15, 9–18. [Google Scholar] [CrossRef] [Green Version]
- NF P94-105; Grounds: Investigation and Testing Measuring Compaction Quality. Method Using Variable Energy Dynamic Penetrometer. Penetrometer Calibration Principle and Method. Processing Results. Interpretation. AFNOR.M: Saint-Denis, France, 2012.
- Nch 3261-12; Tailings Deposits-Control of Compaction with Light Dynamic Penetrometer. INN: Santiago, Chile, 2012.
- ASTM D1556/D1556M-15e1; Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method. ASTM: West Conshohocken, PA, USA, 2015.
- Vennapusa, P.K.R.; White, D.J.; Morris, M.D. Geostatistical analysis for spatially referenced roller-integrated compaction measurements. J. Geotech. Geoenviron. Eng. 2010, 136, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Soulié, M.; Montes, P.; Silvestri, V. Modelling spatial variability of soil parameters. Can. Geotech. J. 1990, 27, 617–630. [Google Scholar] [CrossRef]
- Sitharam, T.G.; Samui, P. Geostatistical modelling of spatial and depth variability of SPT data for Bangalore. Geomech. Geoengin. 2007, 2, 307–316. [Google Scholar] [CrossRef]
- Altun, S.; Göktepe, A.; Sezer, A. Geostatistical interpolation for modelling SPT data in northern Izmir. Sadhana 2013, 38, 1451–1468. [Google Scholar] [CrossRef] [Green Version]
- Costa, Y.; Cunha, E.; Costa, C.; Pereira, A. Correlations between SPT and CPT data for a sedimentary tropical silty sand deposit in Brazil. In Geotechnical and Geophysical Site Characterisation 5; Lehane, B.M., Acosta-Martínez, H.E., Kelly, R., Eds.; Australian Geomechanics Society: Sydney, Australia, 2016; pp. 407–412. [Google Scholar]
- Fisonga, M.; Wang, F.; Mutambo, V. The estimation of sampling density in improving geostatistical prediction for geotechnical characterization. Int. J. Geotech. Eng. 2018, 15, 724–731. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, H.-K. Optimizing site-specific geostatistics to improve geotechnical spatial information in Seoul, Korea. Arab. J. Geosci. 2019, 12, 104. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.-S.; Chung, C.-K. A Three-Dimensional geotechnical spatial modeling method for borehole dataset using optimization of geostatistical approaches. KSCE J. Civ. Eng. 2020, 24, 778–793. [Google Scholar] [CrossRef]
- ASTM D2922-05; Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods. ASTM: West Conshohocken, PA, USA, 2005.
- Valenzuela, L. Design, construction, operation and the effect of fines content and permeability on the seismic performance of tailings sand dams in Chile. Obras Proy. 2016, 19, 6–22. [Google Scholar] [CrossRef]
- Verdugo, R. Compactación de relaves. In Proceedings of the IV Chilean Congress of Geotechnical Engineering, Valparaíso, Chile; 1997. [Google Scholar]
- Barrera, S.; Valenzuela, L.; Campaña, J. Sand tailings dams: Design, construction and operation. In Tailings and Mine Waste 2011; Academic Press: Vancouver, BC, Canada, 2011; p. 13. [Google Scholar]
- Troncoso, J. Envejecimiento y Estabilidad síSmica de un Depósito de Residuos Minerales en Condición de Abandono; Apuntes de Ingeniería: Santiago, Chile, 1986; pp. 147–158. [Google Scholar]
- Bhanbhro, R. Mechanical Behavior of Tailings: Laboratory Tests from a Swedish Tailings Dam. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2017. [Google Scholar]
- Martin, T.E.; McRoberts, E.C. Some considerations in the stability analysis of upstream tailings dams. In Proceedings of the Sixth International Conference on Tailings And Mine Waste, Fort Collins, CO, USA, 24–27 January 1999; AA Balkema: Rotterdam, The Netherlands, 1999; Volume 99, pp. 287–302. [Google Scholar]
- Verdugo, R. Seismic performance of slopes and earth and tailings dams (2010 Maule Earthquake). In Proceedings of the Fifth International Conference on Geotechnical Earthquake Engineering (5-ICEGE), Santiago, Chile, 10–13 January 2011. [Google Scholar]
- Sernageomin. Guía Metodológica para Evaluación de la Estabilidad Física de Instalaciones Mineras Remanentes. 2018. Available online: https://www.sernageomin.cl/wp-content/uploads/2019/06/GUIA-METODOLOGICA.pdf (accessed on 3 June 2022).
