Evolution of Ore-Forming Fluids and Gold Deposition of the Sanakham Lode Gold Deposit, SW Laos: Constrains from Fluid Inclusions Study
Abstract
:1. Introduction
2. Geology and Mineralization
2.1. Regional Geological Setting
2.2. Local Geological Setting
2.3. Wall-Rock Alterations and Ore Mineralization
3. Sampling and Analytical Methods
4. Results
4.1. Fluid-Inclusion Petrography
4.2. Results of Microthermometry
4.2.1. FIA in Stage I
4.2.2. FIA in Stage II
FIA Group | FIA No. | FI Type | Range | Tm carbon (°C) | Tm clath (°C) | Th carbon (°C) | Th TOT (°C) | Salinity (wt.% NaCl) |
---|---|---|---|---|---|---|---|---|
Group 1 | Group 1-1 | M | Min | −76.1 | −3.5 | 7.8 | 328 | 17.9 |
(N = 5) | Max | −70.3 | −2.2 | 11.1 | 352 | 19.1 | ||
Mean | −74.2 | −2.9 | 9.5 | 340 | 18.6 | |||
Group 1-2 | M | Min | −74.4 | −4.7 | 3.1 | 336 | 18.8 | |
(N = 4) | Max | −71.1 | −3.1 | 6.7 | 352 | 20.2 | ||
Mean | −72.8 | −3.9 | 4.8 | 345 | 19.5 | |||
Group 1-3 | M | Min | −73.5 | −5.5 | 4.9 | 329 | 19.4 | |
(N = 4) | Max | −70.1 | −3.8 | 8.2 | 346 | 20.9 | ||
Mean | −71.6 | −4.6 | 6.6 | 337 | 20.1 | |||
Group 1-4 | M | Min | −70.5 | −7.4 | 5.2 | 317 | 19.8 | |
(N = 3) | Max | −68.7 | −4.2 | 7.0 | 341 | 22.4 | ||
Mean | −69.5 | −5.7 | 6.0 | 326 | 21.0 |
FIA Group | FIA No. | FI Type | Range | Tm carbon (°C) | Tm clath(°C) | Th carbon (°C) | Th TOT(°C) | Salinity (wt.% NaCl) | Bulk Density (g/cm3) | XH2O | XNaCl | XCO2 + XCH4 | XCO2 | XCH4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 2 | Group 2-1 | C1 | Min | −58.6 | 3.9 | 16.5 | 295 | 9.4 | 0.782 | 0.825 | 0.026 | 0.051 | 0.046 | 0.005 |
– | (N = 4) | Max | −57.2 | 4.8 | 20.6 | 314 | 10.7 | 0.983 | 0.915 | 0.034 | 0.148 | 0.144 | 0.004 | |
Mean | −57.9 | 4.3 | 18.2 | 305 | 10.1 | 0.877 | 0.872 | 0.030 | 0.098 | 0.092 | 0.006 | |||
Group 2-2 | C1 | Min | −58.2 | 4.4 | 17.9 | 311 | 8.9 | 0.770 | 0.821 | 0.025 | 0.067 | 0.062 | 0.005 | |
(N = 4) | Max | −56.9 | 5.1 | 22.5 | 326 | 10.0 | 0.940 | 0.902 | 0.031 | 0.154 | 0.151 | 0.003 | ||
Mean | −57.5 | 4.8 | 20.3 | 318 | 9.4 | 0.856 | 0.866 | 0.028 | 0.107 | 0.103 | 0.004 | |||
Group 3 | Group 3-1 | M | Min | −73.1 | −11.0 | 0.3 | 324 | 23.0 | ||||||
(N = 4) | Max | −68.4 | −8.3 | 8.9 | 347 | 25.0 | ||||||||
Mean | −70.7 | −9.8 | 4.3 | 335 | 24.1 | |||||||||
C1 | Min | −60.6 | 4.9 | 13.8 | 306 | 7.8 | 0.835 | 0.855 | 0.024 | 0.071 | 0.058 | 0.013 | ||
(N = 3) | Max | −57.9 | 5.8 | 19.6 | 335 | 9.2 | 0.924 | 0.906 | 0.027 | 0.119 | 0.112 | 0.007 | ||
Mean | −59.2 | 5.2 | 16.4 | 320 | 8.8 | 0.876 | 0.878 | 0.026 | 0.096 | 0.084 | 0.012 | |||
Group 3-2 | M | Min | −72.4 | −8.2 | 2.1 | 341 | 21.7 | |||||||
