Static Liquefaction Causes the Flow Failure of a Tailings Dam: A Case Study of El Descargador, Cartagena–La Unión Mining Region, SE Spain (October 1963)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Tailings Dam
2.2. Particle Size Distribution
2.3. Electrical Resistivity Imaging (ERI)
2.4. Numerical Slope Stability Modeling
3. Results
3.1. Geotechnical and Geophysical Features of the Tailings Dam
3.2. Landslides Geometry
3.3. Sand Dikes
4. Discussion
4.1. Failure of the Tailings Dam: Conceptual Model
4.2. Numerical Modeling
5. Conclusions
- The work is a unique case study. Its contribution lies in the magnitude and nature of the static liquefaction. This phenomenon has not been reported in this way before. In no case in the literature or in the databases has a tailings dam been reported to develop simultaneous flow failure at five points [1,2,5,6,7,8,9,10,11,18].
- The geophysical–geotechnical characterization and modeling of the El Descargador tailings dam supported that the static liquefaction was the most plausible cause of its flow failure in 1963. This occurred in the form of five different landslides along the dam structure, which mobilized 66,000 m3 on 4 km2 of the La Unión periurban area.
- The rapid growing of the tailings dam, exceeding 4.2 m/year, the steeped slopes of the tails, scaling up to 40°, the saturation of tailings due to recharge from the lagoons, the failure of the drainage system and the rise in the hydraulic head were the main causal preparatory factors for flow failure (Figure 2, Figure 3, Figure 4, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13 and Figure 14).
- The dysfunction of the drainage system and the static liquefaction caused the dam’s lagoons overtopping and the erosion of the slope and the foot of the structure, which triggered mechanism the flow failure the El Descargador tailings dam.
- Geophysical modeling of the tailings dam revealed that the materials remain saturated beneath the lagoons to a 10 m depth or more, even decades after the dam failure. This observation highlights the relevant role of the lagoons in the groundwater recharge in tailings dam (Figure 14).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oldecop, L.; Rodríguez, R. Estabilidad y seguridad de depósitos de residuos mineros. In Los Residuos Minero Metalúrgicos en el Medio Ambiente; Rodríguez, R., García-Cortés, A., Eds.; Instituto Geológico y Minero de España (IGME): Madrid, Spain, 2006; pp. 197–243. [Google Scholar]
- Rico, M.; Benito, G.; Salgueiro, A.R.; Díez-Herrero, A.; Pereira, H.G. Reported tailings dam failures: A review of the European incidents in the worldwide context. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, J.R.; Kemp, D.; Lèbre, É.; Svobodova, K.; Pérez Murillo, G. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Disaster Risk Reduct. 2020, 42, 101361. [Google Scholar] [CrossRef]
- López-Pamo, E.; Barettino, D.; Antón-Pacheco, C.; Ortiz, G.; Arránz, J.C.; Gumiel, J.C.; Martínez-Pledel, B.; Aparicio, M.; Montouto, O. The extent of the Aznalcóllar pyritic sludge spill and its effects on soils. Sci. Total Environ. 1999, 242, 57–88. [Google Scholar] [CrossRef] [PubMed]
- ICOLD; UNEP. Tailings Dams–Risk of Dangerous Occurrences, Lessons Learnt from Practical Experiences (Bulletin 121); Commission Internationale des Grands Barrages: Paris, France, 2001; Volume 155. [Google Scholar]
- Available online: https://www.wise-uranium.org (accessed on 24 August 2022).
- Available online: https://tailings.info/ (accessed on 24 August 2022).
- Available online: http://www.csp2.org/technical-reports (accessed on 24 August 2022).
- Available online: http://www.csp2.org/ (accessed on 24 August 2022).
- Available online: https://worldminetailingsfailures.org/ (accessed on 24 August 2022).
