Paleogeographic Evolution of Southeast Asia: Geochemistry and Geochronology of the Katha-Gangaw Range, Northern Myanmar
Abstract
:1. Introduction
2. Regional Geology and Tectonic Background
3. Methodology
3.1. Detrital Zircon U-Pb Dating Method
3.2. Whole—Rock Geochemistry
4. Results
4.1. Petrographic Analysis
4.2. Detrital Zircons U-Pb Results
4.3. Whole-Rock Geochemistry
5. Discussion
5.1. Review of U-Pb Data Related to Asian Terranes
5.2. Tectonics of Myanmar and Adjoining Regions
5.3. Paleogeography of the Gondwana Sibumasu Terrane
5.4. Geochemical Signature
5.5. Provenance Interpretations
5.6. Tectonics of the Sibumasu–Indochina Collision Zone
6. Conclusions
- U-Pb detrital zircon ages indicated that the strata of the KGR were deposited on the northwest margin of Australia during the Permian–Triassic, similar to those of the Pane-Chaung Formation and Banda arc. In addition, the KGR and equivalent strata in Greater India, Northwest Australia, and West Papua, comprise a Late Triassic submarine fan that was formed along Australia’s northern border, with a sediment-routing system extending from West Papua to Greater India. Moreover, within Late-Triassic turbidities, significant numbers of Permian–Triassic zircons were identified. The advent of materials from the Permian–Triassic Sukhothai Arc along the western boundary of the Indochina/Simao terrane is required for the drastic change in zircon age spectra. The change in provenance signature from the Gondwana continent to the Sukhothai Arc is assumed to reflect a Late Triassic collision between the Sibumasu and Indochina/Simao terranes.
- The majority of U-Pb detrital zircon ages from the KGR ranges 1200–822 Ma, 654–388 Ma, and 297–161 Ma is identical to the Tethyan Himalayan sequence. In addition, detrital zircon ages from the Qiangtang terrane further suggests that both units were attached to the Indian and Australian continents during the Ordovician–Silurian. Archean grains were derived from the Albany–Fraser Orogen in NW Australia and the Maud Provinces in Antarctica.
- In this study, the youngest cluster of ages from KGR range between 274 ± 3 Ma and 147 ± 2 Ma, indicating that the Sibumasu terrane was attached to Australia during the Triassic.
- Based on geochemical results and a compilation of published constraints, the tectonic evolution of the KGR metasediments are the byproduct of melt and intercalation of crustal materials most probably formed in a forearc setting (subduction-zone) associated with the India–Asia collision. In addition, the current study areas of the KGR and KR are of arc setting (fore-arc or back-arc basins, adjacent to a volcanic arc developed on the continental crust). Later, during the Pan African orogeny, calc–alkaline magmatism originated from a depleted mantle with crustal contamination, intruded, and crosscut the sedimentary rocks.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Sevastjanova, I.; Hall, R.; Rittner, M.; Paw, S.M.T.L.; Naing, T.T.; Alderton, D.H.; Comfort, G. ; Paw, S.M.T.L.; Naing, T.T.; Alderton, D.H.; Comfort, G. Myanmar and Asia united, Australia left behind long ago. Gondwana Res. 2015, 32, 24–40. [Google Scholar] [CrossRef]
- Burrett, C.; Khin, Z.; Meffre, S.; Lai, C.K.; Khositanont, S.; Chaodumrong, P.; Udchachon, M.; Ekins, S.; Halpin, J. The configuration of Greater Gondwana—Evidence from LA ICPMS, U-Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Res. 2014, 26, 31–51. [Google Scholar] [CrossRef]
- Mitchell, A.H.G.; Htay, M.T.; Htun, K.M.; Win, M.N.; Oo, T.; Hlaing, T. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar. J. Asian Earth Sci. 2007, 29, 891–910. [Google Scholar] [CrossRef]
- Win, T.P.; Nu, T.T.; Thin, A.K. Mineral Assemblages and Metamorphic Condition of The Katha Metamorphics Exposed In Katha-Indaw Area, Sagaing Region, Myanmar. In Proceedings of the First Myanmar National Conference on Earth Sciences (MNCES, 2017), University of Monywa, Monywa, Myanmar, 27–28 November 2017. [Google Scholar]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Bannert, D.; Sang Lyen, A.; Htay, T. The geology of the Indo Burma Ranges in Myanmar. Schweiz. Sci. 2011, 3A, 101. [Google Scholar]