(N = 3) | Max | −70.6 | −6.6 | 7.6 | 364 | 23.0 | ||||||||
Mean | −71.5 | −7.5 | 5.0 | 355 | 22.4 | |||||||||
C1 | Min | −59.5 | 5.3 | 16.7 | 329 | 7.0 | 0.732 | 0.807 | 0.019 | 0.053 | 0.046 | 0.007 | ||
(N = 3) | Max | −57.3 | 6.3 | 19.3 | 342 | 8.6 | 0.968 | 0.920 | 0.027 | 0.174 | 0.169 | 0.005 | ||
Mean | −58.1 | 5.9 | 18.1 | 335 | 7.6 | 0.833 | 0.862 | 0.022 | 0.116 | 0.108 | 0.008 | |||
Group 3-3 | M | Min | −67.2 | −4.3 | 14.8 | 315 | 18.6 | |||||||
(N = 3) | Max | −63.8 | −2.9 | 17.9 | 339 | 19.8 | ||||||||
Mean | −65.6 | −3.7 | 16.2 | 326 | 19.3 | |||||||||
C1 | Min | −58.4 | 3.5 | 22.4 | 328 | 9.4 | 0.730 | 0.794 | 0.025 | 0.084 | 0.077 | 0.007 | ||
(N = 4) | Max | −57.0 | 4.8 | 24.0 | 345 | 11.3 | 0.909 | 0.881 | 0.035 | 0.181 | 0.177 | 0.004 | ||
Mean | −57.6 | 4.1 | 23.3 | 337 | 10.4 | 0.825 | 0.845 | 0.030 | 0.125 | 0.120 | 0.005 | |||
Group 3-4 | M | Min | −65.7 | −6.8 | 12.7 | 273 | 20.6 | |||||||
(N = 4) | Max | −62.1 | −5.2 | 13.9 | 306 | 21.9 | ||||||||
Mean | −64.0 | −5.9 | 13.3 | 288 | 21.2 | |||||||||
C1 | Min | −57.9 | 3.8 | 19.7 | 282 | 9.8 | 0.847 | 0.859 | 0.029 | 0.055 | 0.052 | 0.003 | ||
(N = 3) | Max | −56.8 | 4.5 | 22.0 | 297 | 10.9 | 0.973 | 0.911 | 0.034 | 0.112 | 0.111 | 0.001 | ||
Mean | −57.2 | 4.2 | 20.9 | 290 | 10.3 | 0.925 | 0.894 | 0.032 | 0.075 | 0.073 | 0.002 | |||
Group 3-5 | M | Min | −73.1 | −6.2 | 8.8 | 325 | 20.4 | |||||||
(N = 3) | Max | −71.2 | −4.9 | 13.7 | 346 | 21.4 | ||||||||
Mean | −72.0 | −5.5 | 11.2 | 336 | 20.9 | |||||||||
C1 | Min | −61.4 | 2.9 | 17.4 | 320 | 10.6 | 0.802 | 0.831 | 0.030 | 0.047 | 0.037 | 0.010 | ||
(N = 2) | Max | −59.8 | 4.0 | 21.6 | 338 | 12.1 | 0.999 | 0.914 | 0.039 | 0.139 | 0.120 | 0.019 | ||
Mean | −60.6 | 3.5 | 19.5 | 329 | 11.3 | 0.895 | 0.874 | 0.034 | 0.092 | 0.075 | 0.017 | |||
Group 3-6 | M | Min | −68.9 | −4.8 | 6.4 | 304 | 18.8 | |||||||
(N = 4) | Max | −64.7 | −3.1 | 9.2 | 342 | 20.3 | ||||||||
Mean | −66.6 | −4.1 | 7.9 | 323 | 19.7 | |||||||||
C1 | Min | −58.8 | 4.4 | 16.3 | 311 | 8.5 | 0.752 | 0.812 | 0.023 | 0.065 | 0.059 | 0.007 | ||
(N = 3) | Max | −57.2 | 5.4 | 20.8 | 334 | 10.0 | 0.946 | 0.904 | 0.031 | 0.165 | 0.160 | 0.005 | ||
Mean | −58.1 | 4.9 | 18.8 | 322 | 9.2 | 0.853 | 0.865 | 0.027 | 0.108 | 0.100 | 0.008 |
FIA Group | FIA No. | FI Type | Range | Tm carbon (°C) | Tm clath (°C) | Th carbon (°C) | Th TOT (°C) | Salinity (wt.% NaCl) | Bulk Density (g/cm3) | XH2O | XNaCl | XCO2 + XCH4 | XCO2 | XCH4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 4 | FIA 4-1 | C1 | Min | −57.4 | 3.8 | 22.1 | 286 | 9.7 | 0.851 | 0.862 | 0.029 | 0.068 | 0.065 | 0.003 |
