Magmatic Processes of Granitoids in the Hongniu-Hongshan Porphyry-Skarn Copper Deposit, Southern Yidun Terrane, China: Evidence from Mineral Geochemistry
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Geology of the Hongniu-Hongshan Deposit
3. Petrography and Sample Descriptions
4. Analytical Methods
4.1. Whole-Rock Major and Trace Elemental Analysis
4.2. Electron Probe Mineral Analysis
4.3. LA-ICP-MS Mineral Analysis
5. Results
5.1. Whole-Rock Geochemistry
5.2. Plagioclase
5.3. Amphibole
5.4. Clinopyroxene
6. Discussion
6.1. High-K Calc-Alkaline to Shoshonite Series I-Type Granites
6.2. Physiochemical Conditions for Crystallization
6.2.1. Temperature and Pressure
6.2.2. Composition of Mineral-Coexisting Melt
6.3. Multistage Reservoirs of Felsic Magmas
6.3.1. Evidence from Plagioclase Phenocrysts
6.3.2. Evidence from Amphibole and Clinopyroxene
6.4. Implications for Ore Deposit Formation
7. Conclusions
- (1)
- Magmatic minerals in the Hongniu-Hongshan granitoids were produced by multistage processes of felsic magmas within the upper–middle crust range.
- (2)
- Magmas in the deeper reservoir are hotter and more “mafic” than the shallowing magmas.
- (3)
- The deep-seated magmas recharged into the shallow reservoir and mixed with the shallowing magmas therein.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arndt, N.T.; Fontboté, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.; Wood, D.G. Future global mineral resources. Geo-Chem. Perspect. 2017, 6, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Cloos, M. Bubbling magma chambers, cupolas, and porphyry copper deposits. Int. Geol. Rev. 2001, 43, 285–311. [Google Scholar] [CrossRef]
- Richards, J. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Ulrich, T.J.; Günther, D.; Heinrich, C. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 1999, 399, 676–679. [Google Scholar] [CrossRef]
- Cathles, L.; Shannon, R. How potassium silicate alteration suggests the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water. Earth Planet. Sci. Lett. 2007, 262, 92–108. [Google Scholar] [CrossRef]
- Halter, W.E.; Heinrich, C.A.; Pettke, T. Magma evolution and the formation of porphyry Cu? Au ore fluids: Evidence from silicate and sulfide melt inclusions. Miner. Depos. 2005, 39, 845–863. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Evans, N.J.; Hollings, P.; Cooke, D.R.; McInnes, B.I.; Qin, K.; Li, G. Phenocryst Zonation in Porphyry-Related Rocks of the Baguio District, Philippines: Evidence for Magmatic and Metallogenic Processes. J. Pet. 2018, 59, 825–848. [Google Scholar] [CrossRef]
- Bachmann, O.; Bergantz, G.W. Deciphering Magma Chamber Dynamics from Styles of Compositional Zoning in Large Silicic Ash Flow Sheets. Rev. Miner. Geochem. 2008, 69, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Yang, Z.-M.; White, N.C.; Hou, Z.-Q. Generation of the Giant Porphyry Cu-Au Deposit by Repeated Recharge of Mafic Magmas at Pulang in Eastern Tibet. Econ. Geol. 2022, 117, 57–90. [Google Scholar] [CrossRef]
- Maughan, D.T.; Keith, J.D.; Christiansen, E.H.; Pulsipher, T.; Hattori, K.; Evans, N.J. Contributions from mafic alkaline magmas to the Bingham porphyry Cu–Au–Mo deposit, Utah, USA. Miner. Depos. 2002, 37, 14–37. [Google Scholar] [CrossRef]
- Steinberger, I.; Hinks, D.; Driesner, T.; Heinrich, C.A. Source Plutons Driving Porphyry Copper Ore Formation: Combining Geomagnetic Data, Thermal Constraints, and Chemical Mass Balance to Quantify the Magma Chamber Beneath the Bingham Canyon Deposit. Econ. Geol. 2013, 108, 605–624. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Chen, J.; Ren, J. Geochronology, geochemistry and petrogenesis of two periods of intermediate-acid intrusive rocks from Hongshan area in Zhongdian arc. Acta Petrol. Sin. 2012, 28, 1493–1506, (In Chinese with English Abstract). [Google Scholar]