- Cassan, M. Les Essais In Situ en Mécanique des Sols. Volume 1: Réalisation et Interpretation, 2nd ed.; Eyrolles: Paris, France, 1988. [Google Scholar]
- Gourvès, R.; Barjot, R. The Panda ultralight dynamic penetrometer. In Proceedings of the 11th European Conference on Soil Mechanics Foundation, San Francisco, CA, USA, 12–16 August 1985; Danish Geotechnical Society: Copenhagen, Denmark, 1995; pp. 83–88. [Google Scholar]
- Benz, M.A. Mesures Dynamiques lors du Battage du Pénétromètre Panda 2; University Blaise Pascal: Clermont Ferrand, France, 2009. [Google Scholar]
- Villavicencio, G.; Suazo, G.; Zúñiga, R.; Valenzuela, P. Effects of Soil Conditions on the Cone Resistance of Lightweight Penetrometers. J. Geotech. Geoenviron. Eng. 2021, 147, 04021049. [Google Scholar] [CrossRef]
- Chaigneau, L. Caractérisation des Mileux Granulaires de Surface à l’Aide d’un Pénéromètre; Université Blaise Pascal: Clermont Ferrand, France, 2001. [Google Scholar]
- Villavicencio, G.; Breul, P.; Espinace, R.; Valenzuela, P. Control de compactación con penetrómetros ligeros en tranques de relaves, considerando su variabilidad material y estructural. Rev. Constr. 2012, 11, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Cambou, B. Mécanique des Milieux Granulaires: L’Approche Microstructurale. Rhéologie des Géomatériaux; Darve, F., Ed.; Presse E.N.P.C: Paris, France, 1987; pp. 261–278. [Google Scholar]
- Biarez, J.; Favre, J.L. Statistical Estimation and Extrapolation from Observations. Reports of Organisers; IX ICSMFE: Tokyo, Japan, 1977; Volume 3, pp. 505–509. [Google Scholar]
- Favre, J.L. Milieu Continu et Milieu Discontinu: Mesure Statistique Indirecte des Paramètres rhéOlogiques et Approche Probabiliste de la Sécurité. Ph.D. Thesis, Université Pierre et Maire Curie, Paris, France, 1980. [Google Scholar]
- Salgado, R.; Mitchell, J.K.; Jamiolkowski, M. Cavity expansion and penetration resistance in sand. J. Geotech. Geoenviron. Eng. 1997, 123, 878–888. [Google Scholar] [CrossRef]
- Rahim, A.; Prasad, S.Y.; George, K. Dynamic Cone Penetration Resistance of Soils-Theory and Evaluation. In Proceedings of the Geo-Trans 2004 Conference, Los Angeles, CA, USA, 27–31 July 2004. [Google Scholar]
- Arnaouti, S.; Angelides, D.; Chatzigogos, T.; Pytel, W. Variability of Soil Strength Parameters and its Effect on the Slope Stability of the Želazny Most Tailing Dam. Int. J. Geol. Environ. Eng. 2012, 6, 415–421. [Google Scholar] [CrossRef]
- Hamade, T.; Mitri, H. Reliability-based approach to the geotechnical design of tailings dams. Int. J. Mining Reclam. Environ. 2013, 27, 377–392. [Google Scholar] [CrossRef]
- Bhanbhro, R. Mechanical Properties of Tailings: Basic Description of a Tailings Material from Sweden; Luleå University of Technology: Luleå, Sweden, 2014. [Google Scholar]
- Hu, L.; Wu, H.; Zhang, L.; Zhang, P.; Wen, Q. Geotechnical properties of mine tailings. J. Mater. Civ. Eng. 2017, 29, 04016220. [Google Scholar] [CrossRef]