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; De Ignacio, C.; Lillo, J.; Faz, A. Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Unión district, Spain). Eng. Geol. 2018, 232, 135–146. [Google Scholar] [CrossRef]
- Simón, M.; Ortiz, I.; García, I.; Fernández, E.; Fernández, J.; Dorronsoro, C.; Aguilar, J. Pollution of soils by the toxic spill of a pyrite mine (Aznalcollar, Spain). Sci. Total Environ. 1999, 242, 105–115. [Google Scholar] [CrossRef]
- Ayala-Carcedo, F.J. La rotura de la balsa de residuos mineros de Aznalcóllar (España) de 1998 y el desastre ecológico consecuente del Río Guadiamar: Causas, efectos y lecciones. Boletín Geológico Min. 2004, 115, 711–738. [Google Scholar]
- Robles-Arenas, V.M.; Rodríguez, R.; García, C.; Candela, L. Sulphide-miningimpacts in thephysicalenvironment: Sierra de Cartagena-La Unión (SE Spain) case study. Environ. Geol. 2006, 51, 47–64. [Google Scholar] [CrossRef]
- do Carmo, F.F.; Kamino, L.H.Y.; Junior, R.T.; de Campos, I.C.; do Carmo, F.F.; Silvino, G.; Mauro, M.L.; Rodrigues, N.U.A.; de Souza Miranda, M.P.; Pinto, C.E.F. Fundão tailings dam failures: The environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspect. Ecol. Conserv. 2017, 15, 145–151. [Google Scholar] [CrossRef]
- Alonso, E.E.; Gens, A. Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique 2006, 56, 165–183. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.E.; Zabala, F. Progressive failure of Aznalcóllar dam using the material point method. Géotechnique 2011, 61, 795–808. [Google Scholar]
- Rodríguez, R.; Muñoz-Moreno, A.; Caparrós, A.V.; García-García, C.; Brime-Barrios, A.; Arranz-González, J.C.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Alcolea, A. How to Prevent Flow Failures in Tailings Dams. Mine Water Envion. 2021, 40, 83–112. [Google Scholar] [CrossRef]
- Davies, M.P.; McRoberts, E.C.; Martin, T.E. Static Liquefaction of Tailings–Fundamentals and Case Histories. In Proceedings of the Tailings Dams 2002, ASDSO/USCOLD, Las Vegas, NV, USA, 29 April–1 May 2002. [Google Scholar]
- Nichols, G. Sedimentology and Stratigraphy; John Wiley & Sons: New York, NY, USA, 2009; Volume 99, pp. 1–432. [Google Scholar]
- Zandarín, M.T.; Oldecop, L.A.; Rodríguez, R.; Zabala, F. The role of capillary water in the stability of tailing dams. Eng. Geol. 2009, 105, 108–118. [Google Scholar] [CrossRef]
- Azam, S.; Li, Q. Tailings dam failures: A review of the last one hundred years. Geotech. News 2010, 28, 50–54. [Google Scholar]
- Fourie, A.B.; Blight, G.E.; Papageorgiou, G. Static liquefaction as a possible explanation for the Merriespruit tailings dam failure. Can. Geotech. J. 2001, 38, 707–719. [Google Scholar] [CrossRef]
- Jennings, J.E. The failure of a slimes dam at Bafokeng. Mechanisms of failure and associated design considerations. Civil. Eng. S. Afr. 1979, 21, 135–141. [Google Scholar]
- Blight, G.B.; Fourie, A.B. A review of catastrophic flow failures of deposits of mine waste and municipal refuse. In Proceedings of the International Workshop on: Occurrence and Mechanisms of Flows in Natural Slopes and Earth Fills (IW-Flows 2003), Associazione Geotecnica Italiana (AGI), Sorrento, Italy, 14–16 May 2003; pp. 1–17. [Google Scholar]
- Davies, M.P.; Dawson, B.B.; Chin, B.G. Static Liquefaction Slump of Mine Tailings—A Case History. In Proceedings of the 51st Canadian Geotechnical Conference, Edmonton, AB, Canada, 4–7 October 1998. [Google Scholar]
