The Age of Hubi Copper (Cobalt) Ore Mineralization in the Zhongtiao Mountain Area, Southern Margin of the Trans-North China Orogen: New Constraints from U-Pb Dating of Rutile and Monazite
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
2.3. Tongmugou Copper Deposit
2.4. Laobaotan Copper Deposit
3. Sampling and Analytical Methods
4. Results
4.1. Rutile Mineralogy and Texture and Composition
4.2. Monazite Mineralogy and Composition
4.3. Age of Rutile U-Pb Dating
4.4. Age of Monazite U-Pb Dating
5. Discussion
5.1. Origin of Monazite and Rutile
5.2. Geochronology of Mineralization and Comment
5.3. Implication for Genesis and Metallogeny in Zhongtiao Mountain
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pang, X.J. Study on the Enrichment Regularities and the Ore Genetic Rules of Nanhegou and Laobaotan Copper Deposits in Zhongtiao Mountains, Shanxi Province. Master’s Thesis, JiLin University, Changchun, China, 2010; pp. 60–71. (In Chinese). [Google Scholar]
- Zhang, H. Metallogenesis of Paleoproterozoic Copper Deposits in the Northern Zhongtiaoshan Mountains, Shanxi Province. Ph.D. Thesis, JiLin University, Changchun, China, 2012; pp. 119–123. (In Chinese). [Google Scholar]
- Boyle, R.W.; Brown, A.C.; Jefferson, C.W.; Jowett, E.C. Sediment-hosted stratiform copper deposits. Geosci. Can. 1992, 19, 125–139. [Google Scholar]
- Hitzman, M.W.; Kirkham, R.; Broughton, D.; Thorson, J.; Selley, D. The Sediment-Hosted Stratiform Copper Ore System. In Geology 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 609–642. [Google Scholar]
- Sillitoe, R.H. Copper Provinces; Special Publication; Society of Economic Geologists: Littleton, CO, USA, 2012; Volume 16, pp. 1–18. [Google Scholar]
- Volodin, R.N.; Chechetkin, V.S.; Bogdanov, Y.V.; Narkelyun, L.F.; Trubachev, A.I. The Udokan cupriferous sandstones deposit (eastern Siberia). Geol. Ore Depos. 1994, 36, 1–25. [Google Scholar]
- Perelló, J.; Sillitoe, R.H. Age and tectonic setting of the Udokan sediment-hosted copper-silver deposit, Transbaikalia, Russia. Ore Geol. Rev. 2017, 86, 856–866. [Google Scholar] [CrossRef]
- Sawlowicz, Z. REE and their relevance to the development of the Kupferschiefer copper deposit in Poland. Ore Geol. Rev. 2013, 55, 176–186. [Google Scholar] [CrossRef]
- Brown, A.C. World-class sediment-hosted stratiform copper deposits: Characteristics, genetic concepts and metallotects. Austr. J. Earth Sci. 1997, 44, 317–328. [Google Scholar] [CrossRef]
- Selley, D.; Broughton, D.; Scott, R.; Hitzman, M.; Bull, S.; Large, R.; McGoldrick, P.; Croaker, M.; Pollington, N.; Barra, F. A New Look at the Geology of the Zambian Copperbelt. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 965–1000. [Google Scholar]
- Hitzman, M.W.; Selley, D.; Bull, S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Econ. Geol. 2010, 105, 627–639. [Google Scholar] [CrossRef]
- Cailteux, J.; Binda, P.; Katekesha, W.M.; Kampunzu, A.B.; Intiomale, M.M.; Kapenda, D.; Kaunda, C.; Ngongo, K.; Tshiauka, T.; Wendorff, M. Lithostratigraphic correlation of the Neoproterozoic Roan Supergroup from Shaba (Zaire) and Zambia, in the central African copper-cobalt metallogenic province. J. Afr. Earth Sci. 1994, 19, 265–278. [Google Scholar] [CrossRef]
- Kampunzu, A.B.; Cailteux, J. Tectonic evolution of the Lufilian arc (Central Africa Copper Belt) during Neoproterozoic Pan African orogenesis. Gondwana Res. 1999, 2, 401–421. [Google Scholar] [CrossRef]
- McGowan, R.R.; Roberts, S.; Foster, R.P.; Boyce, A.J.; Coller, D. Origin of the copper-cobalt deposits of the Zambian Copperbelt: An epigenetic view from Nchanga. Geology 2003, 31, 497–500. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Perelló, J.; García, A. Sulfide-bearing veinlets throughout the stratiform mineralization of the Central African Copperbelt: Temporal and genetic implications. Econ. Geol. 2010, 105, 1361–1368. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Perelló, J.; Creaser, R.A.; Wilton, J.; Dawborn, T. Two ages of copper mineralization in the Mwombezhi dome, northwestern Zambia: Metallogenic implications for the Central African Copperbelt. Econ. Geol. 2015, 110, 1917–1923. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Perelló, J. Age of the Zambian Copperbelt. Miner. Depos. 2017, 52, 1245–1268. [Google Scholar] [CrossRef]
- Perelló, J.; Clifford, J.A.; Creaser, R.A.; Valencia, V.A. An example of synorogenic sediment-hosted copper mineralization: Geologic and geochronologic evidence from the Paleoproterozoic Nussir deposit, Finnmark, Arctic Norway. Econ. Geol. 2015, 110, 677–689. [Google Scholar] [CrossRef]
- El Desouky, H.A.; Muchez, P.; Cailteux, J. Two Cu-Co phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geol. Rev. 2009, 36, 315–332. [Google Scholar] [CrossRef]
- El Desouky, H.A.; Muchez, P.; Boyce, A.J.; Schneider, J.; Cailteux, J.L.H.; Dewaele, S.; von Quadt, A. Genesis of sediment-hosted stratiform Cu-Co mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo). Miner. Depos. 2010, 45, 735–763. [Google Scholar] [CrossRef]
- Hitzman, M.W.; Broughton, D.; Selley, D.; Woodhead, J.; Wood, D.; Bull, S. The Central African Copperbelt: Diverse Stratigraphic, Structural, and Temporal Settings in the World’s Largest Sedimentary Copper District. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard, H. Sillitoe; Special Publications of the Society of Economic Geologists; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2012; Volume 16, pp. 487–514. [Google Scholar]
- Hitzman, M.W.; Broughton, D. Discussion: “Age of the Zambian Copperbelt” by Sillitoe et al. Miner. Depos. 2017, 52, 1273–1275. [Google Scholar] [CrossRef]
- Muchez, P.; Brems, D.; Clara, E.; De Cleyn, A.; Lammens, L.; Boyce, A.; De Muynck, D.; Mukumba, W.; Sikazwe, O. Evolution of Cu–Co mineralizing fluids at Nkana Mine, Central African Copperbelt, Zambia. J. Afr. Earth Sci. 2010, 58, 457–474. [Google Scholar] [CrossRef]