- Villavicencio, A.G.; Breul, P.; Bacconnet, C.; Boissier, D.; Espinace, A.R. Estimation of the Variability of Tailings Dams Properties in Order to Perform Probabilistic Assessment. Geotech. Geol. Eng. 2011, 29, 1073–1084. [Google Scholar] [CrossRef]
- Troncoso, J.; Garcés, E. Ageing effects in the shear modulus of soils. Soil. Dyn. Earthq. 2000, 19, 595–601. [Google Scholar] [CrossRef]
- Paikowsky, S.; Birgisson, B.; McVay, M.; Nguyen, T.; Kuo, C.; Baecher, G.; Ayyub, B.; Stenersen, K.; OíMalley, K.; Chernauskas, L.; et al. Load and Resistance Factor Design (LRFD) for Deep Foundations; Transportation Research Board: Washington, DC, USA, 2004. [Google Scholar]
- Juárez-Camarena, M.; Auvinet-Guichard, G.; Méndez-Sánchez, E. Geotechnical zoning of Mexico Valley subsoil. Ing. Investig. Tecnol. 2016, 17, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Journel, A.; Huijbregts, C. Mining Geostatistics; Academic Press: London, UK; New York, NY, USA, 1978. [Google Scholar]
- Matheron, G. Traité de Geostatisque Appliquée, Volumen 1. Mémories du BRGM, 14; Technip: Paris, France, 1962. [Google Scholar]
- Matheron, G. The Theory of Regionalized Variables and its Applications. Volumen 5. Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau; École Nationale Supérieure des Mines: Paris, France, 1971. [Google Scholar]
- Baczkowski, A.J.; Clark, I. Practical Geostatistics. J. R. Stat. Soc. Ser. 1981, 144, 537. [Google Scholar] [CrossRef]
- Hohn, M.E. An Introduction to Applied Geostatistics. Comput. Geosci. 1991, 17, 471–473. [Google Scholar] [CrossRef]
- Burgess, T.M.; Webster, R. Optimal interpolation and isarithmic mapping of soil properties. I. The semi-variogram and punctual kriging. J. Soil Sci. 1980, 31, 315–331. [Google Scholar] [CrossRef] [Green Version]
- De Rubeis, V. Application of kriging technique to seismic intensity data. Bull. Seismol. Soc. Am. 2007, 95, 540–548. [Google Scholar] [CrossRef]
- Deplagne, F.; Bacconnet, C. Analyse structural d’une digue en argile. Cah. Géostat. 1993, 3, 188–191. [Google Scholar]
- Villavicencio, G. Méthodologie pour Évaluer la Stabilité Mécanique des Barrages de Résidus Miniers. Ph.D. Thesis, University Blaise Pascal, Clermont Ferrand, France, 2009. [Google Scholar]
- Raspa, G.; Innocenti, C.; Marconi, F.; Mumelter, E.; Salmeri, A. Evaluation of an Automatic Procedure Based on Geostatistical Methods for the Characterization of Contaminated Sediments. In GeoENV VI-Geostatistics for Environmental Applications; Soares, A., Pereira, M., Dimitrakopoulos, R., Eds.; Springer: New York, NY, USA, 2008; pp. 421–441. [Google Scholar]
- Vessia, G.; Di Curzio, D.; Castrignanò, A. Modeling 3D soil lithotypes variability through geostatistical data fusion of CPT parameters. Sci. Total Environ. 2020, 698, 134340. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, M. Estimación de Recursos Mineros. Available online: cg.ensmp.fr/bibliotheque/public/ALFARO_Cours_00606.pdf (accessed on 2 November 2020).