- Bertrand, G.; Rangin, C. Tectonics of the western margin of the Shan plateau (central Myanmar): Implication for the India-Indochin oblique convergence since the Oligocene. J. Asian Earth Sci. 2003, 21, 1139–1157. [Google Scholar] [CrossRef]
- Curray, J.R. Tectonics and history of the Andaman Sea region. J. Asian Earth Sci. 2005, 25, 187–232. [Google Scholar] [CrossRef]
- Vigny, C.; Socquet, A.; Rangin, C.; Chamot-Rooke, N.; Pubellier, M.; Bouin, M.-N.; Bertrand, G.; Becker, M. Present-day crustal deformation around Sagaing fault, Myanmar. J. Geophys. Res. Solid Earth 2003, 108, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bunopas, S.; Vella, P. Tectonic and geologic evolution of Thailand. In Proceedings of the Workshop on Stratigraphic Correlation of Thailand and Malaysia, Haad Yai, Thailand, 8–10 September 1983; pp. 307–322. [Google Scholar]
- Dickinson, W.R.C.J.; Ingersoll, R.; Tankard, A. In Tectonics of sedimentary basins. Sediment. Geol. 1995, 106, 301–302. [Google Scholar]
- Noda, A. Forearc basins: Types, geometries, and relationships to subduction zone dynamics. Bulletin 2016, 128, 879–895. [Google Scholar] [CrossRef] [Green Version]
- Orme, D.A.; Laskowski, A.K. Basin Analysis of the Albian–Santonian Xigaze Forearc, Lazi Region, South-Central Tibet. J. Sediment. Res. 2016, 86, 894–913. [Google Scholar] [CrossRef]
- Ali, J.; Cheung, H.; Aitchison, J.; Sun, Y. Palaeomagnetic re-investigation of Early Permian rift basalts from the Baoshan Block, SW China: Constraints on the site-of-origin of the Gondwana-derived eastern Cimmerian terranes. Geophys. J. Int. 2013, 193, 650–663. [Google Scholar] [CrossRef] [Green Version]
- Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002, 20, 353–431. [Google Scholar] [CrossRef]
- Hall, R.; Sevastjanova, I. Australian crust in Indonesia. Aust. J. Earth Sci. 2012, 59, 827–844. [Google Scholar] [CrossRef]
- Metcalfe, I. Pre-Cretaceous evolution of SE Asian terranes. Geol. Soc. Lond. Spec. Publ. 1996, 106, 97–122. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Aust. J. Earth Sci. 1996, 43, 605–623. [Google Scholar] [CrossRef]
- Metcalfe, I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Res. 2006, 9, 24–46. [Google Scholar] [CrossRef]
- Barber, A.J.; Crow, M.J. Structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of Paleotethys. Isl. Arc 2009, 18, 3–20. [Google Scholar] [CrossRef]
- Metcalfe, I. The Bentong–Raub Suture Zone. J. Asian Earth Sci. 2000, 18, 691–712. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Yao, W.; Laskowski, A.K.; Xu, Q.; Zhang, J.E.; Sein, K. Provenance and tectonic evolution of Lower Paleozoic–Upper Mesozoic strata from Sibumasu terrane, Myanmar. Gondwana Res. 2017, 41, 325–336. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Leary, R.J.; Wang, H.; Xu, Q.; Zhang, L.; Yue, Y. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung–Zangpo suture zone, southern Tibet: Insights into subduction—Accretion processes in the Neo-Tethys. Tectonophysics 2012, 574, 181–192. [Google Scholar] [CrossRef]
- Kyaw Linn, O.; Khin, Z.; Meffre, S.; Aung, D.W.; Lai, C.-K. Provenance of the Eocene sandstones in the southern Chindwin Basin, Myanmar: Implications for the unroofing history of the Cretaceous–Eocene magmatic arc. J. Asian Earth Sci. 2015, 107, 172–194. [Google Scholar] [CrossRef]
- Lin, N.H.; Guo, Y.; Wai, S.N.; Tamehe, L.S.; Wu, Z.; Naing, N.M.; Zhang, J. Sedimentology and geochemistry of Middle Eocene-Lower Oligocene sandstones from the western Salin Sub-Basin, the Central Myanmar Basin: Implications for provenance, source area weathering, paleo-oxidation and paleo-tectonic setting. J. Asian Earth Sci. 2019, 173, 314–335. [Google Scholar] [CrossRef]
- Thein, M.; Maung, M. The Eastern (Back-arc) Basin of Central Myanmar: Basement rocks, lithostratigraphic units, palaeocurrents, provenance and developmental history. Geol. Soc. Lond. Mem. 2017, 48, 169–183. [Google Scholar] [CrossRef]
- Westerweel, J.; Roperch, P.; Licht, A.; Dupont-Nivet, G.; Win, Z.; Poblete, F.; Ruffet, G.; Swe, H.H.; Thi, M.K.; Aung, D.W. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci. 2019, 12, 863–868. [Google Scholar] [CrossRef]
