Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sample Collection
2.2. Previous 14C Dating of the Studied Material
2.3. Preparation for Histological Thin Sections
2.4. Preparation for the Electron Microscope
2.5. Mineralogical and Elemental Analyses
2.6. Extraction and Derivatization
2.7. Compound-Specific Stable Carbon Isotopes (GC-C-IRMS)
3. Results
3.1. Macroscopic Description of the Mat Layers
3.2. Microscopic Observation of Mat Layers
3.3. Extractable Lipids within the Studied Mat
3.4. Carbon Isotopic Compositions of Microbial Lipids and Hydrocarbons
4. Discussion
4.1. Interpretation of the Mat Growth History and Significance of the Mineral Crust
4.2. Lipid Preservation and Carbonate Precipitation within the Mat
4.3. Relationship between the Mineral Crust and the Carbon Isotope Signature of Lipids
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scherf, A.-K.; Rullkötter, J. Biogeochemistry of high salinity microbial mats—Part 1: Lipid composition of microbial mats across intertidal flats of Abu Dhabi, United Arab Emirates. Org. Geochem. 2009, 40, 1018–1028. [Google Scholar] [CrossRef]
- Ley, R.E.; Harris, J.K.; Wilcox, J.; Spear, J.R.; Miller, S.R.; Bebout, B.M.; Maresca, J.A.; Bryant, D.A.; Sogin, M.L.; Pace, N.R. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 2006, 72, 3685–3695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freytet, P.; Plet, A. Modern freshwater microbial carbonates: The Phormidium stromatolites (Tufa-Travertine) of southeastern Burgundy (Paris Basin, France). Facies 1996, 34, 219–237. [Google Scholar] [CrossRef]
- Bolhuis, H.; Fillinger, L.; Stal, L.J. Coastal Microbial Mat Diversity along a Natural Salinity Gradient. PLoS ONE 2013, 8, e63166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ionescu, D.; Spitzer, S.; Reimer, A.; Schneider, D.; Daniel, R.; Reitner, J.; de Beer, D.; Arp, G. Calcium dynamics in microbialite-forming exopolymer-rich mats on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geobiology 2015, 13, 170–180. [Google Scholar] [CrossRef]
- Shiea, J.; Brassel, S.C.; Ward, D.M. Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria. Org. Geochem. 1991, 17, 309–319. [Google Scholar] [CrossRef]
- Słowakiewicz, M.; Whitaker, F.; Thomas, L.; Tucker, M.E.; Zheng, Y.; Gedl, P.; Pancost, R.D. Biogeochemistry of intertidal microbial mats from Qatar: New insights from organic matter characterisation. Org. Geochem. 2016, 102, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Dupraz, C.; Visscher, P.T. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 2005, 13, 429–438. [Google Scholar] [CrossRef] [Green Version]
- van Gemerden, H. Microbial mats: A joint venture. Mar. Geol. 1993, 113, 3–25. [Google Scholar] [CrossRef]
- Burne, R.V.; Moore, L.S. Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. PALAIOS 1987, 2, 241. [Google Scholar] [CrossRef]
- Hofmann, H.J.; Grey, K.; Hickman, A.H.; Thorpe, R.I. Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 1999, 111, 1256–1262. [Google Scholar] [CrossRef]
- Allwood, A.C.; Walter, M.R.; Kamber, B.S.; Marshall, C.P.; Burch, I.W. Stromatolite reef from the Early Archaean era of Australia. Nature 2006, 441, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Thiel, V.; Peckmann, J.; Seifert, R.; Wehrung, P.; Reitner, J.; Michaelis, W. Highly isotopically depleted isoprenoids: Molecular markers for ancient methane venting. Geochim. Cosmochim. Acta 1999, 63, 3959–3966. [Google Scholar] [CrossRef] [Green Version]
- Benzerara, K.; Menguy, N.; López-García, P.; Yoon, T.-H.; Kazmierczak, J.; Tyliszczak, T.; Guyot, F.; Brown, G.E. Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl. Acad. Sci. USA 2006, 103, 9440–9445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Léveillé, R.J.; Fyfe, W.S.; Longstaffe, F.J. Geomicrobiology of carbonate–silicate microbialites from Hawaiian basaltic sea caves. Chem. Geol. 2000, 169, 339–355. [Google Scholar] [CrossRef]
- Lee, C.; Love, G.D.; Jahnke, L.L.; Kubo, M.D.; Des Marais, D.J. Early diagenetic sequestration of microbial mat lipid biomarkers through covalent binding into insoluble macromolecular organic matter (IMOM) as revealed by sequential chemolysis and catalytic hydropyrolysis. Org. Geochem. 2019, 132, 11–22. [Google Scholar] [CrossRef]
- Mißbach, H.; Duda, J.-P.; van den Kerkhof, A.M.; Lüders, V.; Pack, A.; Reitner, J.; Thiel, V. Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusions. Nat. Commun. 2021, 12, 1101. [Google Scholar] [CrossRef]