- Morgenstern, N. Geotechnics and mine waste management–update. In Proceedings of the Seminar Proceedings, Safe Tailings Dam Constructions, Gallivare, Sweden, 20–21 September 2001. [Google Scholar]
- Gómez-Ortiz, D.; Martín-Velázquez, S.; Martín-Crespo, T.; De Ignacio-San, J.C.; Lillo-Ramos, J. Application of electrical resistivity tomography to the environmental characterization of abandoned massive sulphide mine ponds (Iberian Pyrite Belt, SW Spain). Near Surf. Geophys. 2010, 8, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Martín-Crespo, T.; Martín-Velázquez, S.; Gómez-Ortiz, D.; De Ignacio-San, J.C.; Lillo, J. A geochemical and geophysical characterization of sulfide mine ponds at the Iberian Pyrite Belt (Spain). Water Air Soil Pollut. 2011, 217, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Martín-Crespo, T.; De Ignacio-San, J.C.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Lillo, J. Monitoring study of the mine pond reclamation of Mina Concepción, Iberian Pyrite Belt (Spain). Environ. Earth Sci. 2010, 54, 1275–1284. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Esbrí, J.M.; de Ignacio-San José, C.; Sánchez-García, M.J.; Montoya-Montes, I.; Martín-González, F. Abandoned mine tailings in cultural itineraries: Don Quijote route (Spain). Eng. Geol. 2015, 197, 82–93. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martínez-Pagán, P.; De Ignacio-San José, C.; Martín-Velázquez, S.; Lillo, J.; Faz, A. Geoenvironmental characterization of riverbeds affected by mine tailings in the Mazarrón district (Spain). J. Geochem. Explor. 2012, 119–120, 6–16. [Google Scholar] [CrossRef]
- Oyarzun, R.; Lillo, J.; López-García, J.A.; Esbrí, J.M.; Cubas, P.; Llanos, W.; Higueras, P. The Mazarrón Pb-(Ag)-Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: Geochemical data from mine wastes, soils, and stream sediments. J. Geochem. Explor. 2011, 109, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S. Geoenvironmental characterization of sulfide mine tailings. In Applied Geochemistry with Case Studies on Geological Formations, Exploration Techniques and Environmental Issues; Mazadiego, L.F., De Miguel Garcia, E., Barrio-Parra, F., Izquierdo-Díaz, M., Eds.; IntechOpen: London, UK, 2020; pp. 1–26. [Google Scholar]
- Martín-Velázquez, S.; Rodríguez-Santalla, I.; Ropero-Szymañska, N.; Gomez-Ortiz, D.; Martín-Crespo, T.; de Ignacio-San José, C. Geomorphological mapping and erosion of abandoned tailings in the hiendelaencina Mining District (Spain) from Aerial Imagery and LiDAR Data. Remote Sens. 2022, 14, 4617. [Google Scholar] [CrossRef]
- Martínez, J.; Hidalgo, M.C.; Rey, J.; Garrido, J.; Kohfahl, C.; Benavente, J.; Rojas, D. A multidisciplinary characterization of a tailings pond in the Linares–La Carolina mining district, Spain. J. Geochem. Explor. 2016, 162, 62–71. [Google Scholar] [CrossRef]
- Martínez, J.; Rey, J.; Hidalgo, M.C.; Garrido, J.; Rojas, D. Influence of measurement conditions on the resolution of electrical resistivity imaging: The example of abandoned mining dams in the La Carolina District (Southern Spain). Int. J. Miner. Process. 2014, 133, 67–72. [Google Scholar] [CrossRef]
- Rey, J.; Martínez, J.; Hidalgo, M.C.; Rojas, D. Heavy metal pollution in the Quaternary Garza basin: A multidisciplinary study of the environmental risks posed by mining (Linares, southern Spain). Catena 2013, 110, 234–242. [Google Scholar] [CrossRef]
- Available online: https://www.malvernpa (accessed on 24 August 2022).