(N = 4) | Max | −56.8 | 4.6 | 24.2 | 308 | 10.9 | 0.941 | 0.898 | 0.034 | 0.110 | 0.109 | 0.001 | ||
Mean | −57.0 | 4.3 | 23.3 | 298 | 10.1 | 0.885 | 0.876 | 0.030 | 0.093 | 0.091 | 0.002 | |||
FIA 4-2 | C1 | Min | −57.7 | 4.6 | 19.6 | 293 | 8.6 | 0.796 | 0.838 | 0.024 | 0.066 | 0.063 | 0.003 | |
(N = 5) | Max | −56.7 | 5.3 | 24.4 | 301 | 9.7 | 0.941 | 0.904 | 0.030 | 0.138 | 0.137 | 0.001 | ||
Mean | −57.2 | 5.0 | 22.0 | 296 | 9.1 | 0.865 | 0.872 | 0.027 | 0.101 | 0.098 | 0.003 | |||
Group 5 | FIA 5-1 | C1 | Min | −58.2 | 2.0 | 14.2 | 266 | 11.7 | 0.901 | 0.873 | 0.036 | 0.041 | 0.038 | 0.003 |
(N = 4) | Max | −56.6 | 3.2 | 19.6 | 279 | 13.3 | 1.021 | 0.916 | 0.043 | 0.091 | 0.091 | 0.000 | ||
Mean | −57.3 | 2.5 | 17.1 | 272 | 12.6 | 0.974 | 0.901 | 0.040 | 0.059 | 0.057 | 0.002 | |||
C2 | Min | −60.1 | 3.8 | 16.3 | 270 | 9.5 | 0.860 | 0.399 | 0.013 | 0.332 | 0.279 | 0.053 | ||
(N = 3) | Max | −57.9 | 4.7 | 22.4 | 287 | 10.9 | 0.884 | 0.644 | 0.024 | 0.588 | 0.553 | 0.035 | ||
Mean | −59.0 | 4.3 | 19.1 | 278 | 10.1 | 0.872 | 0.539 | 0.019 | 0.443 | 0.394 | 0.049 | |||
FIA 5-2 | C1 | Min | −59.2 | 5.6 | 19.5 | 307 | 7.1 | 0.832 | 0.865 | 0.021 | 0.059 | 0.052 | 0.007 | |
(N = 3) | Max | −57.1 | 6.2 | 23.2 | 325 | 8.1 | 0.949 | 0.916 | 0.025 | 0.115 | 0.112 | 0.003 | ||
Mean | −58.3 | 5.9 | 21.3 | 316 | 7.6 | 0.893 | 0.893 | 0.023 | 0.084 | 0.077 | 0.007 | |||
C2 | Min | −59.5 | 6.0 | 18.7 | 302 | 6.1 | 0.827 | 0.336 | 0.007 | 0.382 | 0.332 | 0.050 | ||
(N = 2) | Max | −58.1 | 6.8 | 20.1 | 334 | 7.5 | 0.875 | 0.603 | 0.015 | 0.657 | 0.611 | 0.046 | ||
Mean | −58.8 | 6.4 | 19.4 | 318 | 6.8 | 0.850 | 0.489 | 0.011 | 0.500 | 0.450 | 0.050 | |||
FIA 5-3 | C1 | Min | −57.2 | 3.3 | 22.9 | 313 | 10.4 | 0.812 | 0.838 | 0.030 | 0.046 | 0.045 | 0.001 | |
(N = 4) | Max | −56.6 | 4.1 | 25.3 | 329 | 11.6 | 0.998 | 0.917 | 0.037 | 0.132 | 0.132 | 0.000 | ||
Mean | −56.8 | 3.7 | 24.0 | 322 | 11.0 | 0.900 | 0.879 | 0.034 | 0.088 | 0.087 | 0.001 | |||
C2 | Min | −58.6 | 4.5 | 23.5 | 334 | 9.2 | 0.830 | 0.517 | 0.016 | 0.276 | 0.251 | 0.025 | ||
(N = 2) | Max | −57.2 | 4.9 | 27.3 | 345 | 9.8 | 0.866 | 0.700 | 0.024 | 0.467 | 0.453 | 0.014 | ||
Mean | −57.9 | 4.7 | 25.4 | 339 | 9.5 | 0.847 | 0.620 | 0.020 | 0.360 | 0.338 | 0.022 | |||
FIA 5-4 | C1 | Min | −59.2 | 2.9 | 14.5 | 278 | 9.5 | 0.888 | 0.879 | 0.029 | 0.038 | 0.033 | 0.005 | |
(N = 4) | Max | −58.4 | 4.7 | 19.2 | 299 | 12.1 | 1.022 | 0.923 | 0.039 | 0.092 | 0.085 | 0.007 | ||
Mean | −58.8 | 3.6 | 16.9 | 290 | 11.2 | 0.950 | 0.899 | 0.035 | 0.066 | 0.059 | 0.007 | |||
C2 | Min | −59.4 | 4.1 | 16.2 | 282 | 8.0 | 0.858 | 0.400 | 0.011 | 0.445 | 0.387 | 0.058 | ||