- Peng, H.-J.; Mao, J.-W.; Pei, R.-F.; Zhang, C.-Q.; Tian, G.; Zhou, Y.; Li, J.; Hou, L. Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit, northwestern Yunnan province, China: Implications for mineralization of the Zhongdian arc. J. Asian Earth Sci. 2014, 79, 682–695. [Google Scholar] [CrossRef]
- Peng, H.-J. Metallogeny of the Hongniu-Hongshan Porphyry-Skarn Copper Deposit and the Porphyry-Skarn Metallogenic System of the Yidun Island Arc, Yunnan, SW China. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2014; pp. 106–124. [Google Scholar]
- Wang, X.; Bi, X.; Leng, C.; Tang, Y.; Lan, J.; Qi, Y.; Shen, N. LA-ICP-MS Zircon U-Pb Dating of Granite Porphyry in the Hongshan Cu-Polymetallic Deposit, Zhongdian, Northwest Yunnan, China and Its Geological Implication. Acta Mineral. Sin. 2011, 31, 315–321, (In Chinese with English Abstract). [Google Scholar]
- Yang, L.Q.; Deng, J.; Dilek, Y.; Meng, J.Y.; Gao, X.; Santosh, M.; Wang, D.; Yan, H. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics. Lithos 2016, 245, 258–273. [Google Scholar] [CrossRef]
- Zu, B.; Xue, C.; Chi, G.; Zhao, X.; Li, C.; Zhao, Y.; Yalikun, Y.; Zhang, G.; Zhao, Y. Geology, geochronology and geochemistry of granitic intrusions and the related ores at the Hongshan Cu-polymetallic deposit: Insights into the Late Cretaceous post-collisional porphyry-related mineralization systems in the southern Yidun arc, SW China. Ore Geol. Rev. 2016, 77, 25–42. [Google Scholar] [CrossRef]
- Grove, T.L.; Baker, M.B.; Kinzler, R.J. Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry. Geochim. Cosmochim. Acta 1984, 48, 2113–2121. [Google Scholar] [CrossRef]
- Bezard, R.; Turner, S.; Davidson, J.; Schmitt, A.K.; Lindsay, J. Origin and Evolution of Silicic Magmas in Oceanic Arcs; an in situ Study from St Lucia, Lesser Antilles. J. Pet. 2017, 58, 1279–1318. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zeng, Z.; Wang, X.; Peng, X.; Zhang, Y.; Yin, X.; Chen, S.; Zhang, L.; Qi, H. Element and Sr isotope zoning in pla-gioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales. Lithos 2020, 376, 105776. [Google Scholar] [CrossRef]
- Ginibre, C.; Wörner, G.; Kronz, A. Minor- and trace-element zoning in plagioclase: Implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib. Mineral. Pet. 2002, 143, 300–315. [Google Scholar] [CrossRef]
- Higgins, O.; Sheldrake, T.; Caricchi, L. Machine learning thermobarometry and chemometry using amphibole and clinopy-roxene: A window into the roots of an arc volcano (Mount Liamuiga, Saint Kitts). Contrib. Mineral. Petrol. 2022, 177, 10. [Google Scholar] [CrossRef]
- Putirka, K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Miner. 2016, 101, 841–858. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and Barometers for Volcanic Systems. Rev. Miner. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A. Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1,130 °C and 2.2 GPa. Contrib. Mineral. Petrol. 2012, 163, 877–895. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib. Mineral. Pet. 2009, 160, 45–66. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J.; Li, C.S.; Wang, C.M. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 2014, 26, 419–437. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Chen, F.; Li, G.; Yang, L.; Wang, C.; Zhang, J.; Sun, X.; Shu, Q.; He, W.; et al. Further discussion on the Sanjiang Tethyan composite metallogenic system. Earth Sci. Front. 2020, 27, 106–136. [Google Scholar]
- Hou, Z.; Zaw, K.; Pan, G.; Mo, X.; Xu, Q.; Hu, Y.; Li, X. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types. Ore Geol. Rev. 2007, 31, 48–87. [Google Scholar] [CrossRef]
- Reid, A.J.; Wilson, C.J.; Liu, S. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan Plateau. J. Struct. Geol. 2005, 27, 119–137. [Google Scholar] [CrossRef]
