Bibliometric Analysis of Steelmaking Slag-Related Studies for Research Trends and Future Directions
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources
2.2. Analysis Method
3. Basic Bibliometric Discussions
3.1. Publication Outputs
3.2. Analysis of Countries
3.3. Analysis of Institutions
3.4. Analysis of Journals
4. Hot Topics and Future Directions
4.1. Current Hot Topics
4.2. Research Trends of Steel Slag
4.3. Pathways for the Future of Steel Slag
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, P.; Wu, S.; Xiao, Y.; Liu, Q.; Wang, F. Hazardous characteristics and variation in internal structure by hydrodynamic damage of bof slag-based thin asphalt overlay. J. Hazard. Mater. 2021, 412, 125344. [Google Scholar] [CrossRef] [PubMed]
- Loncnar, M.; van der Sloot, H.A.; Mladenovic, A.; Zupancic, M.; Kobal, L.; Bukovec, P. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations. J. Hazard. Mater. 2016, 317, 147–157. [Google Scholar] [CrossRef]
- Francisca, F.M.; Glatstein, D.A. Environmental application of basic oxygen furnace slag for the removal of heavy metals from leachates. J. Hazard. Mater. 2020, 384, 121294. [Google Scholar] [CrossRef]
- Connor, J.O.; Nguyen, T.B.T.; Honeyands, T.; Monaghan, B.; O’Dea, D.; Rinklebe, J.; Vinu, A.; Hoang, S.A.; Singh, G.; Kirkham, M.B.; et al. Production, characterisation, utilisation, and beneficial soil application of steel slag: A review. J. Hazard. Mater. 2021, 419, 126478. [Google Scholar]
- Hu, J.; Ma, T.; Yin, T.; Zhou, Y. Foamed warm mix asphalt mixture containing crumb rubber: Foaming optimization and performance evaluation. J. Clean. Prod. 2022, 333, 130085. [Google Scholar] [CrossRef]
- Zhang, J.H.; Peng, J.H.; Zheng, J.L.; Yao, Y.S. Characterisation of stress and moisture-dependent resilient behaviour for compacted clays in south china. Road Mater. Pavement Des. 2020, 21, 262–275. [Google Scholar] [CrossRef]
- Li, L.; Ling, T.-C.; Pan, S.-Y. Environmental benefit assessment of steel slag utilization and carbonation: A systematic review. Sci. Total Environ. 2022, 806, 150280. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Adhikari, R.; Chen, Y.-H.; Li, P.; Chiang, P.-C. Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J. Clean. Prod. 2016, 137, 617–631. [Google Scholar] [CrossRef]
- Yuksel, I. A review of steel slag usage in construction industry for sustainable development. Environ. Dev. Sustain. 2017, 19, 369–384. [Google Scholar] [CrossRef]
- Guo, J.L.; Bao, Y.P.; Wang, M. Steel slag in china: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef] [PubMed]
- EUROSLAG. The European Association Representing Metallurgical Slag Producers and Processors. 2018. Available online: https://www.euroslag.com/research-library-downloads/downloads/ (accessed on 29 October 2022).
- US Geological Survey. Mineral Commodity Summaries: Slag-Iron and Steel, Washington, DC. 2017. Available online: https://www.usgs.gov/centers/national-minerals-information-center/iron-and-steel-slag-statistics-and-information?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 29 October 2022).
- Australasian (Iron and Steel) Slag Association. Membership Annual Survey Results, 2019 Slag Sales and Production Survey, Australia. 2020. Available online: https://www.asa-inc.org.au/files/download/d787f72a84b5512 (accessed on 29 October 2022).