(N = 2) | Max | −59.2 | 5.7 | 20.3 | 294 | 10.4 | 0.863 | 0.536 | 0.019 | 0.589 | 0.518 | 0.071 | ||
Mean | −59.3 | 4.9 | 18.3 | 288 | 9.2 | 0.860 | 0.474 | 0.015 | 0.511 | 0.450 | 0.061 | |||
FIA 5-5 | C1 | Min | −58.4 | 3.8 | 21.2 | 301 | 10.0 | 0.806 | 0.837 | 0.029 | 0.065 | 0.060 | 0.005 | |
(N = 2) | Max | −57.2 | 4.4 | 24.8 | 313 | 10.9 | 0.949 | 0.901 | 0.034 | 0.135 | 0.131 | 0.004 | ||
Mean | −57.8 | 4.1 | 23.0 | 307 | 10.4 | 0.886 | 0.875 | 0.031 | 0.093 | 0.088 | 0.005 | |||
C2 | Min | −60.7 | 3.6 | 22.5 | 310 | 10.1 | 0.832 | 0.485 | 0.017 | 0.375 | 0.304 | 0.071 | ||
(N = 3) | Max | −57.1 | 4.3 | 25.9 | 324 | 11.2 | 0.841 | 0.601 | 0.023 | 0.498 | 0.483 | 0.015 | ||
Mean | −59.1 | 4.0 | 24.2 | 316 | 10.6 | 0.836 | 0.548 | 0.020 | 0.432 | 0.384 | 0.048 | |||
FIA 5-6 | C1 | Min | −57.5 | 4.3 | 21.1 | 273 | 8.6 | 0.843 | 0.863 | 0.025 | 0.041 | 0.039 | 0.002 | |
(N = 4) | Max | −57.0 | 5.3 | 24.9 | 295 | 10.1 | 1.003 | 0.927 | 0.032 | 0.112 | 0.110 | 0.002 | ||
Mean | −57.3 | 4.9 | 23.2 | 284 | 9.2 | 0.927 | 0.900 | 0.028 | 0.071 | 0.069 | 0.002 | |||
C2 | Min | −58.7 | 4.2 | 20.8 | 282 | 8.0 | 0.798 | 0.248 | 0.007 | 0.484 | 0.440 | 0.044 | ||
(N = 3) | Max | −57.1 | 5.7 | 25.7 | 293 | 10.3 | 0.807 | 0.499 | 0.018 | 0.745 | 0.723 | 0.022 | ||
Mean | −57.8 | 5.0 | 23.7 | 287 | 9.1 | 0.802 | 0.396 | 0.012 | 0.592 | 0.562 | 0.030 |
FIA Group | FIA No. | FI Type | Range | Th TOT (°C) | Tm ice (°C) | Salinity (wt.% NaCl) | Bulk Density (g/cm3) | XH2O | XNaCl |
---|---|---|---|---|---|---|---|---|---|
Group 6 | Group 6-1 | W | Min | 227 | −12.4 | 13.2 | 0.938 | 0.955 | 0.045 |
(N = 4) | Max | 243 | −9.3 | 16.4 | 0.949 | 0.943 | 0.057 | ||
Mean | 235 | −10.8 | 14.8 | 0.943 | 0.949 | 0.051 | |||
Group 6-2 | W | Min | 215 | −9.5 | 11.4 | 0.916 | 0.962 | 0.038 | |
(N = 5) | Max | 232 | −7.7 | 13.4 | 0.952 | 0.954 | 0.046 | ||
Mean | 223 | −8.6 | 12.4 | 0.935 | 0.958 | 0.042 | |||
Group 6-3 | W | Min | 184 | −15.8 | 17.4 | 0.994 | 0.939 | 0.061 | |
(N = 4) | Max | 206 | −13.4 | 19.5 | 1.032 | 0.931 | 0.069 | ||
Mean | 196 | −14.5 | 18.4 | 1.012 | 0.936 | 0.064 |
4.2.3. FIA in Stage III
4.2.4. FIA in Stage IV
4.3. Results of Laser Raman Spectroscopy
4.3.1. Salinity
4.3.2. Bulk Density
4.3.3. Content of CO2 and CH4
5. Discussion
5.1. Nature of Ore-Forming Fluids
5.2. Fluid Immiscibility Processes
5.3. Implications for Gold Deposition
6. Conclusions
- (1)
- Four mineralization stages have been distinguished in Sanakham, of which the quartz–pyrite–pyrrhotite-chalcopyrite stage (II) and the quartz–pyrite–base-metal sulfide stage (III) are identified as the main gold deposition stages.