- Metcalfe, I. Palaeozoic–Mesozoic history of SE Asia. Geol. Soc. Lond. Spec. Publ. 2011, 355, 7–35. [Google Scholar] [CrossRef] [Green Version]
- Bannert, D.; Helmcke, D. The evolution of the Asian Plate in Burma. Geol. Rundsch. 1981, 70, 446–458. [Google Scholar] [CrossRef]
- Li, R.; Mei, L.; Zhu, G.; Zhao, R.; Xu, X.; Zhao, H.; Zhang, P.; Yin, Y.; Ma, Y. Late mesozoic to cenozoic tectonic events in volcanic arc, West Burma Block: Evidences from U-Pb zircon dating and apatite fission track data of granitoids. J. Earth Sci. 2013, 24, 553–568. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Yue, Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India–Asia collision. Earth Planet. Sci. Lett. 2011, 305, 195–206. [Google Scholar] [CrossRef]
- Garzanti, E.; Padoan, M.; Andò, S.; Resentini, A.; Vezzoli, G.; Lustrino, M. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. J. Geol. 2013, 121, 547–580. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; Goodge, J.W.; Fanning, C.M.; Williams, I.S.; Peng, S.; Bhargava, O.N.; Parcha, S.K.; Pogue, K.R. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Bulletin 2010, 122, 1660–1670. [Google Scholar] [CrossRef]
- Mitchell, A.H.G. Cretaceous–Cenozoic tectonic events in the western Myanmar (Burma)–Assam region. J. Geol. Soc. 1993, 150, 1089–1102. [Google Scholar] [CrossRef]
- Metcalfe, I.; Kyi Pyar, A. Late Tournaisian conodonts from the Taungnyo Group near Loi Kaw, Myanmar (Burma): Implications for Shan Plateau stratigraphy and evolution of the Gondwana-derived Sibumasu Terrane. Gondwana Res. 2014, 26, 1159–1172. [Google Scholar] [CrossRef]
- Mitchell, A.; Chung, S.-L.; Oo, T.; Lin, T.-H.; Hung, C.-H. Zircon U-Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? J. Asian Earth Sci. 2012, 56, 1–23. [Google Scholar] [CrossRef]
- Pivnik, D.A.; Nahm, J.; Tucker, R.S.; Smith, G.O.; Nyein, K.; Nyunt, M.; Maung, P.H. Polyphase deformation in a fore-arc/back-arc basin, Salin subbasin, Myanmar (Burma). AAPG Bull. 1998, 82, 1837–1856. [Google Scholar]
- Thaire Phyu, W. Petrology of the Katha Metamorphics between Indaw and Katha, Sagaing Region. Ph.D. Thesis, University of Mandalay, Mandalay, Myanmar, 2011. [Google Scholar]
- Ridd, M.F. South-East Asia as a Part of Gondwanaland. Nature 1971, 234, 531–533. [Google Scholar] [CrossRef]
- Metcalfe, I. Origin and assembly of south-east Asian continental terranes. Geol. Soc. Lond. Spec. Publ. 1988, 37, 101–118. [Google Scholar] [CrossRef]
- Mitchell, A. Tectonic settings for emplacement of Southeast Asian tin granites. Geol. Soc. Malays. Bull. 1977, 9, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Boucot, A.J. Some thoughts about the Shan-Thai terrane. War. Geol. 2003, 29, 1–11. [Google Scholar]
- Bender, F. Geology of Burma; Gebrûder Borntrâger Verlagsbuchhandlung: Berlin, Germany; Stuttgart, Germany, 1983. [Google Scholar]
- Mitchell, A.H.G. Late Permian-Mesozoic events and the Mergui group Nappe in Myanmar and Thailand. J. Southeast Asian Earth Sci. 1992, 7, 165–178. [Google Scholar] [CrossRef]
- Searle, M.; Noble, S.; Cottle, J.; Waters, D.; Mitchell, A.; Hlaing, T.; Horstwood, M. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics 2007, 26, 1–24. [Google Scholar] [CrossRef]
- Barber, A.; Crow, M. An evaluation of plate tectonic models for the development of Sumatra. Gondwana Res. 2003, 6, 1–28. [Google Scholar] [CrossRef]
- Khin, K. Marine transgression and regression in Miocene sequences of northern Pegu (Bago) Yoma, central Myanmar. J. Asian Earth Sci. 1999, 17, 369–393. [Google Scholar] [CrossRef]
- Mitchell, A. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wang, J.-G.; Wu, F.-Y.; Tan, X.-C.; Liu, C.-Z. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 2014, 612, 97–105. [Google Scholar] [CrossRef]
- Curray, J.; Moore, D.; Lawver, L.; Emmel, F.; Raitt, R.; Henry, M.; Kieckhefer, R. Tectonics of the Andaman Sea and Burma: Convergent margins. In M 29: Geological and Geophysical Investigations of Continental Margins; Special Volumes; AAPG: Tulsa, OK, USA, 1979; pp. 189–198. [Google Scholar]