- Ding, X.; Chen, L.; Ma, T.; Ma, H.; Gu, L.; Chen, T.; Ma, Y. Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder. Constr. Build. Mater. 2019, 203, 552–557. [Google Scholar] [CrossRef]
- Kasavan, S.; Yusoff, S.; Fakri, M.F.R.; Siron, R. Plastic pollution in water ecosystems: A bibliometric analysis from 2000 to 2020. J. Clean. Prod. 2021, 313, 127946. [Google Scholar] [CrossRef]
- Mao, G.; Liu, X.; Du, H.; Zuo, J.; Wang, L. Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renew. Sustain. Energy Rev. 2015, 48, 276–286. [Google Scholar] [CrossRef]
- Chen, C.; Li, C.; Reniers, G.; Yang, F. Safety and security of oil and gas pipeline transportation: A systematic analysis of research trends and future needs using wos. J. Clean. Prod. 2021, 279, 123583. [Google Scholar] [CrossRef]
- Zeng, J.; Qu, J.; Ma, H.; Gou, X. Characteristics and trends of household carbon emissions research from 1993 to 2019: A bibliometric analysis and its implications. J. Clean. Prod. 2021, 295, 126468. [Google Scholar] [CrossRef]
- Baalamurugan, J.; Kumar, V.G.; Chandrasekaran, S.; Balasundar, S.; Venkatraman, B.; Padmapriya, R.; Raja, V.K.B. Utilization of induction furnace steel slag in concrete as coarse aggregate for gamma radiation shielding. J. Hazard. Mater. 2019, 369, 561–568. [Google Scholar] [CrossRef]
- Waltman, L.; Eck, N.J.V. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 2013, 86, 471. [Google Scholar] [CrossRef]
- Eck, N.J.V.; Waltman, L.; Dekker, R.; Berg, J.V.D. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and vos. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar]
- Huijgen, W.J.J.; Witkamp, G.J.; Comans, R.N.J. Mineral CO2 sequestration by steel slag carbonation. Environ. Sci. Technol. 2005, 39, 9676–9682. [Google Scholar] [CrossRef]
- Shi, C.J.; Qian, J.S. High performance cementing materials from industrial slags—A review. Resour. Conserv. Recycl. 2000, 29, 195–207. [Google Scholar] [CrossRef]
- Shi, C.J. Steel slag—Its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 2004, 16, 230–236. [Google Scholar] [CrossRef]
- Yi, H.; Xu, G.P.; Cheng, H.G.; Wang, J.S.; Wan, Y.F.; Chen, H. An overview of utilization of steel slag. In Proceedings of the 7th International Conference on Waste Management and Technology (ICWMT), Beijing, China, 5–7 September 2012; Elsevier Science Bv: Beijing, China, 2012; pp. 791–801. [Google Scholar]
- Huang, Y.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Tsakiridis, P.E.; Papadimitriou, G.D.; Tsivilis, S.; Koroneos, C. Utilization of steel slag for portland cement clinker production. J. Hazard. Mater. 2008, 152, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Bobicki, E.R.; Liu, Q.X.; Xu, Z.H.; Zeng, H.B. Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci. 2012, 38, 302–320. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Ahmedzade, P.; Sengoz, B. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J. Hazard. Mater. 2009, 165, 300–305. [Google Scholar] [CrossRef]
- Kourounis, S.; Tsivilis, S.; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z. Properties and hydration of blended cements with steelmaking slag. Cem. Concr. Res. 2007, 37, 815–822. [Google Scholar] [CrossRef]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, H.; Li, L.; Ren, Q.; Yang, X.J.; Jiang, Z.W.; Zhang, Z.L. Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum. Fuel 2019, 255, 115783. [Google Scholar] [CrossRef]