- Muchez, P.; André-Mayer, A.-S.; El Desouky, E.L.; Reisberg, L. Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt. Miner. Depos. 2015, 50, 437–447. [Google Scholar] [CrossRef]
- Muchez, P.; André-Mayer, A.-S. Discussion: Age of the Zambian Copperbelt. Miner. Depos. 2017, 52, 1269–1271. [Google Scholar] [CrossRef]
- Tao, Q. Geological Ages of Precambrian Strata in the Zhongtiao Mountains; Tianjin Institute of Geology and Mineral Resources, C.A.G.S.: Tianjin, China; Geological Publishing House: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Zhang, L.; Li, B.L.; Zhang, H.; Hu, A.X. Re-Os isotopic dating and its geological significance of molybdenite, from Tongmugou copper deposit in Zhongtiaoshan, Shanxi. Glob. Geol. 2013, 32, 740–746. (In Chinese) [Google Scholar]
- Qiu, Z.J.; Fan, H.R.; Liu, X. Mineralogy, chalcopyrite Re-Os geochronology and sulfur isotope of the Hujiayu Cu deposit in the Zhongtiao Mountains, North China Craton: Implications for a Paleoproterozoic metamorphogenic copper mineralization. Ore Geol. Rev. 2016, 78, 252–267. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Fletcher, I.R.; Zeng, Q.T. Triassic mineralization with Cretaceous overprint in the Dahu Au-Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U-Th-Pb geochronology. Gondwana Res. 2011, 20, 543–552. [Google Scholar] [CrossRef]
- Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol. 2011, 162, 515–530. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Hayes, T.S.; Evans, K.V.; Mazdab, F.K.; Pillers, R.M.; Fanning, C.M. SHRIMP U-Pb ages of xenotime and mona zite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis. Econ. Geol. 2012, 107, 1251–1274. [Google Scholar] [CrossRef]
- Zack, T.; Kooijman, E. Petrology and geochronology of rutile. Rev. Mineral. Geochem. 2017, 83, 443–467. [Google Scholar] [CrossRef]
- Richards, J.P.; Krogh, T.E.; Spooner, E.T.C. Fluid inclusion characteristics and U-Pb rutile age of late hydrothermal alteration and veining at the Musoshi stratiform copper deposit, Central African Copper Belt, Zaire. Econ. Geol. 1988, 83, 118–139. [Google Scholar] [CrossRef]
- Pi, Q.H.; Hu, R.Z.; Xiong, B.; Li, Q.L.; Zhong, R.C. In situ SIMS U-Pb dating of hydrothermal rutile: Reliable age for the Zhesang Carlin-type gold deposit in the golden triangle region, SW China. Miner. Depos. 2017, 52, 1179–1190. [Google Scholar] [CrossRef]
- Qiu, Z.J.; Fan, H.R.; Liu, X. Metamorphic P-T-t evolution of Paleoproterozoic schist-hosted Cu deposits in the Zhongtiao Mountains, North China Craton: Retrograde ore formation during sluggish exhumation. Precambrian Res. 2017, 300, 59–77. [Google Scholar] [CrossRef]
- Fielding, I.O.H.; Johnson, S.P.; Zi, J.-W.; Rasmussen, B.; Muhling, J.R.; Dunkley, D.J.; Sheppard, S.; Wingate, M.T.D.; Rogers, J.R. Using in situ SHRIMP U-Pb monazite and xenotime geochronology to determine the age of orogenic gold mineralization: An example from the Paulsens mine, southern Pilbara craton. Econ. Geol. 2017, 112, 1205–1230. [Google Scholar] [CrossRef]
- Meng, X.Y.; Richards, J.; Mao, J.W. The Tongkuangyu Cu Deposit, Trans-North China Orogen: A Metamorphosed Paleoproterozoic Porphyry Cu Deposit. Econ. Geol. 2020, 115, 51–77. [Google Scholar] [CrossRef]
- Liu, J.C.; Wang, Y.T.; Mao, J.W. Precise ages for lode gold mineralization in the Xiaoqinling gold field, Southern margin of the North China Craton: New constraints from in situ U-Pb dating of hydrothermal monazite and rutile. Econ. Geol. 2021, 116, 773–786. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. SHRIMP U-Pb zircon ages of the Fuping Complex: Implications for late Archean to Paleoproterozoic accretion and assembly of the North China Craton. Am. J. Sci. 2002, 302, 191–226. [Google Scholar] [CrossRef]
- Zhai, M.G. Tectonic evolution and metallogenesis of North China Craton. Miner. Depos. 2010, 29, 24–36. (In Chinese) [Google Scholar]
- Zhai, M.G.; Peng, P. Paleoproterozoic events in the North China Craton. Acta Petrol. Sin. 2007, 23, 2665–2682. (In Chinese) [Google Scholar]
- Zhai, M.G.; Santosh, M. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A.; Wilde, S.A.; Sun, M.; Lu, L.Z. Metamorphism of basement rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res. 2000, 103, 55–88. [Google Scholar] [CrossRef]
- Guo, J.H.; O’Brien, P.J.; Zhai, M.G. High-pressure granulites in the Sanggan area, North China Craton: Metamorphic evolution, P-T paths and geotectonic significance. J. Metamorph. Geol. 2002, 20, 741–756. [Google Scholar] [CrossRef]
- Guo, J.H.; Sun, M.; Chen, F.K.; Zhai, M.G. Sm-Nd and SHRIMP UPb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J. Asian Earth Sci. 2005, 24, 629–642. [Google Scholar] [CrossRef]
- Liu, S.W.; Pan, Y.M.; Li, J.H.; Li, Q.G.; Zhang, J. Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China Craton. Precambrian Res. 2002, 117, 41–56. [Google Scholar] [CrossRef]
- Liu, S.W.; Pan, Y.M.; Xie, Q.L.; Zhang, J.; Li, Q.G. Archean geodynamics in the Central Zone, North China Craton: Constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes. Precambrian Res. 2004, 130, 229–249. [Google Scholar] [CrossRef]
- Liu, S.W.; Pan, Y.M.; Xie, Q.L.; Zhang, J.; Li, Q.G.; Yang, B. Geochemistry of the Paleoproterozonic Nanying granitic gneisses in the Fuping Complex: Implications for the tectonic evolution of the Central Zone, North China Craton. J. Asian Earth Sci. 2005, 24, 643–658. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhao, G.C.; Wilde, S.A.; Shu, G.M.; Sun, M.; Li, Q.G.; Tian, W.; Zhang, J. Th-U-Pb monazite geochronology of the Luliang and Wutai complexes: Constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Res. 2006, 148, 205–224. [Google Scholar] [CrossRef]
- Wilde, S.A.; Zhao, G.C.; Sun, M. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Res. 2002, 5, 85–94. [Google Scholar] [CrossRef]