- Hutchison, C.S. Geological Evolution of South-East Asia; Oxford University Press: Oxford, UK, 1989; Volume 13, p. 368. [Google Scholar]
- Trevena, A.; Varga, R.; Collins, I.; Nu, U. Tertiary Tectonics and Sedimentation in the Salin (Fore-arc) Basin, Myanmar; AAPG Bulletin; American Association of Petroleum Geologists: Tulsa, OK, USA, 1991; Volume 75. [Google Scholar]
- Swe, W. A major strike-slip fault in Burma. Contrib. Burmese Geol. 1981, 1, 63–72. [Google Scholar]
- Liu, C.-Z.; Chung, S.-L.; Wu, F.-Y.; Zhang, C.; Xu, Y.; Wang, J.-G.; Chen, Y.; Guo, S. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology 2016, 44, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A. The Chin Hills segment of the Indo-Burman Ranges: Not a simple accretionary wedge. In Proceedings of the Seminar on Indo-Myanmar Ranges in the Tectonic Framework of the Himalaya and Southeast Asia, Conchipur, India, 27–29 November 2008; Manipur University: Conchipur, India, 2008; pp. 3–24. [Google Scholar]
- Yao, W.; Ding, L.; Cai, F.; Wang, H.; Xu, Q.; Zaw, T. Origin and tectonic evolution of upper Triassic Turbidites in the Indo-Burman ranges, West Myanmar. Tectonophysics 2017, 721, 90–105. [Google Scholar] [CrossRef]
- Maung, M.; Thu, A.N.; Suzuki, H.; Swe, W.; Tun, S.T.; Thant, M.; Zaw, K. Latest Jurassic radiolarian fauna from the Chinghkran area, Myitkyina township, Kachin state, northern Myanmar. In Regional Congress on Mineral and Energy Resources of Southeast Asia; GEOSEA: Yangon, Myanmar, 2014; pp. 38–39. [Google Scholar]
- Lin, D.; Goswami, T.K.; Fulong, C.; Baral, U.; Sarmah, R.K.; Bezbaruah, D. Detrital zircon U-Pb ages of Tertiary sequences (Palaeocene-Miocene): Inner Fold Belt and Belt of Schuppen, Indo-Myanmar Ranges, India. Geol. J. 2022, 1–16. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Clift, P.D.; Yang, J.-H. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics 2007, 26, 1–15. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Gehrels, G.E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 2009, 288, 115–125. [Google Scholar] [CrossRef]
- Vermeesch, P. Maximum depositional age estimation revisited. Geosci. Front. 2021, 12, 843–850. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Martins, H.C.B.; Simões, P.P.; Abreu, J. Zircon crystal morphology and internal structures as a tool for constraining magma sources: Examples from northern Portugal Variscan biotite-rich granite plutons. Comptes Rendus Geosci. 2014, 346, 233–243. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Sevastjanova, I.; Clements, B.; Hall, R.; Belousova, E.; Griffin, W.; Pearson, N. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: Insights from detrital zircon U-Pb and Hf-isotope data. Gondwana Res. 2011, 19, 1024–1039. [Google Scholar] [CrossRef]
- Gunawan, I.; Hall, R.; Sevastjanova, I. Age, character and provenance of the Tipuma Formation, West Papua: New insights from detrital zircon dating. In Proceedings of the Indonesian Petroleum Association, 36th Annual Convention, Jakarta, Indonesia, 23–25 May 2012. [Google Scholar]
- Usuki, T.; Lan, C.-Y.; Wang, K.-L.; Chiu, H.-Y. Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U-Pb ages and Hf isotopes of detrital zircons. Tectonophysics 2013, 586, 145–159. [Google Scholar] [CrossRef]
- Wang, J.-G.; Wu, F.-Y.; Garzanti, E.; Hu, X.; Ji, W.-Q.; Liu, Z.-C.; Liu, X.-C. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Res. 2016, 34, 84–98. [Google Scholar] [CrossRef]
- Ding, L.; Yang, D.; Cai, F.L.; Pullen, A.; Kapp, P.; Gehrels, G.E.; Zhang, L.Y.; Zhang, Q.H.; Lai, Q.Z.; Yue, Y.H.; et al. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics 2013, 32, 34–48. [Google Scholar] [CrossRef]
- Gehrels, G.; Kapp, P.; DeCelles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; McQuarrie, N.; et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 2011, 30, TC5016. [Google Scholar] [CrossRef]
- Pullen, A.; Kapp, P.; Gehrels, G.E.; Vervoort, J.D.; Ding, L. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 2008, 36, 351–354. [Google Scholar] [CrossRef]