- (2)
- The initial ore-forming fluids belonged to a medium-high temperature CH4-rich CH4–CO2–NaCl–H2O system, which gradually evolved into a medium temperature, medium salinity, and high CO2 content NaCl–H2O–CO2 ± CH4 system during the main ore stages, and then a medium-low temperature, medium-high salinity NaCl–H2O system in stage IV.
- (3)
- Gold-deposition events were generated along with the two fluid immiscibility processes during stage II and III mineralization, respectively. The former created two coexisting high-CH4 and low-CO2 and low-CH4 and high-CO2 endmembers, while the latter created two coexisting CO2-poor and CO2-rich endmembers.
- (4)
- The presence of CH4 in ore-forming fluids promoted the fluid immiscibility and resulted in gold deposition at P–T conditions generally around 236 to 65 MPa and 337 to 272 °C, with estimated gold mineralization depths of 8.7–6.5 km.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.S.; Yang, Y.F.; Guo, L.N.; Nie, F.; Peng, Z.M.; Pan, G.T. Tectonic characteristics and metallogeny in Southeast Asia. Geol. China 2018, 45, 863–889, (In Chinese with English abstract). [Google Scholar]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Khin, Z.; Meffre, S.; Lai, C.K.; Santosh, M.; Burrett, C.F.; Graham, I.T.; Manaka, T.; Salam, A.; Kamvong, T.; Cromie, P. Tectonics and metallogeny of mainland Southeast Asia–A review and contribution. Gondwana Res. 2014, 26, 5–30. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yang, T.X.; Zhang, Y.Z.; Qian, X.; Gan, C.S.; Wang, Y.K.; Wang, Y.; Vongpaseuth, S. Late Paleozoic back-arc basin in the Indochina block: Constraints from the mafic rocks in the Nan and Luang Prabang tectonic zones, Southeast Asia. J. Asian Earth Sci. 2020, 195, 104333. [Google Scholar] [CrossRef]
- Shi, M.F.; Khin, Z.; Liu, S.S.; Xu, B.C.; Meffre, S.; Cong, F.; Nie, F.; Peng, Z.M.; Wu, Z.B. Geochronology and petrogenesis of Carboniferous and Triassic volcanic rocks in NW Laos: Implications for the tectonic evolution of the Loei Fold Belt. J. Asian Earth Sci. 2021, 208, 104661. [Google Scholar] [CrossRef]
- Qian, X.; Feng, Q.L.; Yang, W.Q.; Wang, Y.J.; Chonglakmani, C.; Monjai, D. Arc-like volcanic rocks in NW Laos: Geochronological and geochemical constraints and their tectonic implications. J. Asian Earth Sci. 2015, 98, 342–357. [Google Scholar] [CrossRef]
- Qian, X.; Feng, Q.L.; Wang, Y.J.; Chonglakmani, C.; Monjai, D. Geochronological and geochemical constraints on the mafic rocks along the Luang Prabang zone: Carboniferous back-arc setting in northwest Laos. Lithos 2016, 245, 60–75. [Google Scholar] [CrossRef]
- Rossignol, C.; Bourquin, S.; Poujol, M.; Hallot, E.; Dabard, M.-P.; Nalpas, T. The volcaniclastic series from the Luang Prabang Basin, Laos: A witness of a Triassic magmatic arc? J. Asian Earth Sci. 2016, 12, 159–183. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.F.; Wu, Z.B.; Liu, S.S.; Peng, Z.M.; Guo, L.N.; Nie, F.; Xu, S.W. Geochronology and petrochemistry of volcanic rocks in the Xaignabouli area, NW Laos. J. Earth Sci. 2019, 30, 37–51. [Google Scholar] [CrossRef]
- Guo, L.N.; Hou, L.; Nie, F.; Liu, S.S.; Xu, S.W.; Zhang, Q.M. Zircon U-Pb dating of quartz-diorite from Luang Prabang tectonic belt in Laos: Implication for eastward subduction of the Paleo-Tethys Ocean. Sediment. Geol. and Tethyan Geol. 2020, 40, 68–75, (In Chinese with English abstract). [Google Scholar]
- Blanchard, S.; Rossignol, C.; Bourquin, S.; Dabard, M.P.; Hallot, E.; Nalpas, T.; Poujol, M.; Battail, B.; Jalil, N.E.; Steyer, J.S.; et al. Late Triassic volcanic activity in South-East Asia: New stratigraphical, geochronological and paleontological evidence from the Luang Prabang Basin (Laos). J. Asian Earth Sci. 2013, 70–71, 8–26. [Google Scholar] [CrossRef]
- Qian, X.; Feng, Q.L.; Wang, Y.J.; Yang, W.Q.; Chonglakmani, C.; Monjai, D. Petrochemistry and Tectonic Setting of the Middle Triassic Arc-Like Volcanic Rocks in the Sayabouli Area, NW Laos. J. Earth Sci. 2016, 27, 365–377. [Google Scholar] [CrossRef]