- Tosti, F.; Mastandrea, A.; Guido, A.; Demasi, F.; Russo, F.; Riding, R. Biogeochemical and redox record of mid–late Triassic reef evolution in the Italian Dolomites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 399, 52–66. [Google Scholar] [CrossRef]
- Duda, J.-P.; Love, G.D.; Rogov, V.I.; Melnik, D.S.; Blumenberg, M.; Grazhdankin, D.V. Understanding the geobiology of the terminal Ediacaran Khatyspyt Lagerstätte (Arctic Siberia, Russia). Geobiology 2020, 18, 643–662. [Google Scholar] [CrossRef]
- Duda, J.-P.; Thiel, V.; Bauersachs, T.; Mißbach, H.; Reinhardt, M.; Schäfer, N.; van Kranendonk, M.J.; Reitner, J. Ideas and perspectives: Hydrothermally driven redistribution and sequestration of early Archaean biomass—The “hydrothermal pump hypothesis”. Biogeosciences 2018, 15, 1535–1548. [Google Scholar] [CrossRef] [Green Version]
- Duda, J.-P.; Blumenberg, M.; Thiel, V.; Simon, K.; Zhu, M.; Reitner, J. Geobiology of a palaeoecosystem with Ediacara-type fossils: The Shibantan Member (Dengying Formation, South China). Precambrian Res. 2014, 255, 48–62. [Google Scholar] [CrossRef]
- Riding, R. Microbialites, Stromatolites, and Thrombolites. In Encyclopedia of Geobiology; Reitner, J., Thiel, V., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 635–654. ISBN 978-1-4020-9211-4. [Google Scholar]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Schoonmaker, J.; Tribble, G.W.; Smith, S.V.; Mackenzie, F.T. Geochemistry of saline ponds, Kiritimati (Rupublic of Kiribati. Proc. Fifth Int. Coral Reef Congr. 1985, 3, 439–444. [Google Scholar]
- Saenger, C.; Miller, M.; Smittenberg, R.H.; Sachs, J.P. A physico-chemical survey of inland lakes and saline ponds: Christmas Island (Kiritimati) and Washington (Teraina) Islands, Republic of Kiribati. Saline Syst. 2006, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Trichet, J.; Défarge, C.; Tribble, J.; Tribble, G.; Sansone, F. Christmas Island lagoonal lakes, models for the deposition of carbonate–evaporite–organic laminated sediments. Sediment. Geol. 2001, 140, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Arp, G.; Helms, G.; Karlinska, K.; Schumann, G.; Reimer, A.; Reitner, J.; Trichet, J. Photosynthesis versus Exopolymer Degradation in the Formation of Microbialites on the Atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiol. J. 2012, 29, 29–65. [Google Scholar] [CrossRef]
- Schneider, D.; Arp, G.; Reimer, A.; Reitner, J.; Daniel, R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS ONE 2013, 8, e66662. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.P.; Sachse, D.; Smittenberg, R.H.; Zhang, Z.; Battisti, D.S.; Golubic, S. Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat. Geosci 2009, 2, 519–525. [Google Scholar] [CrossRef]
- Blumenberg, M.; Thiel, V.; Reitner, J. Organic matter preservation in the carbonate matrix of a recent microbial mat—Is there a ‘mat seal effect’? Org. Geochem. 2015, 87, 25–34. [Google Scholar] [CrossRef]
- Spennemann, D.H.R.; John Head, M. Tongan pottery chronology, 14C dates and the hardwater effect. Quat. Sci. Rev. 1998, 17, 1047–1056. [Google Scholar] [CrossRef]
- Petchey, F.; Clark, G. Tongatapu hardwater: Investigation into the 14C marine reservoir offset in lagoon, reef and open ocean environments of a limestone island. Quat. Geochronol. 2011, 6, 539–549. [Google Scholar] [CrossRef]
- McGregor, H.V.; Hellstrom, J.; Fink, D.; Hua, Q.; Woodroffe, C.D. Rapid U-series dating of young fossil corals by laser ablation MC-ICPMS. Quat. Geochronol. 2011, 6, 195–206. [Google Scholar] [CrossRef]
- Grothe, P.R.; Cobb, K.M.; Bush, S.L.; Cheng, H.; Santos, G.M.; Southon, J.R.; Lawrence Edwards, R.; Deocampo, D.M.; Sayani, H.R. A comparison of U/T h and rapid-screen 14C dates from L ine I sland fossil corals. Geochem. Geophys. Geosyst. 2016, 17, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Mikutta, R.; Kleber, M.; Kaiser, K.; Jahn, R. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci. Soc. Am. 2005, 69, 120–135. [Google Scholar] [CrossRef]
- Inoue, T.; Illy, E. Feel Like You’re Missing Raman Signal-405 nm Can Help See More. Online Application Note of Hübner Group Company. 2020. Available online: https://hubner-photonics.com/wp-content/uploads/2020/06/Apps-note-Lasers-for-Raman-using-405-nm-narrow-linewidth.pdf (accessed on 10 February 2022).