- DeCelles, P.; Gehrels, G.; Quade, J.; LaReau, B.; Spurlin, M. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 2000, 288, 497–499. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Dai, J.; Xu, G.; Hou, Y.; Li, X. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: A review. Earth-Sci. Rev. 2015, 143, 36–61. [Google Scholar] [CrossRef]
- Li, X.-H.; Li, Z.-X.; Li, W.-X. Detrital zircon U–Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: A synthesis. Gondwana Res. 2014, 25, 1202–1215. [Google Scholar] [CrossRef]
- Lewis, C.; Sircombe, K.; Keep, M.; Moss, S. Use of U-Pb geochronology to delineate provenance of North West Shelf sediments, Australia. In The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, Australia, 18–21 August 2013; Petroleum Exploration Society of Australia: Perth, Australia, 2013; pp. 1–27. [Google Scholar]
- Bird, P.R.; Cook, S.E. Permo-Triassic successions of the Kekneno area, West Timor: Implications for palaeogeography and basin evolution. J. Southeast Asian Earth Sci. 1991, 6, 359–371. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Laskowski, A.K.; Kapp, P.; Wang, H.; Xu, Q.; Zhang, L. Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet. Earth Planet. Sci. Lett. 2016, 435, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.-F.; Chung, S.-L.; Song, B.; Liu, D.; O’Reilly, S.Y.; Pearson, N.J.; Ji, J.; Wen, D.-J. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 2006, 34, 745–748. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Chung, S.-L.; Liu, C.-Z. Identification of early Carboniferous granitoids from southern Tibet and implications for terrane assembly related to the Paleo-Tethyan evolution. J. Geol. 2012, 120, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xu, W.; Guo, J.; Zong, K.; Cai, H.; Yuan, H. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet: Evidence for Early Jurassic subduction of Neo-Tethyan oceanic slab. Acta Petrol. Sin. 2007, 23, 1347–1353. [Google Scholar]
- Zhu, D.-C.; Zhao, Z.-D.; Niu, Y.; Mo, X.-X.; Chung, S.-L.; Hou, Z.-Q.; Wang, L.-Q.; Wu, F.-Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Leier, A.L.; Kapp, P.; Gehrels, G.E.; DeCelles, P.G. Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Res. 2007, 19, 361–378. [Google Scholar]
- Pullen, A.; Kapp, P.; Gehrels, G.E.; DeCelles, P.G.; Brown, E.H.; Fabijanic, J.M.; Ding, L. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. J. Asian Earth Sci. 2008, 33, 323–336. [Google Scholar] [CrossRef]
- Li, G.; Sandiford, M.; Liu, X.; Xu, Z.; Lijie, W.; Li, H. Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication. Gondwana Res. 2014, 25, 1680–1689. [Google Scholar] [CrossRef]
- Tang, S.-L.; Yan, D.-P.; Qiu, L.; Gao, J.-F.; Wang, C.-L. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics? Gondwana Res. 2014, 25, 1644–1659. [Google Scholar] [CrossRef]
- Veevers, J.; Saeed, A. Permian–Jurassic Mahanadi and Pranhita–Godavari Rifts of Gondwana India: Provenance from regional paleoslope and U–Pb/Hf analysis of detrital zircons. Gondwana Res. 2009, 16, 633–654. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; Paulsen, T.; Williams, I.; Parcha, S.K.; Thompson, K.; Bowring, S.A.; Peng, S.-C.; Ahluwalia, A. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet. Sci. Lett. 2003, 212, 433–441. [Google Scholar] [CrossRef]
- Cawood, P.A.; Nemchin, A.A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sediment. Geol. 2000, 134, 209–234. [Google Scholar] [CrossRef]
- Veevers, J.; Belousova, E.; Saeed, A.; Sircombe, K.; Cooper, A.; Read, S. Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity. Earth-Sci. Rev. 2006, 76, 135–174. [Google Scholar] [CrossRef]
- Rangin, C.; Maw, W.; Lwin, S.; Naing, W.; Mouret, C.; Bertrand, G.; Party, G.S. Cenozoic pull-apart basins in central Myanmar: The trace of the path of India along the western margin of Sundaland. In Proceedings of the European Union of Geosciences conference, Strasbourg, France, 28 March–1 April 1999; p. 59. [Google Scholar]