- Kusky, T.M.; Li, J.H. Paleoproterozoic tectonic evolution of the North China Craton. J. Asian Earth Sci. 2003, 22, 383–397. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, Y.H.; Guo, F.; Zhang, H.F.; Peng, T.P. Geochemical 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca.1800Ma event of the North China Craton. Precambrian Res. 2004, 135, 55–77. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhao, G.C.; Fan, W.M.; Peng, T.P.; Sun, L.H.; Xia, X.P. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: Implications for back-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Res. 2007, 154, 107–124. [Google Scholar] [CrossRef]
- Kröner, A.; Wilde, S.A.; Li, J.H.; Wang, K.Y. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. J. Asian Earth Sci. 2005, 24, 577–595. [Google Scholar] [CrossRef]
- Kröner, A.; Wilde, S.A.; Zhao, G.C.; O’Brien, P.J.; Sun, M.; Liu, D.Y.; Wan, Y.S.; Liu, S.W.; Guo, J.H. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Res. 2006, 146, 45–67. [Google Scholar] [CrossRef]
- Wilde, S.A.; Zhao, G.C. Archean to Paleoproterozoic evolution of the North China Craton. J. Asian Earth Sci. 2005, 24, 519–522. [Google Scholar] [CrossRef]
- Wu, F.Y.; Zhao, G.C.; Wilde, S.A.; Sun, D.Y. Nd isotopic constraints on crustal formation in the North China Craton. J. Asian Earth Sci. 2005, 24, 523–545. [Google Scholar] [CrossRef]
- Li, J.H.; Kusky, T.M. A Late Archean foreland fold and thrust belt in the North China Craton: Implications for early collisional tectonics. Gondwana Res. 2007, 12, 47–66. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, G.C.; Li, S.Z.; Sun, M.; Liu, S.W.; Wilde, S.A.; Kröner, A.; Yin, C.Q. Deformation history of the Hengshan Complex: Implications for the tectonic evolution of the Trans-North China Orogen. J. Struct. Geol. 2007, 29, 933–949. [Google Scholar] [CrossRef]
- Trap, P.; Faure, M.; Lin, W.; Monie, P. Late Paleoproterozoic (1900-1800Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: Implications for the understanding of the Trans-North-China belt, North China Craton. Precambrian Res. 2007, 156, 85–106. [Google Scholar] [CrossRef] [Green Version]
- Trap, P.; Faure, M.; Lin, W.; Bruguier, O.; Monie, P. Contrasted tectonic styles for the Paleoproterozoic evolution of the North China Craton: Evidence for a similar to 2.1Ga thermal and tectonic event in the Fuping Massif. J. Struct. Geol. 2008, 30, 1109–1125. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, Y.B.; Gao, S.; Peng, M.; Liu, X.C.; Zhao, L.S.; Zhou, L.; Hu, Z.C.; Gong, H.Z.; Liu, Y.S. Zircon U-Pb and trace element data from rocks of the Huai’an Complex: New insights into the Late Paleoproterozoic collision between the Eastern and Western blocks of the North China Craton. Precambrian Res. 2010, 178, 59–71. [Google Scholar] [CrossRef]
- Sun, D.Z.; Hu, W.X.; Tang, M.; Zhao, F.Q.; Condie, K.C. Origin of Late Archean and Early Proterozoic rocks and associated mineral deposits from the Zhongtiao Mountains, east-central China. Precambrian Res. 1990, 47, 287–306. [Google Scholar]
- Sun, D.Z.; Li, H.M.; Lin, Y.X.; Zhou, H.F.; Zhao, F.Q.; Tang, M. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. Acta Geol. Sin. Engl. Ed. 1992, 5, 23–37. [Google Scholar]
- Sun, D.Z.; Hu, W.X. Precambrian Geochronology, Chronotectonic Frameworkand Model of Chronocrustal Structure of the Zhongtiao Mountains, 1st ed.; Geological Publishing House: Beijing, China, 1993; pp. 1–102. (In Chinese) [Google Scholar]
- Bai, J. Precambrian crustal evolution of the Zhongtiao Mountains. Earth Sci. Front. 1997, 4, 281–289. (In Chinese) [Google Scholar]
- Zhu, M.T.; Zhang, L.C.; Wu, G.; He, H.Y.; Cui, M.L. Fluid inclusions and He Ar isotopes in pyrite from the Yinjiagou deposit in the southern margin of the North China Craton: A mantle connection for poly-metallic mineralization. Chem. Geol. 2013, 351, 1–14. [Google Scholar] [CrossRef]
- Zhang, R.Y. The composition and evolution of the Sushui complex in the Zhongtiao Mountains, the south of North China Craton. Ph.D. Thesis, Northwest University, Xi’an, China, 2015; pp. 15–26. (In Chinese). [Google Scholar]
- Zhao, F.Q. Geochronologic and geochemical constraints on the Paleoproterozoic crustal evolution of Zhongtiao Mountains from Shanxi Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2006; pp. 31–77. (In Chinese). [Google Scholar]
- Li, Q.; Liu, S.; Wang, Z.; Zhang, F.; Chen, Y.; Wang, T. LA-ICP-MS U-Pb geochronology of the detrital zircons from the Jiangxian Group in the Zhongtiao Mountain and its tectonic significance. Acta Petrol. Sin. 2008, 24, 1359–1368. (In Chinese) [Google Scholar]
- Liu, X.; Fan, H.R.; Santosh, M.; Yang, K.F.; Qiu, Z.J.; Hu, F.F.; Wen, B.J. Geological and geochronological constraints on the genesis of the giant Tongkuangyu Cu deposit (Palaeoproterozoic), North China Craton. Int. Geol. Rev. 2016, 58, 155–170. [Google Scholar] [CrossRef]
- Liu, C.H.; Liu, F.L.; Zhao, G.C. The Paleoproterozoic basin evolution in the Trans-North China Orogen, North China Craton. Acta Petrol. Sin. 2012, 28, 2770–2784. [Google Scholar]
- Liu, X.; Fan, H.R.; Qiu, Z.J.; Yang, K.F. Formation ages of the Jiangxian and Zhongtiao groups in the Zhongtiao Mountain region, North China Craton: Insights from SIMS U-Pb dating on zircons of intercalated plagioclase amphibolites. Acta Petrol. Sin. 2015, 31, 1564–1572. [Google Scholar]
- Liu, C.H.; Zhao, G.C.; Sun, M.; Zhang, J.; Yin, C.Q. U–Pb geochronology and Hf isotope geochemistry of detrital zircons from the Zhongtiao Complex: Constraints on the tectonic evolution of the Trans-North China Orogen. Precambrian Res. 2012, 222–223, 159–172. [Google Scholar] [CrossRef]
- Zhao, T.; Zhai, M.; Xia, B.; Li, H.; Zhang, Y.; Wan, Y. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton. Chin. Sci. Bull. 2004, 49, 2495–2502. [Google Scholar] [CrossRef]
- Hu, W.X.; Sun, D.Z. Mineralization and evolution of the Early Proterozoic copper deposits in the Zhongtiao Mountains. Acta Geol. Sin. Engl. Ed. 1987, 61, 152–166. (In Chinese) [Google Scholar]