Level | Factor | Variability | Effects | Variation in Geothecnical Properties | |
---|---|---|---|---|---|
Type | Scale | ||||
1 | Production size (mining scale) | Material | Spacial | Degree of homogeneity or heterogeneity of whole tailings in terms of constituent residual minerals (mineralogical species and grade of the field of origin) | Particle size distribution (PSD) and specific gravity of solid particles (G) |
2 | Crushing, pressing and flotation | Material | Physical characteristics and incorporation of chemical reagents into whole tailings | ||
3 | Deposition: cycloning, construction and operation method | Material and structural | Physical characteristics and geotechnical properties of sand tailings | PSD of sand tailings, in-situ dry unit weight and water content, shear strength parameters | |
4 | Depostit age | Material | Temporal | Aging of sand tailings: generation of cohesion by case-hardening | Gradual increase in geotechnical properties and rigidity |
Sand Tailings Dam | Type | DS Slope V/H | Height m | Production of Sand Tailings | Construction of the DS Slope | ||
---|---|---|---|---|---|---|---|
Deposition and Distribution of Sand Tailings | Compaction | Specified Degree of Compactation | |||||
T1 | DS and CL | 1:3.5 | 30 | Cycloned sand tailings derived from various deposits | From cyclones (underflow) in the crest of the deposit and levelling with a bulldozer | DS slope and crest in 50–60-cm layers in the direction of the slope by a 20-t bulldozer | 95% SP |
T2 | CL | 1:2.7 | 20 | Crest in 20–40-cm layers in the horizontal direction by a 300-kg vibratory plate compactor | |||
T3 | CL | 1:3.5 | 60 | Cycloned sand tailings derived from a single deposit | DS slope and crest in 30–40-cm layers in the slope direction by a 20-t vibratory roller | ||
T4 | DS | 1:2.5 | 40 | DS slope and crest in 30–40-cm layers in the slope direction by an 18-t bulldozer | |||
T5 | DS | 1:2.5 | 40 | From dump trucks and distribution with a bulldozer | DS slope and crest in 30–40-cm layers in the horizontal direction by a 20-t vibratory roller | 95% Modified Proctor (MP) | |
T6 | DS | 1:3.0 | 150 | From cyclones (underflow) in the crest of the deposit and leveling with a bulldozer | DS slope and crest in 50-cm layers in the slope direction by a 10-t vibratory roller | 95% SP |
Geotech. Prop. | Dataset: Operational Control in Sand Tailings Dams | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Data | Av. | CV % | Var. Class | Data | Av. | CV % | Var. Class | Data | Av. | CV % | Var. Class | Data | Av. | CV % | Var. Class | Data | Var. | CV % | Var. Class | Data | Var. | CV % | Var. Class | |
G | 108 | 3.09 | 4.6 | Homo. | 45 | 3.36 | 8 | Homo. | 40 | 3.07 | 2.2 | Homo. | 40 | 3.07 | 2.2 | Homo | 161 | 2.7 | 1.5 | Homo | 19 | 2.69 | 0.9 | Homo. |
[mm] | 3266 | 0.13 | 19.0 | Homo. | 262 | 0.11 | 15.2 | Homo. | 2958 | 0.25 | 8.7 | Homo. | 0.17 | 17.3 | 1206 | 0.3 | 7.8 | 44 | 0.32 | 32.2 | Medium hetero. | |||