- Liu, W.Z.; Teng, L.M.; Rohani, S.; Qin, Z.F.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.C.; Liang, B. CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Zhang, D.; Ghouleh, Z.; Shao, Y.X. Review on carbonation curing of cement-based materials. J. CO2 Util. 2017, 21, 119–131. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.C.; Shi, C.J.; Pan, S.Y. Characteristics of steel slags and their use in cement and concrete-a review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Yang, X.J.; Liu, J.S.; Li, H.X.; Ren, Q. Performance and itz of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder. Constr. Build. Mater. 2020, 235, 117532. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, G.T.; Chen, X.Q.; Tan, J.; Gu, X.Y. Recycling of steel slag aggregate in portland cement concrete: An overview. J. Clean. Prod. 2021, 282, 124447. [Google Scholar] [CrossRef]
- Gencel, O.; Karadag, O.; Oren, O.H.; Bilir, T. Steel slag and its applications in cement and concrete technology: A review. Constr. Build. Mater. 2021, 283, 122783. [Google Scholar] [CrossRef]
- Sun, J.B.; Lin, S.; Zhang, G.B.; Sun, Y.T.; Zhang, J.F.; Chen, C.F.; Morsy, A.M.; Wang, X.Y. The effect of graphite and slag on electrical and mechanical properties of electrically conductive cementitious composites. Constr. Build. Mater. 2021, 281, 122606. [Google Scholar] [CrossRef]
- Zhuang, S.Y.; Wang, Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem. Concr. Res. 2021, 140, 106283. [Google Scholar] [CrossRef]
- Li, J.J.; Cao, S.; Yilmaz, E. Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag. Minerals 2022, 12, 6. [Google Scholar] [CrossRef]
- Gomes, H.I.; Mares, W.M.; Rogerson, M.; Stewart, D.I.; Burke, I.T. Alkaline residues and the environment: A review of impacts, management practices and opportunities. J. Clean. Prod. 2016, 112, 3571–3582. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B.; Li, X.Y.; Yan, X.; Tu, C.; Yu, Z.G. Environmental risks for application of iron and steel slags in soils in china: A review. Pedosphere 2021, 31, 28–42. [Google Scholar] [CrossRef]
- Haynes, R.J. A contemporary overview of silicon availability in agricultural soils. J. Plant Nutr. Soil Sci. 2014, 177, 831–844. [Google Scholar] [CrossRef]
- Meharg, C.; Meharg, A.A. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ. Exp. Bot. 2015, 120, 8–17. [Google Scholar] [CrossRef]
- Kang, L.; Du, H.L.; Zhang, H.; Ma, W.L. Systematic research on the application of steel slag resources under the background of big data. Complexity 2018, 2018, 6703908. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, J.P. Vanadium geochemistry in the biogeosphere-speciation, solid-solution interactions, and ecotoxicity. Appl. Geochem. 2019, 102, 1–25. [Google Scholar] [CrossRef]
- Li, J.; Xiao, F.P.; Zhang, L.F.; Amirkhanian, S.N. Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review. J. Clean. Prod. 2019, 233, 1182–1206. [Google Scholar] [CrossRef]
- Liu, T.J.; Wang, Y.T.; Li, J.G.; Yu, Q.; Wang, X.M.; Gao, D.; Wang, F.P.; Cai, S.; Zeng, Y.A. Effects from fe, p, ca, mg, zn and cu in steel slag on growth and metabolite accumulation of microalgae: A review. Appl. Sci. 2021, 11, 6589. [Google Scholar] [CrossRef]
- Mahoutian, M.; Shao, Y.X.; Mucci, A.; Fournier, B. Carbonation and hydration behavior of eaf and bof steel slag binders. Mater. Struct. 2015, 48, 3075–3085. [Google Scholar] [CrossRef]
- Mo, L.W.; Yang, S.; Huang, B.; Xu, L.L.; Feng, S.F.; Deng, M. Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete. Cem. Concr. Compos. 2020, 113, 103715. [Google Scholar] [CrossRef]
- Ma, L.; Xu, D.; Wang, S.; Gu, X. Expansion inhibition of steel slag in asphalt mixture by a surface water isolation structure. Road Mater. Pavement Des. 2020, 21, 2215–2229. [Google Scholar] [CrossRef]