- Jiang, Y.; Niu, H.; Bao, Z.; Li, N.; Shan, Q.; Yang, W.; Yan, S. Fluid evolution of the Paleoproterozoic Hujiayu copper deposit in the Zhongtiaoshan region: Evidence from fluid inclusions and carbon-oxygen isotopes. Precambrian Res. 2014, 255, 734–747. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T. Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: An example from the Ivrea-Verbano Zone. Chem. Geol. 2009, 261, 303–317. [Google Scholar] [CrossRef]
- Bracciali, L.; Parrish, R.R.; Horstwood, M.S.A.; Condona, D.J.; Najman, Y. U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance. Chem. Geol. 2013, 347, 82–101. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.A.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot/Ex. Version 3.00: A Geochronological Toolkit for Microsoft Excel; Special Publication 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; pp. 1–77. [Google Scholar]
- Porto, S.P.S.; Fleury, P.A.; Damen, T.C. Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev. 1967, 154, 522–526. [Google Scholar] [CrossRef]
- Tompsett, G.A.; Bowmaker, G.A.; Cooney, R.P.; Metson, J.B.; Rodgers, K.A.; Seakins, J.M. The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 1995, 26, 57–62. [Google Scholar] [CrossRef]
- Clark, J.R.; Williams-Jones, A.E. Rutile as a Potential Indicator Mineral for Metamorphosed Metallic Ore Deposits; Rapport Final de DIVEX, Sous-Projet SC2; McGill University: Montréal, QC, Canada, 2004; 17p. [Google Scholar]
- Poitrasson, F.; Hanchar, J.M.; Schaltegger, U. The current state of accessory mineral research. Chem. Geol. 2001, 191, 3–24. [Google Scholar] [CrossRef]
- DeWolf, C.P.; Belshaw, N.S.; O’Nions, R.K. A metamorphic history from micro-scale 207Pb-206Pb chronometry of Archean monazite. Earth Planet. Sci. Lett. 1993, 120, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.K.; O’Nions, R.K.; Belshaw, N.S.; Gibb, A.J. Lewisian crustal history from in situ SIMS mineral chronometry and related metamorphic textures. Chem. Geol. 1997, 136, 205–218. [Google Scholar] [CrossRef]
- Bingen, B.; van Breeman, O. U-Pb monazite ages in amphibolite to granulite facies orthogneiss reflect hydrous mineral breakdown reaction: Sveconorwegian Province of SW Norway. Contrib. Mineral Petrol. 1998, 132, 336–353. [Google Scholar] [CrossRef]
- Cocherie, A.; Legendre, O.; Peucat, J.J.; Kouamelan, A.N. Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: Implications for lead behaviour in monazite. Geochim. Cosmochim. Acta 1998, 62, 2475–2497. [Google Scholar] [CrossRef]
- Hong, W.X.; Zhu, X.K. A Microanalysis Study on Monazite Composition Distribution. Geol. J. China Univ. 2000, 6, 167–171. (In Chinese) [Google Scholar]
- Schandl, E.S.; Gorton, M.P. A textural and geochemical guide to the identification of hydrothermal monazite criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ. Geol. 2004, 99, 1027–1035. [Google Scholar] [CrossRef]
- Rice, C.; Darke, K.; Still, J. Tungsten-bearing rutile from the Kori Kollo gold mine Bolívia. Mineral. Mag. 1998, 62, 421–429. [Google Scholar] [CrossRef]
- Zack, T.; Kronz, A.; Foley, S.F.; Rivers, T. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol. 2002, 184, 97–122. [Google Scholar] [CrossRef]
- Bromiley, G.D.; Hilairet, N. Hydrogen and minor element incorporation in synthetic rutile. Mineral. Mag. 2005, 69, 345–358. [Google Scholar] [CrossRef]
- Carruzzo, S.; Clarke, D.B.; Pelrine, K.M.; MacDonald, M.A. Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia. Can. Mineral. 2006, 44, 715–729. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Barth, M.; Horn, I.; McDonough, W.F. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 2000, 287, 278–281. [Google Scholar] [CrossRef] [Green Version]
- Zack, T.; Moraes, R.; Kronz, A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contr. Min. Petrol. 2004, 148, 471–488. [Google Scholar] [CrossRef]
- Zack, T.; von Eynatten, H.; Kronz, A. Rutile geochemistry and its potential use inquantitative provenance studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Scott, K.M. Rutile geochemistry as a guide to porphyry Cu–Au mineralization, Northparkes, new South Wales, Australia. Geochem. Explor. Environ. Anal. 2005, 5, 247–253. [Google Scholar] [CrossRef]
- Scott, K.M.; Radford, N.W. Rutile compositions at the big bell Au deposit as a guide for exploration. Geochem. Explor. Environ. Anal. 2007, 7, 353–361. [Google Scholar] [CrossRef]
- Meneghel, L. The occurrence of uranium in the Katanga system of northwestern Zambia. Econ. Geol. 1981, 76, 56–98. [Google Scholar] [CrossRef]
- Porter, J.; McNaughton, N.J.; Evans, N.J.; McDonald, B.J. Rutile as a pathfinder for metals exploration. Ore Geol. Rev. 2020, 120, 103406. [Google Scholar] [CrossRef]
- Plavsa, D.; Reddy, S.M.; Agangi, A.; Clark, C.; Kylander-Clark, A.; Tiddy, C.J. Microstructural, trace element and geochronological characterization of TiO2 polymorphs and implications for mineral exploration. Chem. Geol. 2018, 476, 130–149. [Google Scholar] [CrossRef]
- Huang, D.H.; Du, A.D.; Wu, C.Y.; Liu, L.S.; Sun, Y.L.; Zou, X.Q. Metallochronology of molybdenum (-copper) deposits in the North China platform: Re-Os age of molybdenite and its geological significance. Miner. Depos. 1996, 15, 365–373. (In Chinese) [Google Scholar]
- Geng, Y.G.; Jian, W.; Li, H.Y. Re-Os Isotopic Dating of Molybdenite from Bizigou Cu deposit in Zhongtiao Mountain and Its Implication. J. Jilin Univ. Earth Sci. Ed. 2017, 47, 1405–1418. [Google Scholar]
- Brenan, J.M.; Cherniak, D.J.; Rose, L.A. Diffusion of osmium in pyrrhotite and pyrite: Implications for closure of the Re-Os isotopic system. Earth Planet. Sci. Lett. 2000, 180, 399–413. [Google Scholar] [CrossRef]
- Selby, D.; Creaser, R.A.; Hart, C.J.R.; Rombach, C.S.; Thompson, J.F.H.; Smith, M.T.; Bakke, A.A.; Goldfarb, R.J. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology 2002, 30, 791–794. [Google Scholar] [CrossRef]
- Nozaki, T.; Kato, Y.; Suzuki, K. Re-Os geochronology of the Iimori Besshi-type massive sulfide deposit in the Sanbagawa metamorphic belt, Japan. Geochim. Cosmochim. Acta 2010, 74, 4322–4331. [Google Scholar] [CrossRef]
