Influence of Chemical Composition and Microvesiculation on the Chromatic Features of the Obsidian of Sierra de las Navajas (Hidalgo, Mexico)
Abstract
:1. Introduction
2. Geological Outlines
3. Sierra de las Navajas Obsidian
4. Selected Samples
5. Analytical Methods
5.1. Scanning Electron Microscope (SEM) Observation and Electron Probe Micro-Analysis (EPMA)
5.2. X-ray Computed Microtomography and Image Analysis
6. Results
6.1. Chemical Composition of the Glass
6.2. 2D Microscopic Observation
6.3. 3D Shape and Distribution of Vesicles
7. Discussion
7.1. Influence of Chemical Composition on Obsidian Color
7.2. Influence of Vesiculation on Obsidian Aspects
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glascock, M.D.; Braswell, G.E.; Cobean, R.H. A systematic approach to obsidian source characterization. In Archaeological Obsidian Studies; Springer: Boston, MA, USA, 1998. [Google Scholar]
- Ambroz, J.A.; Glascock, M.D.; Skinner, C.E. Chemical differentiation of obsidian within the Glass Buttes Complex, Oregon. J. Archaeol. Sci. 2001, 28, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Dolan, S.G.; Shackley, M.S. Is there mahogany obsidian in Northeastern Sonora, Mexico? IAOS Bull. 2017, 56, 11–17. [Google Scholar]
- Kasztovszky, Z.; Lázár, K.; Kis, V.K.; Len, A.; Füzi, J.; Markó, A.; Biró, K.T. A novel approach in the mineralogy of Carpathian mahogany obsidian using complementary methods. Quat. Int. 2018, 467, 332–341. [Google Scholar] [CrossRef]
- Ma, C.; Rossman, G.R.; Miller, J.A. The origin of color in “fire” obsidian. Can. Mineral. 2007, 45, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Davì, M.; De Rosa, R.; Donato, P.; Sulpizio, R. The Lami pyroclastic succession (Lipari, Aeolian Islands): A clue for unravelling the eruptive dynamics of the Monte Pilato rhyolitic pumice cone. J. Volcanol. Geotherm. Res. 2011, 201, 285–300. [Google Scholar] [CrossRef]
- Donato, P.; Barba, L.; De Rosa, R.; Niceforo, G.; Pastrana, A.; Donato, S.; Lanzafame, G.; Mancini, L.; Crisci, G.M. Green, grey and black: A comparative study of Sierra de Las Navajas (Mexico) and Lipari (Italy) obsidians. Quat. Int. 2018, 467, 369–390. [Google Scholar] [CrossRef]
- Rust, A.C.; Cashman, K.V. Multiple origins of obsidian pyroclasts and implications for changes in the dynamics of the 1300 B.P. eruption of Newberry volcano, USA. Bull. Volcanol. 2007, 69, 825–845. [Google Scholar] [CrossRef]
- Ponomarenko, A.L. The Pachuca obsidian source, Hidalgo, Mexico: A geoarchaeological perspective. Geoarchaeology Int. J. 2004, 19, 71–91. [Google Scholar] [CrossRef]
- Argote-Espino, D.; Solé, J.; López-García, P.; Sterpone, O. Obsidian subsource identification in the Sierra de Pachuca and Otumba volcanic regions, Central Mexico, by ICP-MS and DBSCAN statistical analysis. Geoarchaeology 2012, 27, 48–62. [Google Scholar] [CrossRef]
- Donato, P.; Barba, L.; Crocco, M.C.; Davoli, M.; De Rosa, R.; Donato, S.; Filosa, R.; Lanzafame, G.; Niceforo, G.; Pastrana, A.; et al. Study of the micro-vesiculation of the obsidian source of Sierra de Las Navajas (State of Hidalgo, Mexico). In Inventaria Praehistorica Hungariae (IPH XIV)-beyond the Glass Mountains-Papers Presented for the 2019 International Obsidian Conference 27–29 May 2019; Biró, K.T., Markó, A., Eds.; Magyar Nemzeti Múzeum: Budapest, Hungary, 2019; pp. 9–18. [Google Scholar]
- Argote-Espino, D.; Solé, J.; Sterpone, O.; López-García, P. Análisis composicional de seis yacimientos de obsidiana del centro de México y su clasificación con DBSCAN. Arqueol. Segunda Época 2010, 43, 197–215. [Google Scholar]
- Tenorio, D.; Cabral, A.; Bosch, P.; Jiménez-Reyes, M.; Bulbulian, S. Differences in coloured obsidians from Sierra de Pachuca, Mexico. J. Archaeol. Sci. 1998, 25, 229–234. [Google Scholar] [CrossRef]
- Cantagrel, J.M.; Robin, C. K-Ar dating on Eastern Mexican volcanic rocks-relations between the andesitic and the alkaline provinces. J. Volcanol. Geotherm. Res. 1979, 5, 99–114. [Google Scholar] [CrossRef]