- Zhang, J.E.; Xiao, W.; Windley, B.F.; Wakabayashi, J.; Cai, F.; Sein, K.; Wu, H.; Naing, S. Multiple alternating forearc- and backarc-ward migration of magmatism in the Indo-Myanmar Orogenic Belt since the Jurassic: Documentation of the orogenic architecture of eastern Neotethys in SE Asia. Earth-Sci. Rev. 2018, 185, 704–731. [Google Scholar] [CrossRef]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Stalder, M.; Rozendaal, A. Trace and Rare Earth Element Chemistry of Garnet and Apatite as Discriminant for Broken Hill-Type Mineralization, Namaqua Province, South Africa; Springer: Berlin/Heidelberg, Germany, 2005; pp. 699–702. [Google Scholar]
- Nakada, R.; Shibuya, T.; Suzuki, K.; Takahashi, Y. Europium anomaly variation under low-temperature water-rock interaction: A new thermometer. Geochem. Int. 2017, 55, 822–832. [Google Scholar] [CrossRef]
- Jafari, A.; Karimpour, M.H.; Mazaheri, S.A.; Malekzadeh Shafaroudi, A.; Ren, M. Geochemistry of metamorphic rocks and mineralization in the Golgohar iron ore deposit (No. 1), Sirjan, SE Iran: Implications for paleotectonic setting and ore genesis. J. Geochem. Explor. 2019, 205, 106330. [Google Scholar] [CrossRef]
- Middelburg, J.J.; van der Weijden, C.H.; Woittiez, J.R. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol. 1988, 68, 253–273. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Brown, G.; Thorpe, R.; Webb, P. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J. Geol. Soc. 1984, 141, 413–426. [Google Scholar] [CrossRef]
- Zhao, J.-H.; Zhou, M.-F.; Jian-Ping, Z. Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block, South China. Lithos 2010, 115, 177–189. [Google Scholar] [CrossRef]
- Saunders, A.; Storey, M.; Kent, R.; Norry, M. Consequences of plume-lithosphere interactions. Geol. Soc. Lond. Spec. Publ. 1992, 68, 41–60. [Google Scholar] [CrossRef]
- Thompson, R.; Morrison, M. Asthenospheric and lower-lithospheric mantle contributions to continental extensional magmatism: An example from the British Tertiary Province. Chem. Geol. 1988, 68, 1–15. [Google Scholar] [CrossRef]
- Mckenzie, D.; Bickle, M. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 1988, 29, 625–679. [Google Scholar] [CrossRef]
- Rogers, N.; Macdonald, R.; Fitton, J.G.; George, R.; Smith, M.; Barreiro, B. Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts. Earth Planet. Sci. Lett. 2000, 176, 387–400. [Google Scholar] [CrossRef]
- Aung, W. Petrogenetic Studies of Metamorphic Rocks in Mogaung Area, Mogaung and Phakant Townships, Myitkyina District, Kachin State: Implication for Tectonic Setting. Ph.D. Thesis, University of Mandalay, Mandalay, Myanmar, 2008. [Google Scholar]
- Gardiner, N.J.; Searle, M.P.; Morley, C.K.; Robb, L.J.; Whitehouse, M.J.; Roberts, N.M.; Kirkland, C.L.; Spencer, C.J. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Res. 2018, 62, 27–60. [Google Scholar] [CrossRef]
- Li, S.; Yin, C.; Guilmette, C.; Ding, L.; Zhang, J. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Sci. Rev. 2019, 198, 102907. [Google Scholar] [CrossRef]
- Licht, A.; Win, Z.; Westerweel, J.; Cogné, N.; Morley, C.K.; Chantraprasert, S.; Poblete, F.; Ugrai, T.; Nelson, B.; Aung, D.W. Magmatic history of central Myanmar and implications for the evolution of the Burma Terrane. Gondwana Res. 2020, 87, 303–319. [Google Scholar] [CrossRef]
- Floyd, P.; Shail, R.; Leveridge, B.; Franke, W. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: Implications for tectonic environment discrimination. Geol. Soc. Lond. Spec. Publ. 1991, 57, 173–188. [Google Scholar] [CrossRef]
- Hennig, J.; Hall, R.; Armstrong, R.A. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: Extension-related metamorphism and magmatism during the early stages of mountain building. Gondwana Res. 2016, 32, 41–63. [Google Scholar] [CrossRef]
- Zimmermann, S.; Hall, R. Provenance of Mesozoic Sandstones in the Banda Arc Indonesia. In Proceedings of the 38 Annual Convention & Exhibition Indonesia, Indonesian Petroleum Association, Jakarta, Indonesia, 21–23 May 2014. [Google Scholar]
- Zimmermann, S.; Hall, R. Provenance of Triassic and Jurassic sandstones in the Banda Arc: Petrography, heavy minerals and zircon geochronology. Gondwana Res. 2016, 37, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Fitzsimons, I. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens. Geology 2000, 28, 879–882. [Google Scholar] [CrossRef]