- Coggon, J.A.; Nowell, G.M.; Pearson, D.G.; Oberthür, T.; Lorand, J.P.; Melcher, F.; Parman, S.W. The 190Pt-186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chem. Geol. 2012, 302–303, 48–60. [Google Scholar] [CrossRef]
- Mei, H.L. Metamorphic P-T-t paths and tectonic evolution of early Proterozoic rocks from the Zhongtiao Mountains, Southern Shanxi. Geol. Rev. 1994, 40, 36–47. (In Chinese) [Google Scholar]
- Stein, H.; Scherstén, A.; Hannah, J.; Markey, R. Subgrain-scale decouplingof Re and187 Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochim. Cosmochim. Acta 2003, 67, 3673–3686. [Google Scholar] [CrossRef]
- Parrish, R.R. U-Pb dating of monazite and its application to geological problems: Can. J. Earth Sci. 1990, 27, 1431–1450. [Google Scholar] [CrossRef]
- Turlin, F.; Eglinger, A.; Vanderhaeghe, O.; André-Mayer, A.S.; Poujol, M.; Mercadier, J.; Ryan, B. Synmetamorphic Cu remobilization during the Pan-African orogeny: Microstructural, petrological and geochronological data on the kyanite-micaschists hosting the Cu(-U) Lumwana deposit in the Western Zambian Copperbelt of the Lufilian belt. Ore Geol. Rev. 2016, 75, 52–75. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.C.; Wilde, S.A.; Sun, M.; Guo, J.H.; Kröner, A.; Li, S.Z.; Li, X.P.; Zhang, J. Shrimp U-Pb zircon geochronology of the Huai’an Complex: Constraints on Late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen. Am. J. Sci. 2008, 308, 270–303. [Google Scholar] [CrossRef]
- Wilde, S.A.; Zhao, G.C.; Wang, K.Y.; Sun, M. First SHRIMP zircon U-Pb ages for Hutuo Group in Wutaishan: Further evidence for Palaeoproterozoic amalgamation of North China Craton. Chin. Sci. Bull. 2004, 49, 83–90. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, G.C.; Li, S.Z.; Sun, M.; Liu, S.W.; Xia, X.P.; He, Y.H. U-Pb zircon dating of the granitic conglomerates of the Hutuo Group: Affinities to the Wutai granitoids and significance to the tectonic evolution of the Trans-North China Orogen. Acta Geol. Sin. 2006, 80, 886–898. [Google Scholar] [CrossRef]
- Faure, M.; Trap, P.; Lin, W.; Monie, P.; Bruguier, O. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt: New insights from the Luliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes 2007, 30, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.H.; Zhao, G.C.; Sun, M.; Zhang, J.; He, Y.H.; Yin, C.Q.; Wu, F.Y.; Yang, J.H. U-Pb and Hf isotopic study of detrital zircons from the Hutuo Group in the Trans-North China Orogen and tectonic implications. Gondwana Res. 2011, 20, 106–121. [Google Scholar] [CrossRef]
- Liu, C.H.; Zhao, G.C.; Sun, M.; Wu, F.Y.; Yang, J.H.; Yin, C.Q.; Leung, W.H. U-Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang Complex: Constraints on the timing of collision between the Eastern and Western blocks, North China Craton. Sediment. Geol. 2011, 236, 129–140. [Google Scholar] [CrossRef]
- Li, Q.G.; Chen, X.; Liu, S.W.; Wang, Z.Q.; Zhou, Y.K.; Zhang, J.; Wang, T. Evaluating the Provenance of Metasedimentary rocks of the Jiangxian Group from the Zhongtiao Mountain using whole rock geochemistry and detrital zircon Hf isotope. Acta Geol. Sin. 2009, 83, 550–561. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, G.C.; Li, S.Z.; Sun, M.; Wilde, S.A.; Liu, S.W.; Yin, C.Q. Polyphase deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb zircon ages and tectonic implications. J. Struct. Geol. 2009, 31, 177–193. [Google Scholar] [CrossRef]
- Guan, H.; Sun, M.; Wilde, S.A.; Zhou, X.H.; Zhai, M.G. SHRIMP UPb zircon geochronology of the Fuping Complex: Implications for formation and assembly of the North China Craton. Precambrian Res. 2002, 113, 1–18. [Google Scholar] [CrossRef]
- Compilation Group of the Geology of Copper Deposits of the Zhongtiao Mountains. Geology of Copper Deposits in the Zhongtiao Mountains; Geological Publishing House: Beijing, China, 1978; pp. 25–86. (In Chinese) [Google Scholar]
Laser Ablation System | |
Make, model and type | Photon Machines, Analyte G2 |
Ablation cell and volume | Helex II, large format, two volume |
Laser wavelength (nm) | 193 |
Pulse width (ns) | <4 |
Fluence (J.cm-2) | 3 |
Repetition rate (Hz) | 7 |
Ablation duration (secs) | 30 |
Ablation pit depth/ablation rate | ~15 µm/~0.5 µm/s |
Spot size (um) | 35 |
Sampling mode/pattern | spot |
Carrier gas | He and Ar (after cell) and N2 (after cell) |
Cell carrier gas flow (L/min) | He1 (cell) = 0.7, He2 (cup) = 0.2, Ar = 0.75, N2 = 0.01 |
ICP-MS Instrument | |
Make, model and type | Thermo Neptune Plus with Jet Interface |
RF power (W) | 1200 |
Make-up gas flow (L/min) | 0.05 |
Detection system | 9 Faraday Cups |
Masses measured | 204Pb, 206Pb, 207Pb, 208Pb, 232Th, 238U |
Integration time per peak/dwell times (ms) | NA |
Total integration time per output datapoint (secs) | 0.25 |
No. | Comment | SiO2 | Ta2O5 | Nb2O5 | TiO2 | Cr2O3 | FeO | ZrO2 | WO3 | V2O3 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Dark zoning-1 | 0.058 | 0.001 | 0.19 | 98.72 | 0.143 | 0.343 | 0.02 | 0.015 | 0.547 | 100.037 |
2 | Dark zoning-2 | 0.111 | 0.002 | 0.284 | 98.451 | 0.163 | 0.318 | 0.013 | 0.069 | 0.556 | 99.967 |
3 | Dark zoning-3 | 0.057 | 0.002 | 0.367 | 97.234 | 0.261 | 0.452 | 0.011 | 0.195 | 0.558 | 99.137 |
4 | Dark zoning-4 | 0.056 | 0.007 | 0.296 | 97.855 | 0.247 | 0.318 | 0.002 | 0.012 | 0.477 | 99.27 |
5 | Dark zoning-5 | 0.054 | 0.003 | 0.737 | 97.535 | 0.289 | 0.37 | 0.013 | 0.02 | 0.527 | 99.548 |
6 | Dark zoning-6 | 0.038 | 0 | 0.299 | 98.31 | 0.116 | 0.417 | 0.006 | 0.077 | 0.476 | 99.739 |
7 | Dark zoning-7 | 0.055 | 0.003 | 0.258 | 97.986 | 0.145 | 0.289 | 0.018 | 0.048 | 0.485 | 99.287 |
8 | Dark zoning-8 | 0.069 | 0 | 0.292 | 98.059 | 0.103 | 0.444 | 0.002 | 0.016 | 0.422 | 99.407 |
9 | Dark zoning-9 | 0.021 | 0 | 0.175 | 98.109 | 0.358 | 0.311 | 0.014 | 0.067 | 0.507 | 99.562 |
10 | Dark zoning-10 | 0.02 | 0.001 | 0.202 | 98.312 | 0.355 | 0.489 | 0.018 | 0.055 | 0.553 | 100.005 |