- Jiang, L.; Dong, C.-L.; Wang, S.-Y. Reducing volume expansion of steel slag by using a surface hydrophobic waterproof structure. J. Mater. Civ. Eng. 2020, 32, 04020303. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Lian, F.; Ma, L.-J.; Jiang, Y.-S. Effects of quicklime and iron tailings as modifier on composition and properties of steel slag. J. Iron Steel Res. Int. 2015, 22, 15–20. [Google Scholar] [CrossRef]
- Kriskova, L.; Pontikes, Y.; Cizer, O.; Mertens, G.; Veulemans, W.; Geysen, D.; Jones, P.T.; Vandewalle, L.; Van Balen, K.; Blanpain, B. Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res. 2012, 42, 778–788. [Google Scholar] [CrossRef]
- Han, F.; Zhang, Z.; Wang, D.; Yan, P. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochim. Acta 2015, 605, 43–51. [Google Scholar] [CrossRef]
- Xie, J.; Yang, C.; Zhang, L.; Zhou, X.; Wu, S.; Ye, Q. Investigation of the physic-chemical properties and toxic potential of basic oxygen furnace slag (bof) in asphalt pavement constructed after 15 years. Constr. Build. Mater. 2020, 238, 117630. [Google Scholar] [CrossRef]
Journal | Publication | Citation | CPP | H-Index | IF | Subject Category |
---|---|---|---|---|---|---|
Construction and Building Materials (CBM) | 357 | 9596 | 26.9 | 51 | 7.693 | Construction and Building Technology (Q1, 6/68); Engineering, Civil (Q1, 5/138); Materials Science, Multidisciplinary (Q1, 77/345); |
Journal of Cleaner Production (JCP) | 129 | 3233 | 25.0 | 31 | 11.072 | Engineering, Environmental (Q1, 9/54); Environmental Sciences (Q1, 24/279); Green and Sustainable Science and Technology (Q1, 5/47); |
Materials | 108 | 870 | 8.1 | 15 | 3.748 | Metallurgy and Metallurgical Engineering (Q1, 18/79); Chemistry, Physical (Q3, 84/163); Materials Science, Multidisciplinary (Q3, 177/345); Physics, Applied (Q2, 56/161); Physics, Condensed Matter (Q2, 28/69); |
Advanced Materials Research | 99 | 185 | 1.9 | 6 | - | - |
Journal of Materials in Civil Engineering | 65 | 1301 | 20.0 | 18 | 3.651 | Construction and Building Technology (Q2, 26/68); Engineering, Civil (Q2, 52/138); Materials Science, Multidisciplinary (Q3, 181/345); |
Metallurgical and Materials Transactions B Process Metallurgy and Materials Processing Science | 65 | 1082 | 16.7 | 18 | 2.872 | Metallurgy and Metallurgical Engineering (Q2, 23/79); Materials Science, Multidisciplinary (Q3, 215/345); |
Environmental Science and Pollution Research | 59 | 498 | 8.4 | 14 | 5.190 | Environmental Sciences (Q2, 87/279); |
Journal of Hazardous Materials (JHM) | 57 | 3396 | 59.6 | 29 | 14.224 | Engineering, Environmental (Q1, 3/54); Environmental Sciences (Q1, 9/279); |
ISIJ International | 51 | 949 | 18.6 | 17 | 1.864 | Metallurgy and Metallurgical Engineering (Q3, 40/79); |
Steel Research International | 43 | 389 | 9.1 | 12 | 2.126 | Metallurgy and Metallurgical Engineering (Q2, 32/79). |
No. | Author and Year | Title | Journal | Country | Institution | Citations |
---|---|---|---|---|---|---|
1 | Huijgen, WJJ 2005 [22] | Mineral CO2 sequestration by steel slag carbonation | Environmental Science & Technology | The Netherlands | ERCN | 473 |
2 | Shi, CJ 2000 [23] | High performance cementing materials from industrial slags—A review | Resources Conservation and Recycling | Canada | CJST | 389 |
3 | Shi, CJ 2004 [24] | Steel slag—Its production, processing, characteristics, and cementitious properties | Journal of Materials in Civil Engineering | Canada | CJST | 374 |
4 | Yi, H 2012 [25] | An overview of utilization of steel slag | Proceedings Paper | China | SWSEP | 360 |