- Liu, S.S. Study on the Tectonics-Magmatic-Mineralization of the Luang Prabang-Loei Copper-Gold Metallogenic Belt. Ph.D. Thesis, Chengdu Univerisity of Technology, Chengdu, China, 2021. [Google Scholar]
- Kamvong, T.; Khin, Z. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand. Evidence from fluid inclusion and sulfur isotope studies. J. Asian Earth Sci. 2009, 34, 624–633. [Google Scholar] [CrossRef]
- Nie, F.; Liu, S.S.; Yang, Y.F.; Peng, Z.M.; Guo, L.N. Zircon U-Pb dating of the diorite of Phu Lon skarn Cu-Au deposit in Thailand and its significance. Sediment. Geol. Tethyan Geol. 2019, 39, 71–78, (In Chinese with English abstract). [Google Scholar]
- Salam, A.; Khin, Z.; Meffre, S.; McPhie, J.; Lai, C.K. Geochemistry and geochronology of epithermal Au-hosted Chatree volcanic sequence: Implication for tectonic setting of the Loei Fold Belt in central Thailand. Gondwana Res. 2014, 26, 198–217. [Google Scholar] [CrossRef]
- Guo, L.N.; Hou, L.; Liu, S.S.; Nie, F. REE geochemistry and C-O isotope characteristics of hydrothermal calcites: Implications for fluid–rock reaction and ore-forming processes in the Phapon gold deposit, NW Laos. Minerals 2018, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.N.; Liu, S.S.; Hou, L.; Wang, J.T.; Zhang, Q.M.; Shi, M.F.; Nie, F.; Yang, Y.F.; Peng, Z.M. Fluid inclusion and C-H-O isotopes geochemistry of the Phapon gold deposit, NW Laos: Implications for fluid source and ore genesis. J. Earth Sci. 2019, 30, 80–94. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Kang, T.S.; Ning, G.C.; Ge, H.; Pan, H. Geochemical characteristics of the volcanic intrusive complex in the Pangkuam copper-gold deposit of Laos and its geological significance. Acta Petrol. Et Mineral. 2017, 36, 281–294, (In Chinese with English abstract). [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; SEPM Short Course 31; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1994; Volume 31, pp. 1–199. [Google Scholar]
- Chi, G.X.; Diamond, L.W.; Lu, H.Z.; Lai, J.Q.; Chu, H.X. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Bakker, R.J. Package Fluids 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Brown, P.E.; Hagemann, S.G. MacFlincor and its application to fluids in Archaean lode-gold deposits. Geochim. Cosmochim. Acta 1995, 59, 3943–3952. [Google Scholar] [CrossRef]
- Thiéry, R.; Vidal, J.; Dubessy, J. Phase equilibria modelling applied to fluid inclusions: Liquid-vapour equilibria and calculation of the molar volume in the CO2-CH4-N2 system. Geochim. Cosmochim. Acta 1994, 58, 1073–1082. [Google Scholar] [CrossRef]
- Darling, R.S. An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: Implications for P-T isochore location. Geochim. Cosmochim. Acta 1991, 55, 3869–3871. [Google Scholar] [CrossRef]
- Pichavant, M.; Ramboz, C.; Weisbrod, A. Fluid immiscibility in natural processes: Use and misuse: I. Phase equilibria analysis–a theoretical and geometrical approach. Chem. Geol. 1982, 37, 29–48. [Google Scholar]
- Bakker, R.J.; Jansen, J.B.H. A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations. Contrib. Mineral. Petrol. 1994, 116, 7–20. [Google Scholar] [CrossRef]
- Ramboz, C.; Pichavant, M.; Weisbrod, A. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data, II. Interpretation of fluid inclusion data in terms of immiscibility. Chem. Geol. 1982, 37, 29–48. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Treloar, P.J.; Rankin, A.H.; Boyce, A.; Harbidge, P. A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: Implications for multifluid sources in the generation of orogenic gold deposits. Econ. Geol. 2013, 180, 229–257. [Google Scholar] [CrossRef]
- Bowers, T.S.; Helgeson, H.C. Calculation of thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: Equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1983, 47, 1247–1275. [Google Scholar] [CrossRef]
- Anderson, M.R.; Rankin, A.H.; Spiro, B. Fluid mixing in the generation of mesothermal gold mineralization in the Transvaal Sequence, Transvaal, South Africa. Eur. J. Mineral. 1992, 4, 933–948. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Guo, L.N.; Goldfarb, R.J.; Wang, Z.L.; Li, R.H.; Chen, B.H.; Li, J.L. A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ? Ore Geol. Rev. 2017, 88, 511–533. [Google Scholar] [CrossRef]