11 | Dark zoning-11 | 0.004 | 0 | 0.285 | 98.843 | 0.285 | 0.069 | 0.001 | 0.05 | 0.622 | 100.159 |
12 | Dark zoning-12 | 0.006 | 0 | 0.34 | 97.382 | 0.032 | 0.345 | 0.006 | 0.874 | 1.122 | 100.107 |
13 | Dark zoning-13 | 0 | 0.001 | 0.223 | 98.293 | 0.049 | 0.235 | 0.001 | 0.012 | 0.638 | 99.452 |
14 | Dark zoning-14 | 0.004 | 0 | 0.288 | 97.864 | 0.057 | 0.17 | 0.002 | 0.098 | 0.746 | 99.229 |
15 | Dark zoning-15 | 0 | 0 | 0.508 | 97.737 | 0.269 | 0.268 | 0.015 | 0.153 | 0.426 | 99.376 |
16 | Dark zoning-16 | 0.002 | 0.035 | 0.398 | 96.923 | 0.152 | 0.521 | 0.028 | 0.557 | 0.482 | 99.098 |
17 | Light zoing-1 | 0.062 | 0 | 1.267 | 92.811 | 0.405 | 1.132 | 0.042 | 3.623 | 0.601 | 99.943 |
18 | Light zoing-2 | 0.056 | 0 | 1.373 | 92.834 | 0.429 | 1.317 | 0.049 | 2.641 | 0.65 | 99.349 |
19 | Light zoing-3 | 0.049 | 0 | 1.319 | 92.462 | 0.455 | 1.472 | 0.062 | 3.211 | 0.666 | 99.696 |
20 | Light zoing-4 | 0.071 | 0 | 0.92 | 95.753 | 0.311 | 0.741 | 0.02 | 1.495 | 0.598 | 99.909 |
21 | Light zoing-5 | 0.05 | 0.029 | 2.601 | 92.497 | 0.533 | 1.302 | 0.03 | 1.846 | 0.602 | 99.49 |
22 | Light zoing-6 | 0.047 | 0.027 | 2.593 | 92.508 | 0.587 | 1.447 | 0.042 | 1.761 | 0.624 | 99.636 |
23 | Light zoing-7 | 0.06 | 0.112 | 1.806 | 93.988 | 0.322 | 1.169 | 0.025 | 1.237 | 0.576 | 99.295 |
24 | Light zoing-8 | 0.068 | 0 | 0.145 | 96.899 | 0.16 | 0.776 | 0.023 | 1.443 | 0.494 | 100.008 |
25 | Light zoing-9 | 0.013 | 0 | 0.649 | 95.594 | 0.035 | 0.817 | 0.013 | 1.754 | 1.113 | 99.988 |
26 | Light zoing-10 | 0.003 | 0 | 0.395 | 95.163 | 0.136 | 0.786 | 0.014 | 2.246 | 1.034 | 99.777 |
27 | Light zoing-11 | 0.001 | 0 | 0.387 | 94.721 | 0.127 | 0.691 | 0.019 | 2.223 | 1.208 | 99.377 |
28 | Light zoing-12 | 0 | 0 | 0.369 | 95.114 | 0.111 | 0.629 | 0.016 | 1.937 | 1.101 | 99.277 |
29 | Light zoing-13 | 0 | 0 | 0.958 | 91.741 | 0.645 | 1.248 | 0.052 | 5.202 | 0.456 | 100.302 |
30 | Light zoing-14 | 0.008 | 0.067 | 2.659 | 92.145 | 0.324 | 1.653 | 0.034 | 1.877 | 0.593 | 99.36 |
No. | Sc | Y | Zr | Nb | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | Pb | Th | U | Th/U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T29-10-01 | 0.17 | 3675 | 1.21 | 0.06 | 20175 | 1335 | 8579 | 556 | 1762 | 224 | 324 | 20 | 59 | 4 | 0.29 | 0.04 | 122 | 378 | 280 | 1.35 |
T29-10-02 | 0.12 | 8050 | 1.01 | 0.03 | 16563 | 1533 | 9264 | 797 | 3219 | 473 | 750 | 52 | 168 | 12 | 0.48 | 0.09 | 188 | 272 | 514 | 0.53 |
T29-10-03 | 0.20 | 11358 | 0.89 | 0.04 | 25106 | 2042 | 13459 | 1131 | 4393 | 639 | 1078 | 79 | 263 | 18 | 0.69 | 0.11 | 139 | 35 | 424 | 0.08 |
T29-10-04 | 0.15 | 9943 | 1.29 | 0.05 | 23915 | 3052 | 12502 | 1100 | 4242 | 583 | 893 | 57 | 165 | 9 | 0.61 | 0.10 | 262 | 26 | 815 | 0.03 |
T29-10-05 | 0.30 | 5300 | 1.42 | 0.05 | 16765 | 1920 | 8381 | 648 | 2379 | 325 | 470 | 29 | 81 | 5 | 0.38 | 0.06 | 83 | 212 | 209 | 1.02 |
T29-10-06 | 0.26 | 10470 | 1.03 | 0.05 | 20350 | 3080 | 11267 | 1039 | 4255 | 621 | 999 | 68 | 208 | 13 | 0.69 | 0.12 | 294 | 12 | 912 | 0.01 |
T29-10-07 | 0.18 | 9717 | 1.19 | 0.06 | 21271 | 2959 | 12038 | 1081 | 4160 | 575 | 907 | 61 | 182 | 10 | 0.59 | 0.11 | 259 | 2 | 805 | 0.00 |
T29-10-08 | 0.14 | 5821 | 1.17 | 0.05 | 27464 | 1957 | 13189 | 907 | 2819 | 351 | 499 | 30 | 86 | 5 | 0.44 | 0.06 | 143 | 42 | 430 | 0.10 |
T29-10-09 | 0.14 | 4906 | 1.24 | 0.05 | 19026 | 1382 | 8784 | 630 | 2188 | 295 | 438 | 28 | 84 | 5 | 0.28 | 0.06 | 163 | 261 | 441 | 0.59 |
T29-10-10 | 0.07 | 4609 | 1.56 | 0.09 | 17922 | 1257 | 8035 | 569 | 1987 | 274 | 419 | 27 | 87 | 6 | 0.32 | 0.06 | 157 | 354 | 404 | 0.88 |
Sample No. | Isotopic Ratios | Apparent Age (Ma) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 2σ | 207Pb/235U | 2σ | 206Pb/238U | 2σ | 207Pb/206Pb | 2σ | 207Pb/235U | 2σ | 206Pb/238U | 2σ | |
Rutile T343-8 | ||||||||||||
T343-8-1 | 0.3557 | 0.0094 | 31.5 | 1.7 | 0.636 | 0.022 | 3720 | 39 | 3530 | 53 | 3164 | 87 |
T343-8-2 | 0.1367 | 0.0016 | 6.552 | 0.21 | 0.3466 | 0.0094 | 2181 | 18 | 2050 | 28 | 1919 | 46 |
T343-8-3 | 0.1112 | 0.0036 | 5.26 | 0.24 | 0.348 | 0.01 | 1823 | 40 | 1859 | 38 | 1929 | 51 |
T343-8-4 | 0.113 | 0.0016 | 5.076 | 0.16 | 0.3251 | 0.0091 | 1845 | 17 | 1828 | 27 | 1813 | 44 |
T343-8-5 | 0.1132 | 0.0029 | 5.26 | 0.21 | 0.345 | 0.012 | 1856 | 28 | 1858 | 36 | 1909 | 55 |
T343-8-6 | 0.1136 | 0.0024 | 4.99 | 0.18 | 0.3236 | 0.0093 | 1855 | 22 | 1812 | 30 | 1806 | 45 |
T343-8-7 | 0.119 | 0.0033 | 5.21 | 0.22 | 0.3179 | 0.0097 | 1941 | 35 | 1839 | 36 | 1777 | 47 |
T343-8-8 | 0.1132 | 0.0024 | 5.08 | 0.18 | 0.3252 | 0.0089 | 1839 | 25 | 1827 | 29 | 1814 | 43 |
T343-8-9 | 0.2093 | 0.0071 | 11.55 | 0.56 | 0.3927 | 0.013 | 2886 | 43 | 2545 | 45 | 2131 | 61 |
T343-8-10 | 0.1201 | 0.0015 | 5.596 | 0.17 | 0.3367 | 0.0092 | 1956 | 16 | 1912 | 27 | 1870 | 44 |
T343-8-11 | 0.1162 | 0.0052 | 5.44 | 0.31 | 0.3318 | 0.011 | 1877 | 54 | 1869 | 43 | 1845 | 53 |
T343-8-12 | 0.1143 | 0.0052 | 4.87 | 0.25 | 0.3142 | 0.01 | 1811 | 52 | 1769 | 44 | 1758 | 50 |
T343-8-13 | 0.1482 | 0.0027 | 6.85 | 0.24 | 0.3327 | 0.0094 | 2315 | 29 | 2082 | 31 | 1850 | 46 |
T343-8-14 | 0.1223 | 0.0023 | 5.31 | 0.2 | 0.3177 | 0.01 | 1977 | 28 | 1867 | 32 | 1775 | 49 |
T343-8-15 | 0.1467 | 0.0065 | 6.69 | 0.42 | 0.3327 | 0.011 | 2233 | 63 | 2036 | 51 | 1852 | 53 |
T343-8-16 | 0.1869 | 0.0088 | 10.46 | 0.88 | 0.384 | 0.014 | 2654 | 66 | 2386 | 59 | 2087 | 63 |
T343-8-17 | 0.268 | 0.01 | 19.9 | 1.4 | 0.51 | 0.019 | 3256 | 57 | 3006 | 65 | 2650 | 80 |
T343-8-18 | 0.1385 | 0.0028 | 6.46 | 0.25 | 0.336 | 0.0096 | 2198 | 31 | 2028 | 33 | 1866 | 46 |
T343-8-19 | 0.113 | 0.0018 | 5.047 | 0.17 | 0.3238 | 0.0095 | 1840 | 18 | 1823 | 28 | 1806 | 46 |
T343-8-20 | 0.12 | 0.0058 | 5.52 | 0.31 | 0.3356 | 0.011 | 1910 | 61 | 1878 | 48 | 1861 | 53 |
T343-8-21 | 0.1261 | 0.0061 | 6.26 | 0.37 | 0.3605 | 0.013 | 1988 | 64 | 1962 | 54 | 1981 | 64 |
T343-8-22 | 0.1139 | 0.0017 | 5.035 | 0.16 | 0.3203 | 0.0089 | 1860 | 17 | 1821 | 27 | 1792 | 43 |
T343-8-23 | 0.1688 | 0.0027 | 8.46 | 0.31 | 0.3604 | 0.011 | 2535 | 24 | 2274 | 33 | 1982 | 50 |