- Loke, M.H.; Chambers, J.E.; Rucker, D.F.; Kuras, O.; Wilkinson, P.B. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 2013, 95, 135–156. [Google Scholar]
- Zarroca, M.; Linares, R.; Velásquez-López, P.C.; Roqué, C.; Rodríguez, R. Application of electrical resistivity imaging (ERI) to a tailings dam project for artisanal and small-scale gold mining in Zaruma-Portovelo, Ecuador. J. Appl. Geophys. 2015, 113, 103–113. [Google Scholar] [CrossRef]
- Gabarrón, M.; Martínez-Pagán, P.; Martínez-Segura, M.A.; Bueso, M.C.; Martínez-Martínez, S.; Faz, A.; Acosta, J.A. Electrical Resistivity Tomography as a Support Tool for Physicochemical Properties Assessment of Near-Surface Waste Materials in a Mining Tailing Pond (El Gorguel, SE Spain). Minerals 2020, 10, 559. [Google Scholar] [CrossRef]
- Martínez, J.; Mendoza, R.; Rey, J.; Sandoval, S.; Hidalgo, M.C. Characterization of Tailings Dams by Electrical Geophysical Methods (ERT, IP): Federico Mine (La Carolina, Southeastern Spain). Minerals 2021, 11, 145. [Google Scholar] [CrossRef]
- Griffiths, D.H.; Barker, R.D. 2-Dimensional resistivity imaging and modeling in areas of complex geology. J. Appl. Geophys. 1993, 29, 211–226. [Google Scholar] [CrossRef]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Pet. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Zarroca, M.; Bach, J.; Linares, R.; Pellicer, X.M. Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, northern Spain). J. Hydrol. 2011, 409, 407–422. [Google Scholar] [CrossRef]
- Zarroca, M.; Linares, R.; Rodellas, V.; Garcia-Orellana, J.; Roqué, C.; Bach, J.; Masqué, P. Delineating coastal groundwater discharge processes in a wetland area by means of electrical resistivity imaging, 224Ra and 222Rn. Hydrol. Process. 2014, 28, 2382–2395. [Google Scholar] [CrossRef]
- Pazdirek, O.; Blaha, V. Examples of resistivity imaging using ME-100 resistivity field acquisition system. In Proceedings of the EAGE 58th Conference and Technical Exhibition Extended Abstracts, Amsterdam, The Netherlands, 7 June 1996. [Google Scholar]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.H.; Kiflu, H.; Wilkinson, P.B.; Harro, D.; Kruse, S. Optimized arrays for 2-D resistivity surveys with combined surface and buried arrays. Near Surf. Geophys. 2015, 13, 505–517. [Google Scholar] [CrossRef]
- Constable, S.; Parker, R.L.; Constable, C.G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 1987, 52, 289–300. [Google Scholar] [CrossRef]
- La Brecque, D.; Miletto, M.; Daily, W.; Ramirez, A.; Owen, E. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 1996, 61, 538–548. [Google Scholar] [CrossRef]
- Labuz, J.F.; Zang, A. Mohr–Coulomb Failure Criterion. Rock Mech. Rock Eng. 2012, 45, 975–979. [Google Scholar] [CrossRef] [Green Version]
- Loke, M.H. Electrical resistivity surveys and data interpretation. In Solid Earth Geophysics Encyclopedia, 2nd ed.; Gupta, H., Ed.; Electrical & Electromagnetic; Springer: Berlin/Heidelberg, Germany, 2020; pp. 276–283. [Google Scholar]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion method in 2D electrical tomography surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Zarroca, M.; Linares, R.; Bach, J.; Roqué, C.; Moreno, V.; Font, L.; Baixeras, C. Integrated geophysics and soil gas profiles as a tool to characterize active faults: The Amer fault example (Pyrenees, NE Spain). Environ. Earth Sci. 2012, 67, 889–910. [Google Scholar] [CrossRef]
- Zarroca, M.; Comas, X.; Gutiérrez, F.; Carbonel, D.; Linares, R.; Roqué, C.; Mozafari, M.; Guerrero, J.; Pellicer, X.M. The application of GPR and ERI in combination with exposure logging and retrodeformation analysis to characterize sinkholes and reconstruct their impact on fluvial sedimentation. Earth Surf. Process. Landf. 2017, 42, 1049–1064. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg, D.W.; Li, Y. Estimating depth of investigation in dc resistivity and IP surveys. Geophysics 1999, 64, 403–416. [Google Scholar] [CrossRef]
- Oldenborger, G.A.; Routh, P.S.; Knoll, M.D. Model reliability for 3D electrical resistivity tomography: Application of the volume of investigation index to a time-lapse monitoring experiment. Geophysics 2007, 72, F167–F175. [Google Scholar] [CrossRef]