- Benning, L.G.; Seward, T.M. Hydrosulphide complexing of gold (I) in hydrothermal solutions from 150 to 500°C and 500 to 1500 bars. Geochim. Cosmochim. Acta 1996, 60, 1849–1871. [Google Scholar] [CrossRef]
- Phillips, G.N.; Evans, K.A. Role of CO2 in the formation of gold deposits. Nature 2004, 429, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Mikucki, E.J. Hydrothermal transport and depositional processes in Archean lode-gold systems: A review. Ore Geol. Rev. 1998, 13, 307–321. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Tagirov, B.R.; Schott, J.; Hazemann, J.L.; Proux, O. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling. Geochim. Cosmochim. Acta 2009, 73, 5406–5427. [Google Scholar] [CrossRef] [Green Version]
- Weatherley, D.K.; Henley, R.W. Flash vaporization during earthquakes evidenced by gold deposits. Nat. Geosci. 2013, 6, 294–298. [Google Scholar] [CrossRef]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineral. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Deng, J.; Qiu, K.F.; Wang, Q.F.; Goldfarb, R.J.; Yang, L.Q.; Zi, J.W.; Geng, J.Z.; Ma, Y. In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, Eastern China. Econ. Geol. 2020, 115, 671–685. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Mao, J.W.; Qiu, K.F.; Goryachev, N. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 2021, 100, 223–250. [Google Scholar] [CrossRef]
- Qiu, K.F.; Goldfarb, R.J.; Deng, J.; Yu, H.C.; Gou, Z.Y.; Ding, Z.J.; Wang, Z.K.; Li, D.P. Gold deposits of the Jiaodong Peninsula, eastern China. SEG Spec. Publ. 2020, 23, 753–773. [Google Scholar]
- Guo, L.N.; Deng, J.; Yang, L.Q.; Wang, Z.L.; Wang, S.R.; Wei, Y.J.; Chen, B.H. Gold deposition and resource potential of the Linglong gold deposit, Jiaodong Peninsula: Geochemical comparison of ore fluids. Ore Geol. Rev. 2020, 120, 103434. [Google Scholar] [CrossRef]
- Song, M.C.; Xue, G.Q.; Liu, H.B.; Li, Y.X.; He, C.Y.; Wang, H.J.; Wang, B.; Song, Y.X.; Li, S.Y. A Geological-Geophysical Prospecting Model for Deep-Seated Gold Deposits in the Jiaodong Peninsula, China. Minerals 2021, 11, 1393. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Wang, C.; Sun, Y.; Pu-chi, M. Geology and Geochemistry of Selected Gold Deposits in the Ailaoshan Metallogenic Belt, China: Origin of Ore-Forming Fluids. Minerals 2021, 11, 1276. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Deng, J.; McIntire, D.; Gou, Z.Y.; Geng, J.Z.; Chang, Z.S.; Zhu, R.; Li, K.N.; Goldfarb, R.J. The giant Zaozigou orogenic Au-Sb deposit in West Qinling, China: Magmatic or metamorphic origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Dilek, Y.; Qiu, K.F.; Ji, X.Z.; Li, N.; Taylor, R.D.; Yu, J.Y. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue suture zone, Qinling Orogen, China. Geol. Soc. Am. Bull. 2015, 11/12, 1831–1854. [Google Scholar] [CrossRef]
- Peng, Y.W.; Gu, X.X.; Liu, L.; Cheng, W.B.; Zhang, Y.M.; Wu, C.Y.; Lv, P.R. Fluid inclusion characteristics and implications to mineralization in the Zimudang gold deposit in Southwest Guizhou Province, China. Acta Mineral. Sin. 2012, 32, 211–220, (In Chinese with English abstract). [Google Scholar]
- Robert, F.; Kelly, W.C. Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol. 1987, 82, 1464–1482. [Google Scholar] [CrossRef]
- Xu, J.H.; Wang, J.X.; Xiang, P.; Li, Y.H.; Xiao, X.; Zhang, H.; Cheng, X.H. Extremely CO2-rich fluid inclusions in an orogenic gold deposit: Hamadi gold deposit of Sudan. Acta Petrol. Sin. 2015, 31, 1040–1048, (In Chinese with English abstract). [Google Scholar]
- He, D.Y.; Qiu, K.F.; Santosh, M.; Yu, H.C.; Long, Z.Y.; Wang, J.Y. Inhomogeneous crust-mantle interaction and Triassic tectonic escape of a Proterozoic microplate: A tale of the Bikou Terrane. Lithos 2021, 396–397, 106227. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Yu, H.C.; Wu, M.Q.; Wang, Y.; Zhang, L.; Goldfarb, R. Identifying hydrothermal quartz vein generations in the Taiyangshan porphyry Cu-Mo deposit (West Qinling, China) using cathodoluminescence, trace element geochemistry, and fluid inclusions. Ore Geol. Rev. 2021, 128, 103882. [Google Scholar] [CrossRef]