- Shen, Y.; Thiel, V.; Duda, J.-P.; Reitner, J. Tracing the fate of steroids through a hypersaline microbial mat (Kiritimati, Kiribati/Central Pacific). Geobiology 2018, 16, 307–318. [Google Scholar] [CrossRef]
- Shen, Y.; Thiel, V.; Suarez-Gonzalez, P.; Rampen, S.W.; Reitner, J. Sterol preservation in hypersaline microbial mats. Biogeosciences 2020, 17, 649–666. [Google Scholar] [CrossRef] [Green Version]
- Spring, S.; Brinkmann, N.; Murrja, M.; Spröer, C.; Reitner, J.; Klenk, H.-P. High Diversity of Culturable Prokaryotes in a Lithifying Hypersaline Microbial Mat. Geomicrobiol. J. 2015, 32, 332–346. [Google Scholar] [CrossRef]
- Suarez-Gonzalez, P.; Reitner, J. Ooids forming in situ within microbial mats (Kiritimati atoll, central Pacific). PalZ 2021, 95, 809–821. [Google Scholar] [CrossRef]
- Défarge, C.; Trichet, J.; Jaunet, A.-M.; Robert, M.; Tribble, J.; Sansone, F.J. Texture of microbial sediments revealed by cryo-scanning electron microscopy. J. Sediment. Res. 1996, 66, 935–947. [Google Scholar] [CrossRef]
- Finch, A.A.; Allison, N. Coordination of Sr and Mg in calcite and aragonite. Mineral. Mag. 2007, 71, 539–552. [Google Scholar] [CrossRef]
- Li, Q.; Chen, X.; Jiang, Y.; Jiang, C. Morphological Identification of Actinobacteria. In Actinobacteria—Basics and Biotechnological Applications; Dhanasekaran, D., Jiang, Y., Eds.; InTech: London, UK, 2016; ISBN 978-953-51-2248-7. [Google Scholar]
- Arp, G.; Hofmann, J.; Reitner, J. Microbial Fabric Formation in Spring Mounds (‘‘Microbialites’’) of Alkaline Salt Lakes in the Badain Jaran Sand Sea, PR China. Palaios 1998, 13, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Arp, G.; Reimer, A.; Reitner, J. Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur. J. Phycol. 1999, 34, 393–403. [Google Scholar] [CrossRef]
- Reitner, J.; Peckmann, J.; Blumenberg, M.; Michaelis, W.; Reimer, A.; Thiel, V. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 227, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Monty, C.L.V. Chapter 5.1 The Origin and Development of Cryptalgal Fabrics. In Stromatolites; Elsevier: Amsterdam, The Netherlands, 1976; pp. 193–249. ISBN 9780444413765. [Google Scholar]
- Reitner, J. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia formation and concepts. Facies 1993, 29, 3–40. [Google Scholar] [CrossRef] [Green Version]
- Braissant, O.; Cailleau, G.; Dupraz, C.; Verrecchia, E.P. Bacterially Induced Mineralization of Calcium Carbonate in Terrestrial Environments: The Role of Exopolysaccharides and Amino Acids. J. Sediment. Res. 2003, 73, 485–490. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Visscher, P.T. Microbialites, Modern. Encycl. Geobiol. 2011, 617–635. [Google Scholar] [CrossRef]
- Riding, R. The Nature of Stromatolites: 3500 Million Years of History and a Century of Research. In Advances in Stromatolite Geobiology; Reitner, J., Quéric, N.-V., Arp, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–74. ISBN 978-3-642-10414-5. [Google Scholar]