FC [%] | 28 | 28.7 | Medium hetero. | 262 | 33 | 26.3 | Hetero. media | 17 | 10 | Homo | 27 | 19.4 | 13 | 18.3 | 16 | 8.7 | Homo. | |||||||
[kN/] | 392 | 18.2 | 6.2 | Homo | 262 | 20.8 | 8 | Homo | 495 | 18.5 | 2.3 | 8 | 18.2 | 5.1 | 17 | 18.2 | 5.1 | 16.7 | 1.0 | |||||
[%] | 15.2 | 9.4 | 262 | 14.4 | 10.3 | 14.3 | 6.2 | 15.6 | 5.5 | 11.1 | 14.5 | 17.8 | 3.9 | |||||||||||
[kN/] | 3266 | 17.5 | 6.6 | 275 | 20.1 | 8.2 | 2958 | 18.1 | 2.9 | 79 | 19.1 | 2.3 | 79 | 17.4 | 3.0 | 356 | 16.0 | 1.1 | ||||||
[%] | 11 | 22.3 | 275 | 3.3 | 43.1 | Hetero. media | 7.5 | 27.3 | Medium hetero. | 6.1 | 18.7 | 8.6 | 15.5 | 12.7 | 15.2 | |||||||||
[kN/] | 19.4 | 6.7 | 275 | 20.7 | 8.2 | Homo. | 19.5 | 3.5 | Homo. | 20.3 | 2.6 | 18.8 | 2.5 | 18.1 | 2.2 | |||||||||
[MPa] | 275 | 4.8 | 50.6 | Highly hetero. | 75 | 2.87 | 45.9 | Highly hetero. | 100 | 1.95 | 52.8 | Highly hetero. | 75 | 2.71 | 42.4 | Highly hetero | 20 | 6.48 | 48.6 | Highly hetero. | 15 | 7.04 | 31.4 | Medium hetero. |
Statistical Parameter | FC [%] | [mm] | [kN/] | [%] | [kN/] | [%] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | M A | M B | M A | M B | M A | M B | M A | M B | M A | M B | M A | M B |
Data | 3266 | 178 | 3266 | 178 | 495 | 35 | 495 | 35 | 3266 | 202 | 3266 | 202 |
Minimum Value | 11 | 14 | 0.25 | 0.2 | 17.4 | 18.1 | 12.0 | 13.5 | 16.4 | 16.9 | 2.3 | 4.0 |
Maximum Value | 24 | 21 | 0.46 | 0.28 | 19.8 | 19.5 | 16.3 | 16 | 19.8 | 19.8 | 19 | 14.3 |
Media | 17 | 17 | 0.25 | 0.24 | 18.5 | 18.8 | 14.3 | 18.7 | 18.1 | 18.5 | 7.5 | 8.7 |
1.7 | 1.5 | 0.022 | 0.016 | 0.43 | 0.36 | 0.89 | 0.98 | 0.52 | 0.61 | 2.05 | 2.68 | |
CV% | 10 | 8.9 | 8.7 | 6.6 | 2.3 | 1.9 | 6.2 | 5.2 | 2.9 | 3.3 | 27.3 | 30.8 |
Parameter | Level | Data | Average | Student’s t-Test Value | Confidence Interval Means | Equality of Means |
---|---|---|---|---|---|---|
FC [%] | Global | 3266 | 17 | −2.8984 | [−0.784, 0.049] | Yes |
Local | 178 | 17 | ||||
[mm] | Global | 3266 | 0.25 | 6.507 | [0, 0.018] | Yes |
Local | 495 | 0.24 | ||||
[kN/] | Global | 495 | 18.5 | −3.7449 | [−0.053, 0.013] | Yes |
Local | 35 | 18.8 | ||||
[kN/] | Global | 3266 | 18.1 | −9.4948 | [−0.532, 0.012] | Yes |
Local | 178 | 18.5 |
Parameter | Level | Data | Variance | Coefficient Between | Variation | Equality of Variances |
---|---|---|---|---|---|---|
FC [%] | Global | 3266 | 2.721 | 1.01 | [0.755, 1.526] | Yes |
Local | 178 | 2.474 | ||||
[mm] | Global | 3266 | 0.00048 | 1.92 | [1.286, 2.661] | Yes |
Local | 495 | 0.00025 | ||||
[kN/] | Global | 495 | 0.190 | 1.52 | [0.579, 1.037] | Yes |
Local | 35 | 0.125 | ||||
[kN/] | Global | 3266 | 0.281 | 0.76 | [0.536, 1.037] | Yes |
Local | 178 | 0.368 |
Sector | PANDA Tests | No. of Pairs [(MPa), z(cm)] | Minimum and Maximum Values | Average | CV% | |
---|---|---|---|---|---|---|
Full grid | 91 | 18,806 | 0.1 and 29.5 | 2.79 | 1.74 | 62.4 |
Slab N° 1 | 18 | 3850 | 0.14 and 22.7 | 2.96 | 1.88 | 63.5 |
Slab N° 2 | 18 | 4218 | 0.15 and 9.4 | 3.17 | 1.55 | 48.9 |