- Qiu, K.F.; Taylor, R.D.; Song, Y.H.; Yu, H.C.; Song, K.R.; Li, N. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China. Gondwana Res. 2016, 35, 40–58. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, K.F.; Müller, A.; Hou, Z.L.; Zhu, Z.H.; Yu, H.C. Machine Learning Prediction of Quartz Forming-Environments. J. Geophys. Resour. Solid Earth 2021, 126, e2021jb021925. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Hetherington, C.; Huang, Y.Q.; Yang, T.; Deng, J. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes. Am. Miner. 2021, 106, 1033–1044. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Wu, M.Q.; Geng, J.Z.; Ge, X.K.; Gou, Z.Y.; Taylor, R.D. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. Am. Miner. 2019, 104, 1487–1502. [Google Scholar] [CrossRef]
- Wu, M.Q.; Samson, I.M.; Qiu, K.F.; Zhang, D.H. Concentration mechanisms of REE-Nb-Zr-Be mineralization in the Baerzhe deposit, NE China: Insights from textural and chemical features of amphibole and rare-metal minerals. Econ. Geol. 2021, 116, 651–679. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Hetherington, C.J.; Chew, D.; Huang, Y.Q.; He, D.Y.; Geng, J.Z.; Xian, H.Y. Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contrib. Mineral. Petrol. 2021, 176, 68. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Pirajno, F.; Zhang, P.C.; Dong, W.Q. Revisiting Phanerozoic evolution of the Qinling Orogen (East Tethys) with perspectives of detrital zircon. Gondwana Res. 2021. accepted. [Google Scholar] [CrossRef]
- Zhang, L.; Qiu, K.F.; Hou, Z.L.; Pirajno, F.; Shivute, E.; Cai, Y.W. Fluid-rock reactions of the Triassic Taiyangshan porphyry Cu-Mo deposit (West Qinling, China) constrained by QEMSCAN and iron isotope. Ore Geol. Revi. 2021, 132, 104068. [Google Scholar] [CrossRef]
- Naden, J.; Shepherd, T.J. Role of methane and carbon dioxide in gold depositions. Nature 1989, 342, 793–795. [Google Scholar] [CrossRef]
- Van den Kerkhof, A.M.; Thiéry, R. Carbonic inclusions. Lithos 2001, 55, 49–68. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, Y.L. The role of CH4 in gold mineralization. Global Geol. 1995, 14, 29–32. (In Chinese) [Google Scholar]
Ore Stage | FIA Group | Fluid Inclusion Type | Frequency of Occurrences | Implication For Ore Fluids Processes |
---|---|---|---|---|
Stage I | Group 1 | M | Abundant | Homogeneous fluid |
Stage II | Group 2 | C1 | Local | Homogeneous fluid |
Group 3 | M + C1 | Abundant | Fluid immiscibility | |
Stage III | Group 4 | C1 | Local | Homogeneous fluid |
Group 5 | C1 + C2 | Abundant | Fluid immiscibility | |
Stage IV | Group 6 | W | Abundant | Homogeneous fluid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Guo, L.; Ding, J.; Hou, L.; Xu, S.; Shi, M.; Liang, H.; Nie, F.; Cui, X. Evolution of Ore-Forming Fluids and Gold Deposition of the Sanakham Lode Gold Deposit, SW Laos: Constrains from Fluid Inclusions Study. Minerals 2022, 12, 259. https://doi.org/10.3390/min12020259
Liu S, Guo L, Ding J, Hou L, Xu S, Shi M, Liang H, Nie F, Cui X. Evolution of Ore-Forming Fluids and Gold Deposition of the Sanakham Lode Gold Deposit, SW Laos: Constrains from Fluid Inclusions Study. Minerals. 2022; 12(2):259. https://doi.org/10.3390/min12020259
Chicago/Turabian StyleLiu, Shusheng, Linnan Guo, Jun Ding, Lin Hou, Siwei Xu, Meifeng Shi, Huimin Liang, Fei Nie, and Xiaoyu Cui. 2022. "Evolution of Ore-Forming Fluids and Gold Deposition of the Sanakham Lode Gold Deposit, SW Laos: Constrains from Fluid Inclusions Study" Minerals 12, no. 2: 259. https://doi.org/10.3390/min12020259
APA StyleLiu, S., Guo, L., Ding, J., Hou, L., Xu, S., Shi, M., Liang, H., Nie, F., & Cui, X. (2022). Evolution of Ore-Forming Fluids and Gold Deposition of the Sanakham Lode Gold Deposit, SW Laos: Constrains from Fluid Inclusions Study. Minerals, 12(2), 259. https://doi.org/10.3390/min12020259