- Reitner, J.; Gautret, P.; Marin, F.; Neuweiler, F. Automicrites in a modern marine microbialites. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bull. Inst. Oceanogr. Monaco-Numero Spec. 1995, 14, 237–303. [Google Scholar]
- Arp, G.; Thiel, V.; Reimer, A.; Michaelis, W.; Reitner, J. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 1999, 126, 159–176. [Google Scholar] [CrossRef]
- Camoin, G.; Casanova, J.; Rouchy, J.-M.; Blanc-Valleron, M.-M.; Deconinck, J.-F. Environmental controls on perennial and ephemeral carbonate lakes: The central palaeo-Andean Basin of Bolivia during Late Cretaceous to early Tertiary times. Sediment. Geol. 1997, 113, 1–26. [Google Scholar] [CrossRef]
- Kirkham, A.; Tucker, M.E. Thrombolites, spherulites and fibrous crusts (Holkerian, Purbeckian, Aptian): Context, fabrics and origins. Sediment. Geol. 2018, 374, 69–84. [Google Scholar] [CrossRef]
- Flügel, E.; Munnecke, A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9783642037955. [Google Scholar]
- Tucker, M.E.; Wright, V.P. Carbonate Sedimentology; Blackwell Scientific Publications: Oxford, UK, 1990. [Google Scholar]
- Dunham, R.J. Meniscus cement. In Carbonate Cements; Bricker, O.P., Ed.; Johns Hopkins Univ Stud Geol: Baltimore, MD, USA, 1971. [Google Scholar]
- Omari, H.; Pietrasiak, N.; Ferrenberg, S.; Nishiguchi, M.K. A spatiotemporal framework reveals contrasting factors shape biocrust microbial and microfaunal communities in the Chihuahuan Desert. Geoderma 2022, 405, 115409. [Google Scholar] [CrossRef]
- Wilkinson, H.P. Fossil actinomycete filaments and fungal hyphae in dicotyledonous wood from the Eocene London Clay, Isle-of-Sheppey, Kent, England. Bot. J. Linn. Soc. 2003, 142, 383–394. [Google Scholar] [CrossRef]
- Waggoner, B.M. Fossil actinomycete in Eocene-Oligocene Dominican amber. J. Paleontol. 1994, 68, 398–401. [Google Scholar] [CrossRef]
- Girard, V.; Adl, S.M. Amber microfossils: On the validity of species concept. Comptes Rendus Palevol 2011, 10, 189–200. [Google Scholar] [CrossRef]
- Reitner, J. Das Salz der Erde “Leben im Extremen”. Gaia Inform 2011. Geowissenschaftliches Museum: Göttingen, Germany, 2011. [Google Scholar]
- Perry, C.T. Biofilm-related calcification, sediment trapping and constructive micrite envelopes: A criterion for the recognition of ancient grass-bed environments? Sedimentology 1999, 46, 33–45. [Google Scholar] [CrossRef]
- Reid, R.P.; Foster, J.S.; Radtke, G.; Golubic, S. Modern Marine Stromatolites of Little Darby Island, Exuma Archipelago, Bahamas: Environmental Setting, Accretion Mechanisms and Role of Euendoliths. In Advances in Stromatolite Geobiology; Reitner, J., Quéric, N.-V., Arp, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 77–89. ISBN 978-3-642-10414-5. [Google Scholar]
- Schmitt, S.; Conroy, J.L.; Flynn, T.M.; Sanford, R.A.; Higley, M.C.; Chen, M.; Fouke, B.W. Salinity, microbe and carbonate mineral relationships in brackish and hypersaline lake sediments: A case study from the tropical Pacific coral atoll of Kiritimati. Depos. Rec 2019, 5, 212–229. [Google Scholar] [CrossRef]