- Zhan, Q.-Y.; Zhu, D.-C.; Wang, Q.; Cawood, P.A.; Xie, J.-C.; Liu, X.; Li, S.-M.; Zhang, L.-L.; Zhao, Z.-D. Imaging the Late Triassic lithospheric architecture of the Yidun Terrane, eastern Tibetan Plateau: Observations and interpretations. GSA Bull. 2021, 133, 2279–2290. [Google Scholar] [CrossRef]
- Hou, Z.; Qu, X.; Zhou, J.; Yang, Y.; Huang, D.; Lü, Q.; Tang, S.; Jinjie, Y.; Wang, H.P.; Zhao, J. Collision-Orogenic processes of the Yidun Arc in the Sanjiang Region: Record of granites. Acta Geol. Sin. 2001, 75, 484–497, (In Chinese with English Abstract). [Google Scholar]
- Li, W.C.; Yu, H.J.; Gao, X.; Liu, X.L.; Wang, J.H. Review of Mesozoic multiple magmatism and porphyry Cu–Mo (W) miner-alization in the Yidun Arc, eastern Tibet Plateau. Ore Geol. Rev. 2017, 90, 795–812. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Chen, Z. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland; Geological Society of America: New York, NY, USA, 2012; Volume 210, pp. 63–75. [Google Scholar]
- Peng, H.-J.; Mao, J.-W.; Hou, L.; Shu, Q.-H.; Zhang, C.-Q.; Liu, H.; Zhou, Y.-M. Stable Isotope and Fluid Inclusion Constraints on the Source and Evolution of Ore Fluids in the Hongniu-Hongshan Cu Skarn Deposit, Yunnan Province, China. Econ. Geol. 2016, 111, 1369–1396. [Google Scholar] [CrossRef]
- Xu, X.W.; Cai, X.P.; Qu, W.J.; Song, B.C.; Qin, K.Z.; Zhang, B.L. Later cretaceous granitic porphyritic Cu-Mo mineralization system in the Hongshan Area, Northwestern Yunnan and its significances for tectonics. Acta Geol. Sin. 2006, 80, 1424–1433, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Wang, X.S.; Bi, X.W.; Leng, C.B.; Zhong, H.; Tang, H.F.; Chen, Y.W.; Yin, G.H.; Huang, D.Z.; Zhou, M.F. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo–Cu–(W) mineralization in the southern Yidun Arc, SW China: Implications for metallogenesis and geodynamic setting. Ore Geol. Rev. 2014, 61, 73–95. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivo-vichev, V.G. Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical As-sociation Commission on new minerals and mineral names. Mineral. Mag. 1997, 61, 295–310. [Google Scholar] [CrossRef]
- Chappell, B.W. Two contrasting granite types. Pacif. Geol. 1974, 8, 173–174. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Loiselle, M. Characteristics and origin of anorogenic granites. In Proceedings of the Geological Society of America Abstracts with Programs; 1979; p. 468. [Google Scholar]
- Chappell, B.W.; White, A. I-and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Sami, M.; El Monsef, M.A.; Abart, R.; Toksoy-Köksal, F.; Abdelfadil, K.M. Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr–Nd Isotope Systematics, and Mineral Chemistry. ACS Earth Space Chem. 2022, 6, 2368–2384. [Google Scholar] [CrossRef]
- Chappell, B. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A Geochemical Classification for Granitic Rocks. J. Pet. 2001, 42, 2033–2048. [Google Scholar] [CrossRef] [Green Version]
- Neave, D.A.; Putirka, K.D. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Ice-landic rift zones. Am. Mineral. 2017, 102, 777–794. [Google Scholar] [CrossRef] [Green Version]
- Singer, B.S.; Dungan, M.A.; Layne, G.D. Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma chambers. Am. Mineral. 1995, 80, 776–798. [Google Scholar] [CrossRef]
- Viccaro, M.; Giacomoni, P.P.; Ferlito, C.; Cristofolini, R. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 2010, 116, 77–91. [Google Scholar] [CrossRef]
- Erdmann, S.; Martel, C.; Pichavant, M.; Kushnir, A.R.L. Amphibole as an archivist of magmatic crystallization conditions: Problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib. Mineral. Pet. 2014, 167, 1016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Humphreys, M.C.; Cooper, G.F.; Davidson, J.P.; Macpherson, C.G. Magma mush chemistry at subduction zones, revealed by new melt major element inversion from calcic amphiboles. Am. Miner. J. Earth Planet. Mater. 2017, 102, 1353–1367. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiyama, A. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites. Contrib. Mineral. Pet. 1985, 89, 1–16. [Google Scholar] [CrossRef]