5 | Huang, Y 2007 [26] | A review of the use of recycled solid waste materials in asphalt pavements | Resources Conservation and Recycling | England | NU | 359 |
6 | Tsakiridis, PE 2008 [27] | Utilization of steel slag for Portland cement clinker production | Journal of Hazardous Materials | Greece | NTUA | 350 |
7 | Bobicki, ER 2012 [28] | Carbon capture and storage using alkaline industrial wastes | Progress in Energy and Combustion Science | Canada | UA | 336 |
8 | Piatak, NM 2015 [29] | Characteristics and environmental aspects of slag: A review | Applied Geochemistry | USA | GS | 300 |
9 | Ahmedzade, P 2009 [30] | Evaluation of steel slag coarse aggregate in hot mix asphalt concrete | Journal of Hazardous Materials | Turkey | EU | 276 |
10 | Kourounis, S 2007 [31] | Properties and hydration of blended cements with steelmaking slag | Cement and Concrete Research | Greece | NTUA | 257 |
Rank | 2000–2009 | 2010–2014 | 2015–2018 | 2019–2022 |
---|---|---|---|---|
277 Publications | 647 Publications | 931 Publications | 1740 Publications | |
1 | Slag (21) | Slag (41) | Compressive strength (33) | Compressive strength (87) |
2 | Concrete (9) | Concrete (31) | Slag (33) | Microstructure (66) |
3 | Recycling (8) | Compressive strength (24) | Recycling (28) | Carbonation (53) |
4 | Adsorption (6) | Microstructure (23) | Stainless steel slag (28) | Mechanical properties (46) |
5 | Steel (6) | Adsorption (22) | Concrete (26) | Slag (45) |
6 | Steel slag powder (6) | Carbonation (19) | Adsorption (23) | Adsorption (37) |
7 | Aggregate (5) | Durability (19) | Carbonation (23) | Concrete (37) |
8 | Durability (5) | Leaching (19) | Microstructure (23) | Durability (36) |
9 | Mechanical properties (5) | Hydration (17) | Fly ash (22) | Fly ash (35) |
10 | Carbon dioxide (4) | Strength (16) | Durability (20) | Electric arc furnace slag (34) |
11 | Carbonation (4) | Cement (15) | Asphalt mixture (19) | Recycling (34) |
12 | Cement (4) | Fly Ash (15) | Mechanical properties (19) | Steelmaking slag (32) |
13 | Chromium (4) | Recycling (15) | Mineral carbonation (18) | Sustainability (29) |
14 | Compressive strength (4) | Mineral carbonation (14) | Steelmaking slag (17) | Hydration (28) |
15 | Fly ash (4) | Mechanical properties (13) | Strength (17) | Leaching (28) |
16 | Hydration (4) | Stainless steel slag (13) | Blast furnace slag (16) | Asphalt mixture (27) |
17 | Leaching (4) | Steel slag powder (13) | CO2 sequestration (16) | Stainless steel slag (27) |
18 | Modeling (4) | BOF slag (11) | Leaching (16) | CO2 sequestration (24) |
19 | Physical properties (4) | Blast furnace slag (10) | Phosphorus (16) | Mineral carbonation (23) |
20 | Strength (4) | Permanent deformation (9) | Kinetics (15) | Blast furnace slag (23) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, P.; Ma, T.; Chen, F.; Zhang, Y.; Liu, X. Bibliometric Analysis of Steelmaking Slag-Related Studies for Research Trends and Future Directions. Minerals 2022, 12, 1520. https://doi.org/10.3390/min12121520
Cui P, Ma T, Chen F, Zhang Y, Liu X. Bibliometric Analysis of Steelmaking Slag-Related Studies for Research Trends and Future Directions. Minerals. 2022; 12(12):1520. https://doi.org/10.3390/min12121520
Chicago/Turabian StyleCui, Peide, Tao Ma, Feng Chen, Yang Zhang, and Xiyin Liu. 2022. "Bibliometric Analysis of Steelmaking Slag-Related Studies for Research Trends and Future Directions" Minerals 12, no. 12: 1520. https://doi.org/10.3390/min12121520
APA StyleCui, P., Ma, T., Chen, F., Zhang, Y., & Liu, X. (2022). Bibliometric Analysis of Steelmaking Slag-Related Studies for Research Trends and Future Directions. Minerals, 12(12), 1520. https://doi.org/10.3390/min12121520