- Searle, M.P.; Whitehouse, M.J.; Robb, L.J.; Ghani, A.A.; Hutchison, C.S.; Sone, M.; Ng, S.W.-P.; Roselee, M.H.; Chung, S.-L.; Oliver, G.J.H. Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: Constraints from new U-Pb zircon chronology of SE Asian tin granitoids. J. Geol. Soc. 2012, 169, 489–500. [Google Scholar] [CrossRef]
- Stokes, R.B. A Review of Geology of Myanmar (Burma). Unpublished work. 1988. [Google Scholar]
- UNDGSE. Geology and Exploration Geochemistry of Part of the Northern and Southern Chin Hills and Arakan Yoma; Western Burma, Technical Report No 4; UN/BUR-72-002/13; UNDP: Rangoon, Burma; UNDGSE: New York, NY, USA, 1979; 59p. [Google Scholar]
- Bertrand, G.; Rangin, C.; Maluski, H.; Han, T.A.; Thein, M.; Myint, O.; Maw, W.; Lwin, S. Cenozoic metamorphism along the Shan Scarp (Myanmar): Evidences for ductile shear along the Sagaing Fault or the northward migration of the Eastern Himalayan Syntaxis? Geophys. Res. Lett. 1999, 26, 915–918. [Google Scholar] [CrossRef]
Samples | Area | Rock Type | Age | Latitude (N) | Longitude (E) |
---|---|---|---|---|---|
MT-001 | KGR (S) | Quartzite | Cambrian–Proterozoic | 23°46′49.98″ N | 96°10′17.84″ E |
MT-004 | KGR (S) | Quartzite | Cambrian–Proterozoic | 23°46′14.36″ N | 96°08′40.98″ E |
MT-009 | KGR (S) | Quartzite | Mesozoic–Proterozoic | 23°47′10.23″ N | 96°09′19.18″ E |
MT-010 | KGR (S) | Quartzite | Mesozoic–Proterozoic | 23°47′10.23″ N | 96°09′19.18″ E |
MT-012 | KGR (L-M) | Quartzite | Mesozoic–Proterozoic | 24°18′48.47″ N | 96°13′10.53″ E |
MT-014 | KGR (L-M) | Quartzite | Cambrian–Proterozoic | 24°18′44.59″ N | 96°13′24.01″ E |
MT-019 | KGR (L-M) | Quartzite | Cambrian–Proterozoic | 24°16′26.59″ N | 96°12′34.58″ E |
MT-024A | KGR (U-M) | Quartzite | Cambrian–Proterozoic | 24°45′40.73″ N | 96°23′52.33″ E |
MT-025 | KGR (U-M) | Quartzite | Cambrian–Proterozoic | 24°45′41.49″ N | 96°23′54.19″ E |
MT-045 | KGR (L-M) | Quartzite | Mesozoic–Proterozoic | 24°19′05.82″ N | 96°14′59.20″ E |
MT-047 | KGR (L-M) | Quartzite | Mesozoic | 24°19′04.20″ N | 96°14′58.11″ E |
MT-051 | KGR (L-M) | Quartzite | Cambrian–Proterozoic | 24°18′40.17″ N | 96°14′16.10″ E |
M-31 | KGR (U-M) | Quartzite | Cambrian–Proterozoic | 24°45′43.24″ N | 96°23′52.12″ E |
M-32 | KGR (U-M) | Quartzite | Cambrian–Proterozoic | 24°45′43.24″ N | 96°23′52.12″ E |
M-34 | KGR (U-M) | Quartzite | Cambrian–Proterozoic | 24°45′42.94″ N | 96°23′52.40″ E |
M-6 | KR | Mylonite gneiss | Proterozoic | 25°24′34.82″ N | 96°58′05.33″ E |
M-002A | KR | Mylonite gneiss | Proterozoic | 25°24′29.88″ N | 96°57′55.25″ E |
M-003 | KR (S) | Mylonite gneiss | Proterozoic | 25°24′27.55″ N | 96°57′54.59″ E |
M-17 | KR (S) | Mica-Schist | Proterozoic | 25°24′41.36″ N | 96°58′03.22″ E |
M-41 | KR (S) | Biotite-Gneiss | Proterozoic | 25°24′14.82″ N | 96°58′03.71″ E |
M-33 | KGR (N) | Gnt-Kyanite Schist | Cenozoic–Mesozoic | 24°45′42.94″ N | 96°23′52.40″ E |
M-35 | KGR (N) | Gnt-Staurolite Schist | Cambrian–Proterozoic | 25°04′38.46″ N | 96°39′51.81″ E |
M-36 | KGR (N) | Gnt-Staurolite Schist | Cambrian–Proterozoic | 25°04′47.62″ N | 96°40′13.59″ E |
Sample Unit | M-002A | M-003 | M-41 | M-6 | M-17 | M-33 | M-35 | M-36 |
---|---|---|---|---|---|---|---|---|
SiO2 | 49.37 | 70.61 | 74.58 | 84.67 | 60.64 | 58.54 | 54.87 | 53.58 |
TiO2 | 1.98 | 0.73 | 0.14 | 0.22 | 1.02 | 1.22 | 1.18 | 1.21 |
Al2O3 | 15.97 | 13.11 | 12.21 | 3.87 | 18.45 | 28.50 | 27.73 | 27.73 |
TFe2O3 | 14.96 | 5.80 | 1.77 | 2.86 | 9.79 | 3.50 | 7.95 | 10.33 |
MnO | 0.22 | 0.16 | 0.02 | 0.17 | 0.22 | 0.00 | 0.01 | 0.03 |
MgO | 6.96 | 1.90 | 0.59 | 0.71 | 2.78 | 0.42 | 0.30 | 0.49 |
CaO | 9.27 | 1.53 | 0.19 | 0.17 | 0.82 | 0.06 | 0.11 | 0.14 |
Na2O | 0.79 | 1.57 | 3.40 | 0.12 | 0.90 | 1.33 | 0.86 | 1.21 |
K2O | 0.20 | 2.46 | 4.29 | 0.58 | 4.00 | 3.22 | 3.13 | 2.72 |
P2O5 | 0.23 | 0.09 | 0.03 | 0.02 | 0.08 | 0.03 | 0.05 | 0.14 |
TOTAL | 100.26 | 99.56 | 98.34 | 94.43 | 100.42 | 100.39 | 100.39 | 100.14 |
LOI | 0.30 | 1.60 | 1.12 | 1.04 | 1.72 | 3.56 | 4.18 | 2.55 |
FeO | 13.46 | 5.22 | 1.59 | 2.57 | 8.81 | 3.15 | 7.16 | 9.30 |
Mg | 48.21 | 39.59 | 39.93 | 33.18 | 36.24 | 19.36 | 7.11 | 8.72 |