- Ginibre, C.; Wörner, G. Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 2007, 98, 118–140. [Google Scholar] [CrossRef]
- Hattori, K.; Sato, H. Magma evolution recorded in plagioclase zoning in 1991 Pinatubo eruption products. Am. Mineral. 1996, 81, 982–994. [Google Scholar] [CrossRef]
- Brugger, C.R.; Hammer, J.E. Crystallization Kinetics in Continuous Decompression Experiments: Implications for Interpreting Natural Magma Ascent Processes. J. Pet. 2010, 51, 1941–1965. [Google Scholar] [CrossRef] [Green Version]
- Waters, L.E.; Andrews, B.J.; Lange, R.A. Rapid Crystallization of Plagioclase Phenocrysts in Silicic Melts during Fluid-saturated Ascent: Phase Equilibrium and Decompression Experiments. J. Pet. 2015, 56, 981–1006. [Google Scholar] [CrossRef] [Green Version]
- Druitt, T.H.; Costa, F.; Deloule, E.; Dungan, M.; Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 2012, 482, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Cherniak, D.; Watson, E. Ti diffusion in feldspar. Am. Miner. J. Earth Planet. Mater. 2020, 105, 1040–1051. [Google Scholar] [CrossRef]
- Blundy, J.D.; Wood, B.J. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim. Cosmochim. Acta 1991, 55, 193–209. [Google Scholar] [CrossRef]
- Nielsen, R.L.; Ustunisik, G.; Weinsteiger, A.B.; Tepley, F.J., III; Johnston, A.D.; Kent, A.J. Trace element partitioning between plagioclase and melt: An investigation of the impact of experimental and analytical procedures. Geochem. Geophys. Geosyst. 2017, 18, 3359–3384. [Google Scholar] [CrossRef]
- Thy, P.; Lesher, C.; Nielsen, T.; Brooks, C. Experimental constraints on the Skaergaard liquid line of descent. Lithos 2006, 92, 154–180. [Google Scholar] [CrossRef]
- Couch, S.; Sparks, R.S.J.; Carroll, M.R. The Kinetics of Degassing-Induced Crystallization at Soufriere Hills Volcano, Montserrat. J. Pet. 2003, 44, 1477–1502. [Google Scholar] [CrossRef] [Green Version]
- Ustunisik, G.; Kilinc, A.; Nielsen, R.L. New insights into the processes controlling compositional zoning in plagioclase. Lithos 2014, 200–201, 80–93. [Google Scholar] [CrossRef]
- Zhou, J.-S.; Wang, Q.; Wyman, D.A.; Zhao, Z.-H. Petrologic Reconstruction of the Tieshan Magma Plumbing System: Implications for the Genesis of Magmatic-Hydrothermal Ore Deposits within Originally Water-Poor Magmatic Systems. J. Pet. 2020, 61, egaa056. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Peng, H.; Xia, Y.; Chen, Y.; Yang, D.; Zhou, Q. Magmatic Processes of Granitoids in the Hongniu-Hongshan Porphyry-Skarn Copper Deposit, Southern Yidun Terrane, China: Evidence from Mineral Geochemistry. Minerals 2022, 12, 1559. https://doi.org/10.3390/min12121559
Wang T, Peng H, Xia Y, Chen Y, Yang D, Zhou Q. Magmatic Processes of Granitoids in the Hongniu-Hongshan Porphyry-Skarn Copper Deposit, Southern Yidun Terrane, China: Evidence from Mineral Geochemistry. Minerals. 2022; 12(12):1559. https://doi.org/10.3390/min12121559
Chicago/Turabian StyleWang, Tianrui, Huijuan Peng, Ying Xia, Yue Chen, Dongjie Yang, and Qi Zhou. 2022. "Magmatic Processes of Granitoids in the Hongniu-Hongshan Porphyry-Skarn Copper Deposit, Southern Yidun Terrane, China: Evidence from Mineral Geochemistry" Minerals 12, no. 12: 1559. https://doi.org/10.3390/min12121559
APA StyleWang, T., Peng, H., Xia, Y., Chen, Y., Yang, D., & Zhou, Q. (2022). Magmatic Processes of Granitoids in the Hongniu-Hongshan Porphyry-Skarn Copper Deposit, Southern Yidun Terrane, China: Evidence from Mineral Geochemistry. Minerals, 12(12), 1559. https://doi.org/10.3390/min12121559