- Qin, S.; Li, W.-J.; Dastager, S.G.; Hozzein, W.N. Editorial: Actinobacteria in Special and Extreme Habitats: Diversity, Function Roles, and Environmental Adaptations. Front. Microbiol. 2016, 7, 1415. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, G.B.; Balachandran, L. Antibacterial agents from actinomycetes-a review. Front Biosci. 2012, 4, 240–253. [Google Scholar] [CrossRef]
- Verma, E.; Chakraborty, S.; Tiwari, B.; Mishra, A.K. Antimicrobial Compounds from Actinobacteria. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 277–295. ISBN 9780444639943. [Google Scholar]
- Musa, Z.; Ma, J.; Egamberdieva, D.; Abdelshafy Mohamad, O.A.; Abaydulla, G.; Liu, Y.; Li, W.-J.; Li, L. Diversity and Antimicrobial Potential of Cultivable Endophytic Actinobacteria Associated With the Medicinal Plant Thymus roseus. Front. Microbiol. 2020, 11, 191. [Google Scholar] [CrossRef]
- Atwood, A.R.; Volkman, J.K.; Sachs, J.P. Characterization of unusual sterols and long chain diols, triols, keto-ols and n-alkenols in El Junco Lake, Galápagos. Org. Geochem. 2014, 66, 80–89. [Google Scholar] [CrossRef]
- Houle, H.M.; Lopez, C.B.; Leblond, J.D. Sterols of the Toxic Marine Dinoflagellate, Pyrodinium bahamense. J. Eukaryot. Microbiol. 2019, 66, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Volkman, J.K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 1986, 9, 83–99. [Google Scholar] [CrossRef]
- Volkman, J.K. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. Org. Geochem. 2005, 36, 139–159. [Google Scholar] [CrossRef]
- Rohmer, M.; Bouvier-Nave, P.; Ourisson, G. Distribution of hopanoid in prokaryotes. J. Gen. Microbiol. 1984, 130, 1137–1150. [Google Scholar]
- Blumenberg, M.; Berndmeyer, C.; Moros, M.; Muschalla, M.; Schmale, O.; Thiel, V. Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosciences 2013, 10, 2725–2735. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.S.; Graham, H.V.; Des Marais, D.J.; Hazen, R.M.; Meadows, V.; Arney, G.N.; Schmidt, B.E. Detecting life on Earth and the limits of analogy. Planet. Astrobiol. 2020, 1, 121–150. [Google Scholar]
- Kaneda, T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance. Microbiol. Rev. 1991, 55, 288–302. [Google Scholar] [CrossRef]
- Taylor, J.; Parkes, J. Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. J. Gen. Microbiol. 1985, 131, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Teece, M.A.; Fogel, M.L.; Dollhopf, M.E.; Nealson, K.H. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org. Geochem. 1999, 30, 1571–1579. [Google Scholar] [CrossRef]
- de Kluijver, A.; Nierop, K.G.J.; Morganti, T.M.; Bart, M.C.; Slaby, B.M.; Hanz, U.; de Goeij, J.M.; Mienis, F.; Middelburg, J.J. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS ONE 2021, 16, e0241095. [Google Scholar] [CrossRef]
- Schouten, S.; Hartgers, W.A.; Lòpez, J.F.; Grimalt, J.O.; Sinninghe Damsté, J.S. A molecular isotopic study of 13C-enriched organic matter in evaporitic deposits: Recognition of CO2-limited ecosystems. Org. Geochem. 2001, 32, 277–286. [Google Scholar] [CrossRef]