- Caterina, D.; Beaujean, J.; Robert, T.; Nguyen, F. A comparison study of image appraisal tools for electrical resistivity tomography. Near Surf. Geophys. 2013, 11, 639–657. [Google Scholar] [CrossRef]
- García, C. Impacto y Riesgo Ambiental de los Residuos Minero-Metalúrgicos de la Sierra de Cartagena-La Unión (Murcia-España). Ph.D. Thesis, Universidad Politécnica de Cartagena, Cartagena, Spain, 7 November 2004. [Google Scholar]
- Alcolea, A.; Vázquez, M.; Caparrós, A.; Ibarra, I.; García, C.; Linares, R.; Rodríguez, R. Heavy metal removal of intermittent acid mine drainage with an open limestone channel. Miner. Eng. 2012, 1, 86–98. [Google Scholar] [CrossRef]
- Alcolea, A.; Fernández-López, C.; Vázquez, M.; Caparrós, A.; Ibarra, I.; García, C.; Zarroca, M.; Rodríguez, R. An assessment of the influence of sulfidic mine wastes on rainwater quality in a semiarid climate (SE Spain). Atmos. Environ. 2015, 107, 85–94. [Google Scholar] [CrossRef]
- Dobry, R.; Alvarez, L. Seismic failures of Chilean tailings dam. Journal of the Soil mechanics and Foundations Division. Proc. Am. Soc. Civ. Eng. 1967, 93, 237–260. [Google Scholar]
- Okusa, S.; Anma, S. Slope failures and tailings dam damage in the 1988 Izu-Ohshima-Kinkai earthquake. Eng. Geol. 1980, 16, 195–224. [Google Scholar] [CrossRef]
- Conesa, H.M.; Jiménez-Cárceles, F.J. The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Mar. Pollut. Bull. 2007, 54, 839–849. [Google Scholar] [CrossRef]
- García, G.; Muñoz-Vera, A. Characterization and evolution of the sediments of a Mediterranean coastal lagoon located next to a former mining area. Mar. Pollut. Bull. 2015, 100, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Glade, T.; Crozier, M.J. The nature of landslide hazard impact. In Landslide Hazard and Risk; Glade, T., Anderson, M., Crozier, M., Eds.; Wiley Online Library: Chichester, UK, 2005; pp. 43–74. [Google Scholar]
- Caparrós, A.V. Rheology of Pb-Zn Post-Flotation Waste in the Sierra de Cartagena-La Unión (SE Spain). Ph.D. Thesis, Universidad Politécnica de Cartagena, Cartagena, Spain, July 2017. [Google Scholar]
- Oldecop, L.; Garino, L.; Muñoz, J.; Rodríguez Pacheco, R.; García-García, C. Unsaturated behaviour of mine tailings in low precipitation areas. In Unsaturated Soils; Alonso, E., Gens, A., Eds.; Taylor & Francis Group: London, UK, 2011; Volume 2, pp. 1425–1430. [Google Scholar]
- Tergazhi, K. Der grundbruch a stauwerken and seine verhiltung. Die Wasserkr. 1922, 17, 445–449. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Pacheco, R.; Caparrós, A.V.; Alcolea, A.; Martínez-Pagán, P.; Martínez-Segura, M.A.; García-García, C.; Faz, Á.; Corral, I.; Roque, C.; Zarroca, M. Static Liquefaction Causes the Flow Failure of a Tailings Dam: A Case Study of El Descargador, Cartagena–La Unión Mining Region, SE Spain (October 1963). Minerals 2022, 12, 1488. https://doi.org/10.3390/min12121488
Rodríguez-Pacheco R, Caparrós AV, Alcolea A, Martínez-Pagán P, Martínez-Segura MA, García-García C, Faz Á, Corral I, Roque C, Zarroca M. Static Liquefaction Causes the Flow Failure of a Tailings Dam: A Case Study of El Descargador, Cartagena–La Unión Mining Region, SE Spain (October 1963). Minerals. 2022; 12(12):1488. https://doi.org/10.3390/min12121488
Chicago/Turabian StyleRodríguez-Pacheco, Roberto, Ana Vanesa Caparrós, Alberto Alcolea, Pedro Martínez-Pagán, Marcos A. Martínez-Segura, Cristóbal García-García, Ángel Faz, Isaac Corral, Carles Roque, and Mario Zarroca. 2022. "Static Liquefaction Causes the Flow Failure of a Tailings Dam: A Case Study of El Descargador, Cartagena–La Unión Mining Region, SE Spain (October 1963)" Minerals 12, no. 12: 1488. https://doi.org/10.3390/min12121488
APA StyleRodríguez-Pacheco, R., Caparrós, A. V., Alcolea, A., Martínez-Pagán, P., Martínez-Segura, M. A., García-García, C., Faz, Á., Corral, I., Roque, C., & Zarroca, M. (2022). Static Liquefaction Causes the Flow Failure of a Tailings Dam: A Case Study of El Descargador, Cartagena–La Unión Mining Region, SE Spain (October 1963). Minerals, 12(12), 1488. https://doi.org/10.3390/min12121488