T343-8-24 | 0.1498 | 0.0032 | 7.11 | 0.27 | 0.3479 | 0.0099 | 2333 | 31 | 2115 | 34 | 1923 | 47 |
T343-8-25 | 0.1136 | 0.0023 | 4.81 | 0.17 | 0.3058 | 0.0089 | 1860 | 21 | 1778 | 30 | 1721 | 43 |
T343-8-26 | 0.2972 | 0.0092 | 22.9 | 1.6 | 0.543 | 0.023 | 3429 | 47 | 3183 | 63 | 2780 | 91 |
T343-8-27 | 0.12084 | 0.0012 | 5.601 | 0.18 | 0.3328 | 0.0094 | 1966 | 16 | 1913 | 27 | 1851 | 45 |
T343-8-28 | 0.1142 | 0.0037 | 5.1 | 0.22 | 0.3267 | 0.0099 | 1853 | 39 | 1824 | 37 | 1820 | 48 |
T343-8-29 | 0.2422 | 0.0095 | 14.36 | 0.9 | 0.4159 | 0.014 | 3081 | 61 | 2724 | 57 | 2241 | 63 |
T343-8-30 | 0.1253 | 0.0027 | 5.96 | 0.23 | 0.3436 | 0.0096 | 2023 | 30 | 1959 | 33 | 1902 | 46 |
T343-8-31 | 0.1231 | 0.0032 | 6.02 | 0.28 | 0.3508 | 0.011 | 1989 | 40 | 1958 | 38 | 1936 | 50 |
T343-8-32 | 0.1489 | 0.0038 | 7.61 | 0.4 | 0.3606 | 0.012 | 2319 | 41 | 2167 | 45 | 1982 | 56 |
T343-8-33 | 0.1218 | 0.002 | 6.2 | 0.21 | 0.3594 | 0.01 | 1985 | 19 | 2001 | 31 | 1978 | 49 |
T343-8-34 | 0.1157 | 0.0026 | 5.18 | 0.18 | 0.3264 | 0.0093 | 1881 | 27 | 1841 | 31 | 1820 | 45 |
T343-8-35 | 0.1131 | 0.0042 | 5.28 | 0.25 | 0.3491 | 0.012 | 1839 | 43 | 1856 | 40 | 1928 | 56 |
T343-8-36 | 0.1417 | 0.0015 | 7.12 | 0.25 | 0.3626 | 0.011 | 2245 | 15 | 2119 | 31 | 1992 | 50 |
Rutile T25-19 | ||||||||||||
T25-19-1 | 0.1218 | 0.0018 | 5.66 | 0.19 | 0.3347 | 0.0097 | 1985 | 19 | 1921 | 29 | 1859 | 47 |
T25-19-2 | 0.2098 | 0.0098 | 10.85 | 0.8 | 0.3655 | 0.012 | 2842 | 67 | 2449 | 60 | 2002 | 58 |
T25-19-3 | 0.1211 | 0.0038 | 5.82 | 0.24 | 0.3507 | 0.011 | 1968 | 37 | 1939 | 36 | 1934 | 52 |
T25-19-4 | 0.119 | 0.0036 | 5.41 | 0.23 | 0.3278 | 0.01 | 1935 | 34 | 1872 | 37 | 1827 | 51 |
T25-19-5 | 0.1261 | 0.002 | 5.78 | 0.19 | 0.3353 | 0.0095 | 2034 | 24 | 1938 | 28 | 1863 | 45 |
T25-19-6 | 0.112 | 0.0015 | 5 | 0.16 | 0.3252 | 0.0091 | 1828 | 17 | 1817 | 27 | 1814 | 44 |
T25-19-7 | 0.1282 | 0.0038 | 5.88 | 0.26 | 0.3289 | 0.0094 | 2055 | 41 | 1941 | 35 | 1832 | 45 |
T25-19-8 | 0.583 | 0.01 | 66.3 | 3.5 | 0.805 | 0.035 | 4455 | 25 | 4224 | 52 | 3780 | 120 |
T25-19-9 | 0.1524 | 0.0025 | 7.33 | 0.25 | 0.3469 | 0.0094 | 2364 | 24 | 2145 | 30 | 1919 | 45 |
T25-19-10 | 0.585 | 0.022 | 81.9 | 7.8 | 0.935 | 0.066 | 4382 | 66 | 4370 | 110 | 4200 | 220 |
T25-19-11 | 0.292 | 0.012 | 19.3 | 1.4 | 0.457 | 0.016 | 3358 | 63 | 2975 | 66 | 2424 | 70 |
T25-19-12 | 0.1218 | 0.0018 | 5.64 | 0.19 | 0.3365 | 0.0098 | 1984 | 18 | 1917 | 30 | 1867 | 47 |
T25-19-13 | 0.113 | 0.0012 | 4.975 | 0.16 | 0.3169 | 0.0092 | 1848 | 14 | 1814 | 28 | 1773 | 44 |
T25-19-14 | 0.1174 | 0.0025 | 5.17 | 0.19 | 0.3186 | 0.0095 | 1907 | 29 | 1841 | 33 | 1781 | 46 |
T25-19-15 | 0.1254 | 0.0025 | 6.27 | 0.22 | 0.3707 | 0.011 | 2028 | 24 | 2011 | 32 | 2031 | 53 |
T25-19-16 | 0.1303 | 0.0043 | 6.26 | 0.27 | 0.356 | 0.011 | 2080 | 43 | 2007 | 40 | 1963 | 54 |
T25-19-17 | 0.1312 | 0.0031 | 6.23 | 0.25 | 0.3477 | 0.011 | 2103 | 31 | 1999 | 36 | 1919 | 53 |
T25-19-18 | 0.1283 | 0.0044 | 6.04 | 0.34 | 0.3441 | 0.011 | 2088 | 58 | 1966 | 44 | 1911 | 50 |
T25-19-19 | 0.511 | 0.012 | 48 | 3 | 0.655 | 0.03 | 4261 | 35 | 3905 | 63 | 3239 | 120 |
T25-19-20 | 0.1188 | 0.0023 | 5.27 | 0.19 | 0.3213 | 0.009 | 1934 | 26 | 1858 | 30 | 1797 | 44 |
T25-19-21 | 0.1173 | 0.0026 | 5.08 | 0.18 | 0.3178 | 0.0094 | 1910 | 28 | 1828 | 32 | 1777 | 46 |
T25-19-22 | 0.1161 | 0.0025 | 5.56 | 0.2 | 0.3504 | 0.01 | 1890 | 28 | 1902 | 32 | 1934 | 50 |
T25-19-23 | 0.259 | 0.011 | 15.5 | 1.1 | 0.43 | 0.016 | 3192 | 65 | 2801 | 63 | 2297 | 69 |
T25-19-24 | 0.2056 | 0.0053 | 10.26 | 0.43 | 0.3639 | 0.011 | 2861 | 41 | 2445 | 39 | 2001 | 55 |
T25-19-25 | 0.121 | 0.0036 | 5.82 | 0.25 | 0.3508 | 0.011 | 1956 | 38 | 1933 | 36 | 1935 | 53 |
T25-19-26 | 0.2509 | 0.0091 | 14.34 | 0.86 | 0.4079 | 0.013 | 3172 | 55 | 2750 | 57 | 2203 | 61 |
T25-19-27 | 0.1281 | 0.0037 | 6.11 | 0.26 | 0.358 | 0.011 | 2061 | 39 | 1988 | 37 | 1971 | 54 |
T25-19-28 | 0.1494 | 0.0041 | 7.57 | 0.32 | 0.3649 | 0.011 | 2328 | 37 | 2176 | 38 | 2003 | 53 |
T25-19-29 | 0.1286 | 0.0038 | 5.99 | 0.25 | 0.331 | 0.0096 | 2072 | 40 | 1967 | 37 | 1842 | 46 |
T25-19-30 | 0.1629 | 0.0044 | 7.93 | 0.36 | 0.3517 | 0.01 | 2471 | 39 | 2209 | 39 | 1941 | 49 |
T25-19-31 | 0.45 | 0.012 | 35.8 | 2.1 | 0.573 | 0.023 | 4060 | 38 | 3628 | 57 | 2904 | 89 |
T25-19-32 | 0.327 | 0.015 | 21.9 | 1.8 | 0.465 | 0.022 | 3525 | 73 | 3082 | 82 | 2442 | 91 |
T25-19-33 | 0.377 | 0.017 | 25.9 | 2.2 | 0.484 | 0.022 | 3779 | 66 | 3305 | 79 | 2547 | 99 |
T25-19-34 | 0.1293 | 0.0024 | 5.93 | 0.22 | 0.3421 | 0.011 | 2087 | 23 | 1962 | 32 | 1895 | 53 |
T25-19-35 | 0.1518 | 0.0047 | 7.47 | 0.34 | 0.3589 | 0.011 | 2347 | 46 | 2152 | 38 | 1975 | 49 |
T25-19-36 | 0.2308 | 0.0079 | 13.09 | 0.74 | 0.4106 | 0.013 | 3011 | 50 | 2656 | 51 | 2217 | 60 |
Rutile PD776 | ||||||||||||
PD776-1 | 0.1109 | 0.005 | 4.81 | 0.25 | 0.3163 | 0.01 | 1783 | 56 | 1761 | 45 | 1767 | 51 |
PD776-2 | 0.1116 | 0.0072 | 4.83 | 0.33 | 0.3255 | 0.011 | 1781 | 71 | 1751 | 61 | 1811 | 55 |
PD776-3 | 0.1153 | 0.0068 | 5.12 | 0.32 | 0.3306 | 0.012 | 1840 | 82 | 1808 | 57 | 1834 | 59 |
PD776-4 | 0.1236 | 0.0092 | 5.49 | 0.45 | 0.327 | 0.013 | 1949 | 86 | 1844 | 67 | 1816 | 63 |
PD776-5 | 0.1126 | 0.0072 | 5.02 | 0.35 | 0.3293 | 0.013 | 1815 | 68 | 1783 | 60 | 1826 | 62 |
PD776-6 | 0.1111 | 0.0038 | 4.81 | 0.22 | 0.319 | 0.0099 | 1798 | 43 | 1770 | 39 | 1782 | 48 |
PD776-7 | 0.1133 | 0.005 | 5.11 | 0.27 | 0.3335 | 0.011 | 1822 | 50 | 1805 | 45 | 1851 | 53 |
PD776-8 | 0.1143 | 0.0049 | 5.05 | 0.25 | 0.3246 | 0.0099 | 1827 | 55 | 1801 | 44 | 1812 | 49 |
PD776-9 | 0.1115 | 0.0048 | 5.05 | 0.25 | 0.3305 | 0.011 | 1817 | 46 | 1802 | 43 | 1840 | 52 |
PD776-10 | 0.1143 | 0.007 | 5.07 | 0.35 | 0.3304 | 0.011 | 1817 | 81 | 1810 | 57 | 1835 | 54 |
PD776-11 | 0.121 | 0.0055 | 5.49 | 0.3 | 0.3356 | 0.011 | 1923 | 59 | 1869 | 49 | 1862 | 51 |
PD776-12 | 0.1151 | 0.006 | 5.14 | 0.3 | 0.3326 | 0.012 | 1846 | 59 | 1809 | 51 | 1844 | 57 |