- Pancost, R.D.; Pagani, M. Controls on the Carbon Isotopic Compositions of Lipids in Marine Environments. In Marine Organic Matter: Biomarkers, Isotopes and DNA; Volkman, J.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 209–249. ISBN 3-540-28401-X. [Google Scholar]
- van der Meer, M.T.J.; Schouten, S.; Sinninghe Damsté, J.S. The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org. Geochem. 1998, 28, 527–533. [Google Scholar] [CrossRef]
(a) | ||||||||||||
Trivial Names | Cholesterol | Cholestanol | Brassicasterol | Campesterol | Ergostanol | Stigmasterol | β-Sitosterol | Stigmastanol | Dinosterol | 4α-Methylgorgosterol | 4α-Methylgorgostanol | |
Compound | Cholest-5-en-3β-ol | 5α-cholestan-3β-ol | 24-methylcholesta-5,22-dien-3β-ol | 24-methylcholest-5-en-3β-ol | 5α-24-methylcholestan-3β-ol | 24-ethylcholesta-5,22-dien-3β-ol | 24-ethylcholest-5-en-3β-ol | 5α-24-ethylcholestan-3β-ol | 4α,23,24-trimethylcholest-22-en-3β-ol | 22,23-methylene-4α, 23,24-trimethylcholest-5-en-3β-ol | 22,23-methylene-4α, 23,24-trimethylcholestan-3β-ol | |
Layers | ||||||||||||
1 | 5.20 | 0.86 | 4.93 | 4.91 | 0.20 | 3.74 | 5.44 | 0.77 | n.d. | 1.10 | 5.21 | |
2 | 0.24 | 0.19 | n.d. | 0.34 | 0.06 | 0.43 | 0.77 | 0.19 | n.d. | 0.36 | 1.55 | |
2b | 0.89 | 1.96 | 0.52 | 0.54 | 0.99 | 0.89 | 0.94 | 1.85 | 1.05 | 1.07 | 4.71 | |
3 | 0.01 | 0.04 | n.d. | 0.02 | 0.02 | 0.02 | 0.03 | 0.05 | n.d. | 0.09 | 0.37 | |
4a | 1.15 | 2.01 | 0.51 | 0.52 | 1.19 | 2.03 | 2.78 | 3.37 | 0.82 | 0.39 | 2.72 | |
4b | 0.06 | 0.05 | 0.03 | 0.02 | 0.04 | 0.09 | 0.09 | 0.09 | 0.04 | 0.04 | 0.18 | |
4 | 0.02 | <0.01 | n.d. | 0.02 | 0.01 | 0.05 | 0.02 | 0.02 | n.d. | 0.12 | 0.40 | |
5 | 0.03 | 0.02 | n.d. | 0.07 | 0.04 | 0.16 | 0.12 | 0.13 | n.d. | 0.95 | 2.72 | |
6 | 0.08 | <0.01 | n.d. | n.d. | n.d. | 0.08 | 0.02 | 0.01 | n.d. | 0.10 | 0.73 | |
(b) | ||||||||||||
Trivial Names | Cholesterol | Cholestanol | Brassicasterol | Campesterol | Ergostanol | Stigmasterol | β-Sitosterol | Stigmastanol | Dinosterol | 4α-Methylgorgosterol | 4α-Methylgorgostanol | |
Compound | Cholest-5-en-3β-ol | 5α-cholestan-3β-ol | 24-methylcholesta-5,22-dien-3β-ol | 24-methylcholest-5-en-3β-ol | 5α-24-methylcholestan-3β-ol | 24-ethylcholesta-5,22-dien-3β-ol | 24-ethylcholest-5-en-3β-ol | 5α-24-ethylcholestan-3β-ol | 4α,23,24-trimethylcholest-22-en-3β-ol | 22,23-methylene-4α, 23,24-trimethylcholest-5-en-3β-ol | 22,23-methylene-4α, 23,24-trimethylcholestan-3β-ol | |
Layers | ||||||||||||
1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
2 | 0.02 | <0.01 | n.d. | 0.08 | <0.01 | 0.08 | 0.07 | 0.01 | n.d. | n.d. | 0.34 | |
2b | 1.49 | 0.61 | n.d. | n.d. | 0.73 | n.d. | 0.65 | 0.92 | n.d. | n.d. | 2.13 | |
3 | 0.04 | 0.05 | n.d. | 0.08 | 0.02 | 0.03 | 0.06 | 0.04 | n.d. | n.d. | 0.40 | |
4a | n.d. | 0.36 | n.d. | n.d. | 0.20 | n.d. | n.d. | 0.35 | n.d. | n.d. | n.d. | |
4b | 0.09 | 0.05 | n.d. | n.d. | 0.17 | 0.08 | 0.04 | 0.08 | n.d. | 0.04 | 0.18 | |
4 | 0.11 | 0.07 | n.d. | 0.12 | 0.03 | 0.25 | 0.12 | 0.09 | n.d. | n.d. | 0.45 | |
5 | 0.02 | <0.01 | n.d. | n.d. | n.d. | 0.06 | 0.01 | <0.01 | n.d. | n.d. | 0.22 | |