K2O + Na2O | 0.99 | 4.03 | 7.69 | 0.70 | 4.90 | 4.55 | 3.99 | 3.93 |
SiO2/Al2O3 | 3.09 | 5.39 | 6.11 | 21.88 | 3.29 | 2.05 | 1.98 | 1.93 |
Sc | 26.21 | 10.24 | 0.49 | 4.33 | 11.68 | 0.75 | 0.59 | 12.20 |
V | 212.88 | 76.26 | 11.69 | 26.23 | 84.08 | 130.09 | 135.39 | 105.51 |
Cr | 97.43 | 51.93 | 3.41 | 26.99 | 62.78 | 83.90 | 95.77 | 136.43 |
Co | 40.16 | 11.61 | 1.61 | 5.57 | 11.94 | 1.12 | 8.21 | 19.47 |
Ni | 41.32 | 22.66 | 2.21 | 10.96 | 17.67 | 2.51 | 38.90 | 55.94 |
Cu | 24.76 | 31.10 | 2.80 | 10.10 | 17.07 | 51.70 | 22.25 | 47.73 |
Zn | 114.81 | 60.56 | 22.87 | 14.45 | 69.80 | 65.72 | 47.48 | 48.79 |
Rb | 11.78 | 103.45 | 104.22 | 22.00 | 105.45 | 118.32 | 119.18 | 6.21 |
Sr | 62.71 | 83.98 | 31.71 | 7.96 | 78.49 | 137.59 | 112.16 | 92.01 |
Y | 21.67 | 23.38 | 17.65 | 13.77 | 27.89 | 2.07 | 2.79 | 7.88 |
Zr | 91.29 | 71.93 | 205.12 | 129.48 | 74.39 | 224.66 | 226.92 | 19.51 |
Nb | 15.89 | 9.92 | 15.67 | 2.61 | 11.67 | 30.73 | 17.87 | 2.70 |
Cs | 0.26 | 0.70 | 0.35 | 0.14 | 0.92 | 4.72 | 3.82 | 0.07 |
Ba | 51.21 | 363.85 | 463.21 | 138.46 | 543.75 | 789.70 | 703.29 | 75.76 |
La | 11.64 | 31.86 | 41.70 | 24.46 | 41.89 | 52.25 | 19.23 | 4.14 |
Ce | 27.13 | 57.51 | 69.41 | 45.46 | 82.92 | 89.74 | 34.56 | 9.52 |
Pr | 3.56 | 6.74 | 8.79 | 5.10 | 9.22 | 9.39 | 3.54 | 1.24 |
Nd | 15.27 | 24.42 | 31.17 | 18.02 | 33.64 | 31.90 | 12.21 | 5.02 |
Sm | 3.80 | 4.92 | 5.94 | 3.19 | 6.33 | 5.67 | 2.61 | 1.36 |
Eu | 1.35 | 1.33 | 0.92 | 0.81 | 1.25 | 1.13 | 0.73 | 0.74 |
Gd | 4.40 | 5.43 | 6.04 | 3.36 | 6.78 | 5.42 | 2.20 | 1.64 |
Tb | 0.72 | 0.77 | 0.78 | 0.45 | 0.95 | 0.47 | 0.21 | 0.26 |
Dy | 4.12 | 4.13 | 3.81 | 2.41 | 5.16 | 1.18 | 0.77 | 1.50 |
Ho | 0.83 | 0.87 | 0.73 | 0.53 | 1.04 | 0.13 | 0.14 | 0.31 |
Er | 2.36 | 2.68 | 2.03 | 1.60 | 3.04 | 0.25 | 0.38 | 0.90 |
Tm | 0.33 | 0.41 | 0.28 | 0.24 | 0.44 | 0.03 | 0.05 | 0.12 |
Yb | 2.18 | 2.75 | 1.83 | 1.60 | 2.93 | 0.25 | 0.35 | 0.82 |
Lu | 0.32 | 0.42 | 0.27 | 0.23 | 0.43 | 0.04 | 0.05 | 0.11 |
Hf | 2.43 | 1.95 | 6.41 | 3.25 | 2.01 | 5.98 | 5.92 | 0.61 |
Ta | 1.33 | 0.52 | 0.92 | 0.15 | 0.71 | 2.23 | 1.26 | 0.20 |
Pb | 4.57 | 24.08 | 21.71 | 2.46 | 20.48 | 34.78 | 56.01 | 11.08 |
Th | 0.65 | 9.20 | 18.55 | 10.13 | 16.39 | 19.52 | 18.49 | 0.16 |
U | 0.39 | 0.88 | 2.09 | 0.61 | 1.11 | 2.32 | 2.54 | 0.03 |
(Nb/Ta)N | 11.95 | 19.13 | 17.04 | 17.47 | 16.42 | 13.77 | 14.20 | 13.68 |
(Th/Nb)N | 0.58 | 1.87 | 0.65 | 6.27 | 1.67 | 0.60 | 0.01 | 0.62 |
(La/Yb)N | 5.33 | 11.58 | 22.80 | 15.25 | 14.28 | 207.86 | 54.17 | 5.06 |
(La/Th)N | 17.91 | 3.46 | 2.25 | 2.41 | 2.56 | 2.68 | 1.04 | 26.25 |
(Sm/Th)N | 5.84 | 0.54 | 0.32 | 0.32 | 0.39 | 0.29 | 0.14 | 8.61 |
(Yb/Th)N | 3.36 | 0.30 | 0.10 | 0.16 | 0.18 | 0.01 | 0.02 | 5.19 |
(La/Nb)N | 0.73 | 3.21 | 2.66 | 9.36 | 3.59 | 1.70 | 1.08 | 1.53 |
(Nb/Th)N | 24.45 | 1.08 | 0.84 | 0.26 | 0.71 | 1.57 | 0.97 | 17.14 |
Eu/Eu* | 1.01 | 0.78 | 0.47 | 0.75 | 0.58 | 0.61 | 0.90 | 1.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aung, M.M.; Ding, L.; Baral, U.; Cai, F.; Neupane, B.; Aung, M.M.; Thu, A.N.; Sein, K.; Khaing, K.K. Paleogeographic Evolution of Southeast Asia: Geochemistry and Geochronology of the Katha-Gangaw Range, Northern Myanmar. Minerals 2022, 12, 1632. https://doi.org/10.3390/min12121632
Aung MM, Ding L, Baral U, Cai F, Neupane B, Aung MM, Thu AN, Sein K, Khaing KK. Paleogeographic Evolution of Southeast Asia: Geochemistry and Geochronology of the Katha-Gangaw Range, Northern Myanmar. Minerals. 2022; 12(12):1632. https://doi.org/10.3390/min12121632
Chicago/Turabian StyleAung, Myo Myint, Lin Ding, Upendra Baral, Fulong Cai, Bhupati Neupane, Me Me Aung, Aung Naing Thu, Kyaing Sein, and Kyawt Kay Khaing. 2022. "Paleogeographic Evolution of Southeast Asia: Geochemistry and Geochronology of the Katha-Gangaw Range, Northern Myanmar" Minerals 12, no. 12: 1632. https://doi.org/10.3390/min12121632
APA StyleAung, M. M., Ding, L., Baral, U., Cai, F., Neupane, B., Aung, M. M., Thu, A. N., Sein, K., & Khaing, K. K. (2022). Paleogeographic Evolution of Southeast Asia: Geochemistry and Geochronology of the Katha-Gangaw Range, Northern Myanmar. Minerals, 12(12), 1632. https://doi.org/10.3390/min12121632