- García-Barcena, J. Las minas de obsidiana de La Sierra Las Navajas, Hidalgo, México. In XLI Congreso Internacional de Americanistas 1; Comas, J., Ed.; Instituto Nacional de Antropología e Historia: Ciudad de México, Mexico, 1975; pp. 369–377. [Google Scholar]
- Pastrana, A. La explotación Azteca de la Obsidiana en la Sierra de Las Navajas; Instituto Nacional de Antropología e Historia: Ciudad de México, Mexico, 1998. [Google Scholar]
- Nelson, S.A.; Lighthart, A. Field excursion to the Sierra Las Navajas, Hidalgo, Mexico—A Pleistocene peralkaline rhyolite complex with a large debris avalanche deposit. In II Convención sobre la Evolución Geologica de México y Recursos Asociados. Libro-guía de las Excursiones Geológicas; Universidad Autónoma de Hidalgo, Instituto de Investigaciones en Ciencias de la Tierra: Pachuca, Mexico, 1997; pp. 89–96. [Google Scholar]
- Cobean, R.H.; Vogt, J.R.; Glascock, M.D.; Stocker, T.L. High-precision trace-element characterization of major mesoamerican obsidian sources and further analyses of artifacts from San Lorenzo Tenochtitlan, Mexico. Lat. Am. Antiq 1991, 2, 69–91. [Google Scholar] [CrossRef]
- Hirth, K.G. Experimentation and interpretation in mesoamerican lithic technology. In Mesoamerican Lithic Technology: Experimentation and Interpretation; University of Utah Press: Salt Lake City, UT, USA, 2003. [Google Scholar]
- Pastrana, A.; Athie, I. The symbolism of obsidian in postclassic central mexico. In Obsidian Reflections: Symbolic Dimensions of Obsidian in Mesoamerica; University Press of Colorado: Boulder, CO, USA, 2014. [Google Scholar]
- Pastrana, A.; Domínguez, S. Cambios en la estrategia de la explotación de la obsidiana de Pachuca: Teotihuacan, Tula y la triple alianza. Anc. Mesoam. 2009, 20, 129–148. [Google Scholar] [CrossRef]
- Pastrana, A.; Fournier, P. Explotación colonial de obsidiana en el yacimiento de Sierra de Las Navajas. In Primer Congreso Nacional de Arqueología Histórica; Davila, E.F., Gomez Serafin, S., Eds.; Conaculta-INAH: Ciudad de México, Mexico, 1998; pp. 486–496. [Google Scholar]
- Pastrana Cruz, A.; Fournier Garcìa, P.; Parry, W.J.; Otis Charlton, C.L. Obsidian production and use in Central Mexico after the Spanish invasion. In Technology and Tradition in Mesoamerica after the Spanish Invasion; Alexander, R.T., Ed.; University of New Mexico Press: Albuquerque, Mexico, 2019; pp. 15–33. [Google Scholar]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical cone-beam algorithm. J. Opt. Soc. Am. 1984, 1, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, R. Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull. Volcanol. 1974, 38, 498–516. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Eilers, P.H.C.; Goeman, J.J. Enhancing scatterplots with smoothed densities. Bioinformatics 2004, 20, 623–628. [Google Scholar] [CrossRef]
- Calas, G.; Galoisy, L.; Cormier, L. The color of glass. In Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Ed.; Wiley-American Ceramic Society: Hoboken, NJ, USA, 2020. [Google Scholar]
- Foresta Martin, F.; Rotolo, S.G.; Nazzari, M.; Carapezza, M.L. Chlorine as a discriminant element to establish the provenance of central Mediterranean obsidians. Open Archaeol. 2020, 6, 454–476. [Google Scholar] [CrossRef]
- Rotolo, S.G.; Carapezza, M.L.; Correale, A.; Martin, F.F.; Hahn, G.; Hodgetts, A.G.E.; la Monica, M.; Nazzari, M.; Romano, P.; Sagnotti, L.; et al. Obsidians of Pantelleria (Strait of Sicily): A petrographic, geochemical and magnetic study of known and new geological sources. Open Archaeol. 2020, 6, 434–453. [Google Scholar] [CrossRef]
- Acquafredda, P.; Andriani, T.; Lorenzoni, S.; Zanettin, E. Chemical characterization of obsidians from different Mediterranean sources by non-destructive SEM-EDS analytical method. J. Archaeol. Sci. 1999, 26, 315–325. [Google Scholar] [CrossRef]
- Foresta Martin, F.; Di Piazza, A.; D’Oriano, C.; Carapezza, M.L.; Paonita, A.; Rotolo, S.G.; Sagnotti, L. New insights into the provenance of the obsidian fragments of the island of Ustica (Palermo, Sicily). Archaeometry 2017, 59, 435–454. [Google Scholar] [CrossRef]