6 | 0.02 | <0.01 | n.d. | 0.03 | <0.01 | 0.04 | 0.03 | 0.01 | n.d. | n.d. | 0.59 |
Layer | Freely Extractable Lipids | Carbonate-Bound Lipids | ||||
---|---|---|---|---|---|---|
Sterols * | Hopanoids | FAs | Sterols * | Hopanoids | FAs | |
1 | 32.36 | 16.67 | 212.72 | n.d. | n.d. | 19.63 |
2 | 4.13 | 15.76 | 36.73 | 0.61 | 0.94 | 15.49 |
2b | 15.41 | 28.77 | 9.24 | 6.53 | 26.98 | 6.28 |
3 | 0.65 | 3.98 | 3.34 | 0.72 | 3.22 | 80.45 |
4a | 17.50 | 70.65 | 230.79 | 0.91 | 27.87 | 473.27 |
4b | 0.73 | 5.25 | 9.89 | 0.73 | 1.86 | 1.2 |
4 | 0.67 | 3.34 | 4.74 | 1.24 | 2.24 | 21.22 |
5 | 4.24 | 9.76 | 11.90 | 0.32 | 0.22 | 6.87 |
6 | 1.02 | 5.70 | 12.50 | 0.73 | 0.72 | 8.64 |
Layer | 1 | 3 | 5 | 6 | |||||
---|---|---|---|---|---|---|---|---|---|
Compounds | Freely Extractable Lipids | Carbonate-Bound Lipids | Freely Extractable Lipids | Carbonate-Bound Lipids | Freely Extractable Lipids | Carbonate-Bound Lipids | Freely Extractable Lipids | Carbonate-Bound Lipids | |
n-alkane | |||||||||
17 | −15.4 | −16.1 | −18.7 | −20.7 | −17.3 | −17.4 | −15.8 | −15.7 | |
FAs | |||||||||
14:0 | −8.5 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
iso-15 | n.d. | n.d. | n.d. | −11.8 | n.d. | −16.4 | n.d. | −12.1 | |
15:0 | −4.4 | −8.6 | n.d. | −4.7 | n.d. | n.d. | n.d. | −11.0 | |
16:1 | −9.4 | −8.7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
iso-16 | n.d. | −9.3 | n.d. | −12.6 | n.d. | −12.4 | n.d. | −12.9 | |
16:0 | −6.8 | −12.8 | n.d. | −16.4 | n.d. | −14.3 | n.d. | −13.7 | |
iso-17 | n.d. | n.d. | n.d. | n.d. | n.d. | −9.3 | n.d. | −12.8 | |
anteiso-17 | n.d. | n.d. | n.d. | n.d. | n.d. | −10.5 | n.d. | −12.0 | |
17:0 | −4.8 | n.d. | n.d. | −12.9 | n.d. | −13.8 | n.d. | −13.3 | |
18:1 | −11.6 | −11.4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
18:0 | n.d. | −11.4 | n.d. | −14.3 | n.d. | −12.5 | n.d. | −12.9 | |
19:1 | −11.8 | −10.7 | n.d. | −16.3 | −15.0 | −13.8 | n.d. | −12.9 | |
24:0 | n.d. | n.d. | n.d. | −14.8 | −8.5 | −14.4 | −7.8 | −15.1 | |
26:0 | n.d. | n.d. | n.d. | −14.5 | n.d. | n.d. | n.d. | −15.9 | |
Sterols | |||||||||
C31 ∆0 | −7.2 | n.d. | n.d. | n.d. | −12.5 | n.d. | −13.3 | n.d. | |
Hopanoids | |||||||||
C30 hopene | n.d. | n.d. | n.d. | n.d. | −20.2 | n.d. | −18.5 | n.d. | |
C32 hopanol | n.d. | n.d. | n.d. | n.d. | −17.6 | n.d. | −17.8 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Suarez-Gonzalez, P.; Reitner, J. Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific). Minerals 2022, 12, 267. https://doi.org/10.3390/min12020267
Shen Y, Suarez-Gonzalez P, Reitner J. Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific). Minerals. 2022; 12(2):267. https://doi.org/10.3390/min12020267
Chicago/Turabian StyleShen, Yan, Pablo Suarez-Gonzalez, and Joachim Reitner. 2022. "Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific)" Minerals 12, no. 2: 267. https://doi.org/10.3390/min12020267
APA StyleShen, Y., Suarez-Gonzalez, P., & Reitner, J. (2022). Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific). Minerals, 12(2), 267. https://doi.org/10.3390/min12020267