Slab N° 3 | 19 | 3728 | 0.19 and 29.5 | 3.24 | 1.96 | 60.5 |
Slab N° 4 | 36 | 7010 | 0.1 and 9.34 | 2.22 | 1.48 | 66.7 |
Scale | Direction of Analysis | Semivariogram Calculation Parameters | |||||
---|---|---|---|---|---|---|---|
Lag Separation [m] | Lag Tolerance [m] | Azimuth [°] | Tolerance [°] | Dip [°] | Bandwith [°] | ||
Survey grid | Horizontal x-y | 7 | 3.5 | 0, 45, 90, 135 | 22.5, 90 | 0 | 5 |
Vertical z | 0.025 | 0.0125 | 0 | 22.5 | 90 | 3 | |
Test slabs | Horizontal x-y | 7 | 3.5 | 0, 45, 90, 135 | 22.5, 90 | 0 | 5 |
Vertical z | 0.0125 | 0.0125 | 0 | 22.5 | 90 | 3 |
Scale | Plane of Analysis | Estimate Semivariogram | |||||
---|---|---|---|---|---|---|---|
Azimuth/Inc [°] | Structure | Model | Nugget, Co [MPa] | Sill Co + C [MPa] | Range [m] | ||
Survey grid | Vertical z | 0°/−90° | Single | Spherical | 0 | 2.23 | 0.6 |
Horizontal x-y | 0°/0° | Double | Spherical 1 | 0 | 1.67 | 8.9 | |
Spherical 2 | 0 | 0.38 | 39.9 | ||||
45°/0° | Spherical 1 | 0 | 1.62 | 8.6 | |||
Spherical 2 | 0 | 0.40 | 36.1 | ||||
90°/0° | Spherical 1 | 0 | 1.61 | 8.2 | |||
Spherical 2 | 0 | 0.40 | 35.1 | ||||
135°/0° | Spherical 1 | 0 | 1.62 | 7.9 | |||
Spherical 2 | 0 | 0.42 | 33.7 | ||||
Test Slab 1 | Vertical z | 0º/−90° | Single | Spherical | 0 | 3.08 | 0.7 |
Test Slab 2 | 0 | 2.85 | 0.5 | ||||
Test Slab 3 | 0 | 1.21 | 0.4 | ||||
Test Slab 4 | 0 | 2.98 | 1.2 |
Parameter | Plane of Analysis | Theoretical Model | Sill, Co + C | Range, [m] |
---|---|---|---|---|
Vertical z | Spherical | 0.12 [kN/]2 | 0.7 | |
Horizontal x–y | Spherical 1 | 0.11 [kN/]2 | 5.2 | |
Spherical 2 | 0.02 [kN/]2 | 40.7 | ||
% SP | Vertical z | Spherical | 35.82 2 | 0.7 |
Spherical 1 | 31.18 2 | 5.2 | ||
Spherical 2 | 5.54 2 | 40.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villavicencio, G.; Bacconnet, C.; Valenzuela, P.; Palma, J.; Carpanetti, A.; Suazo, G.; Silva, M.; García, J. The Use of Lightweight Penetrometer PANDA for the Compaction Control of Classified Sand Tailings Dams. Minerals 2022, 12, 1467. https://doi.org/10.3390/min12111467
Villavicencio G, Bacconnet C, Valenzuela P, Palma J, Carpanetti A, Suazo G, Silva M, García J. The Use of Lightweight Penetrometer PANDA for the Compaction Control of Classified Sand Tailings Dams. Minerals. 2022; 12(11):1467. https://doi.org/10.3390/min12111467
Chicago/Turabian StyleVillavicencio, Gabriel, Claude Bacconnet, Pamela Valenzuela, Juan Palma, Alex Carpanetti, Gonzalo Suazo, Matías Silva, and José García. 2022. "The Use of Lightweight Penetrometer PANDA for the Compaction Control of Classified Sand Tailings Dams" Minerals 12, no. 11: 1467. https://doi.org/10.3390/min12111467
APA StyleVillavicencio, G., Bacconnet, C., Valenzuela, P., Palma, J., Carpanetti, A., Suazo, G., Silva, M., & García, J. (2022). The Use of Lightweight Penetrometer PANDA for the Compaction Control of Classified Sand Tailings Dams. Minerals, 12(11), 1467. https://doi.org/10.3390/min12111467