- Galoisy, L.; Calas, G. The unique speciation of iron in calc-alkaline obsidians. Chem. Geol. 2021, 559, 119925. [Google Scholar] [CrossRef]
- Shields, J.K.; Mader, H.M.; Caricchi, L.; Tuffen, H.; Mueller, S.; Pistone, M.; Baumgartner, L. Unravelling textural heterogeneity in obsidian: Shear-induced outgassing in the Rocche Rosse flow. J. Volcanol. Geotherm. Res. 2016, 310, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Gonnermann, H.M.; Manga, M. Flow banding in obsidian: A record of evolving textural heterogeneity during magma deformation. Earth Planet. Sci. Lett. 2005, 236, 135–147. [Google Scholar] [CrossRef]
SN-A (14) | SN-B Light (8) | SN-B Dark (16) | SN-D (16) | SN-E (16) | SN-F (10) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | st. dev. | wt% | st. dev. | wt% | st. dev. | wt% | st. dev. | wt% | st. dev. | wt% | st. dev. | |
SiO2 | 76.50 | 0.22 | 77.36 | 0.40 | 77.03 | 0.29 | 76.61 | 0.28 | 76.13 | 0.26 | 76.69 | 0.23 |
Al2O3 | 11.40 | 0.15 | 11.28 | 0.15 | 11.18 | 0.11 | 11.37 | 0.10 | 11.37 | 0.13 | 11.19 | 0.08 |
TiO2 | 0.23 | 0.09 | 0.08 | 0.08 | 0.19 | 0.09 | 0.13 | 0.08 | 0.12 | 0.07 | 0.09 | 0.08 |
Fe2O3 | 2.09 | 0.10 | 1.92 | 0.11 | 1.92 | 0.09 | 1.90 | 0.13 | 1.97 | 0.15 | 2.01 | 0.13 |
MnO | 0.14 | 0.04 | 0.15 | 0.03 | 0.13 | 0.03 | 0.14 | 0.04 | 0.15 | 0.03 | 0.15 | 0.02 |
MgO | 0.06 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | 0.06 | 0.02 | 0.05 | 0.02 | 0.06 | 0.01 |
CaO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Na2O | 4.82 | 0.23 | 4.49 | 0.34 | 4.82 | 0.11 | 5.06 | 0.17 | 5.38 | 0.40 | 5.06 | 0.15 |
K2O | 4.50 | 0.08 | 4.41 | 0.06 | 4.41 | 0.06 | 4.48 | 0.06 | 4.59 | 0.12 | 4.50 | 0.04 |
Cl | 0.22 | 0.02 | 0.20 | 0.02 | 0.20 | 0.03 | 0.20 | 0.02 | 0.20 | 0.02 | 0.20 | 0.03 |
P2O5 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
Cr2O3 | 0.02 | 0.02 | 0.03 | 0.04 | 0.02 | 0.02 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 |
BaO | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.03 | 0.06 | 0.01 | 0.03 | 0.03 | 0.04 |
Sample | Total Vesicularity (%) | Vesicles Volume (mm3) | Azimuthal Orientation φ (°) | Polar Orientation θ (°) | Elongation E | Flatness F | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mode | Mode1 | Mode2 | Mode3 | Mode | Av | s | Av | s | ||
SN-A | 0.70 | 2.8 × 104 | −112.5 | 72.5 | 65.5 | 0.44 | 0.15 | 0.38 | 0.19 | |
SN-B | 3.70 | 4.5 × 104 | −132.5 | 47.5 | 87.5 | 0.25 | 0.10 | 0.22 | 0.24 | |
SN-D | 0.34 | 2.8 × 104 | −157.5 | 177.5 | −7.5 | 87.5 | 0.49 | 0.16 | 0.46 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donato, P.; Donato, S.; Barba, L.; Crisci, G.M.; Crocco, M.C.; Davoli, M.; Filosa, R.; Formoso, V.; Niceforo, G.; Pastrana, A.; et al. Influence of Chemical Composition and Microvesiculation on the Chromatic Features of the Obsidian of Sierra de las Navajas (Hidalgo, Mexico). Minerals 2022, 12, 177. https://doi.org/10.3390/min12020177
Donato P, Donato S, Barba L, Crisci GM, Crocco MC, Davoli M, Filosa R, Formoso V, Niceforo G, Pastrana A, et al. Influence of Chemical Composition and Microvesiculation on the Chromatic Features of the Obsidian of Sierra de las Navajas (Hidalgo, Mexico). Minerals. 2022; 12(2):177. https://doi.org/10.3390/min12020177
Chicago/Turabian StyleDonato, Paola, Sandro Donato, Luis Barba, Gino Mirocle Crisci, Maria Caterina Crocco, Mariano Davoli, Raffaele Filosa, Vincenzo Formoso, Giancarlo Niceforo, Alejandro Pastrana, and et al. 2022. "Influence of Chemical Composition and Microvesiculation on the Chromatic Features of the Obsidian of Sierra de las Navajas (Hidalgo, Mexico)" Minerals 12, no. 2: 177. https://doi.org/10.3390/min12020177
APA StyleDonato, P., Donato, S., Barba, L., Crisci, G. M., Crocco, M. C., Davoli, M., Filosa, R., Formoso, V., Niceforo, G., Pastrana, A., Solano, A., & De Rosa, R. (2022). Influence of Chemical Composition and Microvesiculation on the Chromatic Features of the Obsidian of Sierra de las Navajas (Hidalgo, Mexico). Minerals, 12(2), 177. https://doi.org/10.3390/min12020177