PD776-13 | 0.129 | 0.011 | 5.67 | 0.55 | 0.338 | 0.019 | 2084 | 65 | 1914 | 80 | 1877 | 92 |
PD776-14 | 0.1123 | 0.0078 | 5.01 | 0.35 | 0.3323 | 0.013 | 1801 | 87 | 1760 | 69 | 1843 | 60 |
PD776-15 | 0.1114 | 0.005 | 5.22 | 0.28 | 0.3448 | 0.011 | 1806 | 58 | 1841 | 49 | 1917 | 52 |
PD776-16 | 0.1148 | 0.0067 | 5.37 | 0.33 | 0.3505 | 0.012 | 1822 | 67 | 1845 | 54 | 1930 | 59 |
PD776-17 | 0.1133 | 0.006 | 5.26 | 0.31 | 0.3409 | 0.012 | 1843 | 64 | 1840 | 50 | 1885 | 56 |
PD776-18 | 0.1366 | 0.0059 | 6.77 | 0.35 | 0.3707 | 0.013 | 2141 | 52 | 2052 | 46 | 2026 | 60 |
PD776-19 | 0.1171 | 0.0065 | 5.62 | 0.36 | 0.3543 | 0.012 | 1847 | 76 | 1865 | 55 | 1949 | 57 |
PD776-20 | 0.113 | 0.0035 | 5.45 | 0.24 | 0.3528 | 0.011 | 1842 | 38 | 1881 | 37 | 1944 | 51 |
PD776-21 | 0.467 | 0.037 | 64 | 12 | 0.86 | 0.1 | 3630 | 110 | 3710 | 160 | 3620 | 290 |
PD776-22 | 0.1144 | 0.0057 | 5.64 | 0.31 | 0.3632 | 0.013 | 1833 | 62 | 1879 | 52 | 1991 | 60 |
PD776-23 | 0.1179 | 0.007 | 5.6 | 0.33 | 0.3556 | 0.013 | 1887 | 62 | 1895 | 51 | 1958 | 61 |
PD776-24 | 0.1121 | 0.0059 | 5.44 | 0.33 | 0.3574 | 0.013 | 1821 | 68 | 1869 | 54 | 1968 | 61 |
PD776-25 | 0.219 | 0.05 | 10.3 | 1.5 | 0.419 | 0.033 | 2800 | 160 | 2330 | 140 | 2180 | 150 |
PD776-26 | 0.1122 | 0.0058 | 5.28 | 0.29 | 0.3443 | 0.012 | 1814 | 64 | 1830 | 53 | 1901 | 57 |
PD776-27 | 0.114 | 0.0043 | 5.64 | 0.27 | 0.3651 | 0.011 | 1855 | 43 | 1912 | 41 | 2004 | 52 |
PD776-28 | 0.1131 | 0.0063 | 5.53 | 0.33 | 0.3601 | 0.013 | 1806 | 69 | 1860 | 58 | 1976 | 60 |
PD776-29 | 0.1246 | 0.0073 | 6.32 | 0.42 | 0.371 | 0.012 | 1980 | 81 | 1979 | 63 | 2029 | 57 |
PD776-30 | 0.1096 | 0.0061 | 4.85 | 0.3 | 0.3149 | 0.012 | 1773 | 74 | 1764 | 56 | 1766 | 61 |
PD776-31 | 0.1105 | 0.0059 | 4.68 | 0.26 | 0.3142 | 0.011 | 1781 | 60 | 1731 | 49 | 1757 | 52 |
PD776-32 | 0.1186 | 0.0066 | 5.22 | 0.35 | 0.3194 | 0.01 | 1871 | 66 | 1806 | 51 | 1782 | 51 |
PD776-33 | 0.1097 | 0.0059 | 5.27 | 0.31 | 0.3425 | 0.012 | 1784 | 66 | 1816 | 54 | 1892 | 58 |
PD776-34 | 0.109 | 0.011 | 4.87 | 0.49 | 0.323 | 0.015 | 1830 | 110 | 1734 | 85 | 1797 | 76 |
PD776-35 | 0.1597 | 0.0088 | 7.64 | 0.53 | 0.3519 | 0.013 | 2344 | 79 | 2129 | 65 | 1936 | 60 |
PD776-36 | 0.123 | 0.012 | 5.45 | 0.54 | 0.337 | 0.017 | 2060 | 110 | 1874 | 80 | 1862 | 81 |
PD776-37 | 0.1163 | 0.006 | 5.3 | 0.31 | 0.3306 | 0.012 | 1857 | 65 | 1827 | 54 | 1835 | 57 |
PD776-38 | 0.169 | 0.017 | 7.76 | 0.66 | 0.373 | 0.02 | 2410 | 100 | 2148 | 83 | 2027 | 92 |
PD776-39 | 0.116 | 0.0056 | 5.22 | 0.29 | 0.3288 | 0.012 | 1856 | 50 | 1829 | 49 | 1826 | 57 |
PD776-40 | 0.1259 | 0.0091 | 5.3 | 0.38 | 0.319 | 0.013 | 1965 | 88 | 1807 | 71 | 1778 | 67 |
PD776-41 | 0.1201 | 0.0059 | 5.26 | 0.28 | 0.3215 | 0.01 | 1921 | 59 | 1829 | 49 | 1793 | 51 |
Sample No. | Isotopic Ratios | Apparent Age (Ma) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | rho | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |
T29-10-1 | 0.1120 | 0.0010 | 5.0919 | 0.0706 | 0.3352 | 0.0024 | 0.5165 | 1832 | 18 | 1835 | 12 | 1864 | 12 |
T29-10-2 | 0.1120 | 0.0007 | 5.0785 | 0.0607 | 0.3341 | 0.0021 | 0.5179 | 1832 | 12 | 1833 | 10 | 1858 | 10 |
T29-10-3 | 0.1126 | 0.0008 | 5.0758 | 0.0607 | 0.3323 | 0.0021 | 0.5366 | 1843 | 12 | 1832 | 10 | 1849 | 10 |
T29-10-4 | 0.1139 | 0.0008 | 5.1499 | 0.0745 | 0.3325 | 0.0029 | 0.5935 | 1863 | 13 | 1844 | 12 | 1850 | 14 |
T29-10-5 | 0.1132 | 0.0013 | 5.1126 | 0.0863 | 0.3325 | 0.0030 | 0.5318 | 1854 | 21 | 1838 | 14 | 1850 | 14 |
T29-10-6 | 0.1147 | 0.0008 | 5.1863 | 0.0668 | 0.3326 | 0.0024 | 0.5493 | 1876 | 11 | 1850 | 11 | 1851 | 11 |
T29-10-7 | 0.1147 | 0.0008 | 5.1415 | 0.0683 | 0.3300 | 0.0025 | 0.5658 | 1876 | 13 | 1843 | 11 | 1838 | 12 |
T29-10-8 | 0.1128 | 0.0009 | 5.1195 | 0.0651 | 0.3345 | 0.0021 | 0.4945 | 1844 | 13 | 1839 | 11 | 1860 | 10 |
T29-10-9 | 0.1144 | 0.0009 | 5.1436 | 0.0713 | 0.3310 | 0.0025 | 0.5418 | 1870 | 13 | 1843 | 12 | 1843 | 12 |
T29-10-10 | 0.1174 | 0.0010 | 5.2448 | 0.0762 | 0.3293 | 0.0030 | 0.6313 | 1916 | 15 | 1860 | 12 | 1835 | 15 |
Age | Method | Sample and Occurrence | Deposit | Reference |
---|---|---|---|---|
1830 ± 34 Ma | Uraninite and brannerite U-Pb | Disseminated ore vein/Zhongtiao Group | Bizigou | [26] |
1832 ± 26 Ma | Rb-Sr isochron | Carbonaceous schist | Nanhegou | [66] |
Quartz albitite | Nanhegou | |||
Quartz albitite | Laobaotan | |||
Quartz marble | Tongmugou | |||
1919~1980 Ma | Molybdenite Re-Os | Unknown | Bizigou | [108] |
1901 ± 24 Ma | Molybdenite Re-Os | Molybdenite along faults and interlayer fracture zones, the relation with mineralization is unknown | Tongmugou | [27] |
1952 ± 39 Ma | Chalcopyrite Re-Os | Chalcopyrite-bearing thick veins, stage II | Nanhegou | [28] |
1577 ± 31 Ma | Molybdenite Re-Os | Molybdenite sulfide-bearing quartz veins | Bizigou | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Mao, J.; Ye, H.; Li, H. The Age of Hubi Copper (Cobalt) Ore Mineralization in the Zhongtiao Mountain Area, Southern Margin of the Trans-North China Orogen: New Constraints from U-Pb Dating of Rutile and Monazite. Minerals 2022, 12, 288. https://doi.org/10.3390/min12030288
Wang M, Mao J, Ye H, Li H. The Age of Hubi Copper (Cobalt) Ore Mineralization in the Zhongtiao Mountain Area, Southern Margin of the Trans-North China Orogen: New Constraints from U-Pb Dating of Rutile and Monazite. Minerals. 2022; 12(3):288. https://doi.org/10.3390/min12030288
Chicago/Turabian StyleWang, Mengqi, Jingwen Mao, Huishou Ye, and Hongying Li. 2022. "The Age of Hubi Copper (Cobalt) Ore Mineralization in the Zhongtiao Mountain Area, Southern Margin of the Trans-North China Orogen: New Constraints from U-Pb Dating of Rutile and Monazite" Minerals 12, no. 3: 288. https://doi.org/10.3390/min12030288
APA StyleWang, M., Mao, J., Ye, H., & Li, H. (2022). The Age of Hubi Copper (Cobalt) Ore Mineralization in the Zhongtiao Mountain Area, Southern Margin of the Trans-North China Orogen: New Constraints from U-Pb Dating of Rutile and Monazite. Minerals, 12(3), 288. https://doi.org/10.3390/min12030288