Natural Radionuclide Concentrations by γ-Ray Spectrometry in Granitic Rocks of the Sol Hamed Area, Southeastern Desert of Egypt, and Their Radiological Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Sampling and Radioactive Detection
3. Results
3.1. Petrographic Investigation
3.2. Radioactivity Analysis
3.3. Geochemistry of U and Th in the Studied Rocks
3.4. Radioactive Concentrations in Granitic Rocks
3.5. Radiological Effects
3.6. Multivariate Statistics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanfi, M.Y.; Yarmoshenko, V.; Seleznev, A.A.; Malinovsky, G.; Ilgasheva, E.; Zhukovsky, M.V. Beta radioactivity of urban surface–deposited sediment in three Russian cities. Environ. Sci. Pollut. Res. 2020, 27, 40309–40315. [Google Scholar] [CrossRef] [PubMed]
- Akpanowo, M.A.; Umaru, I.; Iyakwari, S.; Joshua, E.O.; Yusuf, S.; Ekong, G.B. Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria. Sci. African 2020, 10, e00561. [Google Scholar] [CrossRef]
- Sivakumar, S.; Chandrasekaran, A.; Ravisankar, R.; Ravikumar, S.M.; Prince Prakash Jebakumar, J.; Vijayagopal, P.; Vijayalakshmi, I.; Jose, M.T. Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach. J. Taibah Univ. Sci. 2014, 8, 375–384. [Google Scholar] [CrossRef] [Green Version]
- UNSCEAR. Sources and Effects of Ionizing Radiation—Exposures of the Public and Workers from Various Sources of Radiation—UNSCEAR 2008 Report; United Nations Publication: New York, NY, USA, 2010. [Google Scholar]
- ATSDR. Toxicological Profile for Uranium; U.S. Department of Health & Human Services: Washington, WA, USA, 1999; pp. 1–145.
- ATSDR. Draft Toxicological Profile for Radon: Agency for Toxic Substances and Disease Registry; U.S. Department of Health & Human Services: Washington, WA, USA, 2012; Volume 9–11, pp. 161–167.
- ATSDR. Case Studies in Environmental Medicine; U.S. Department of Health & Human Services: Washington, WA, USA, 1992; pp. 1–28.
- Ajayi, O.S. Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat. Environ. Biophys. 2009, 48, 323–332. [Google Scholar] [CrossRef]
- Khandaker, M.U.; Uwatse, O.B.; Bin Shamsul Khairi, K.A.; Faruque, M.R.I.; Bradley, D.A. Terrestrial radionuclides in surface (dam) water and concomitant dose in metropolitan Kuala Lumpur. Radiat. Prot. Dosimetry 2019, 185, 343–350. [Google Scholar] [CrossRef]
- Gaafar, I.; Hanfi, M.; El-Ahll, L.S.; Zeidan, I. Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert, Egypt. Appl. Radiat. Isot. 2021, 173, 109734. [Google Scholar] [CrossRef]
- Sivakumar, S.; Chandrasekaran, A.; Senthilkumar, G.; Suresh Gandhi, M.; Ravisankar, R. Determination of radioactivity levels and associated hazards of coastal sediment from south east coast of Tamil Nadu with statistical approach. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 601–614. [Google Scholar] [CrossRef]
- Pavlidou, S.; Koroneos, A.; Papastefanou, C. Natural radioactivity of granites used as building materials. J. Environ. Radioact. 2006, 89, 48–60. [Google Scholar] [CrossRef]
- Khandaker, U.M.; Asaduzzaman, K.; Bin Sulaiman, A.F.; Bradley, D.A.; Isinkaya, M.O. Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia. Mar. Pollut. Bull. 2018, 127, 654–663. [Google Scholar] [CrossRef]
- Xinwei, L. Natural radioactivity in some building materials of Xi’an, China. Radiat. Meas. 2005, 40, 94–97. [Google Scholar] [CrossRef]
- Abu El-Laban, S.A. Some geological and geochemical studies in Abu Ramad Area, South Eastern Desert, Egypt. Ph.D. Thesis, Cairo University, Giza, Egypt, 2002; p. 274. [Google Scholar]
- Arunima, S.; Lekshmi, R.; Jojo, P.J.; Mayeen Uddin, K. A study on leaching of primordial radionuclides 232Th and 40K to water bodies. Radiat. Phys. Chem. 2021, 188, 109658. [Google Scholar] [CrossRef]
- Monica, S.; Jojo, P.J.; Khandaker, M.U. Radionuclide concentrations in medicinal florae and committed effective dose through Ayurvedic medicines. Int. J. Radiat. Biol. 2020, 96, 1028–1037. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Christofides, G.; Koroneos, A.; Papadopoulou, L.; Papastefanou, C.; Stoulos, S. Natural radioactivity and radiation index of the major plutonic bodies in Greece. J. Environ. Radioact. 2013, 124, 227–238. [Google Scholar] [CrossRef]
- Pagel, M. The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites of the Vosges, France. Mineral. Mag. 1982, 46, 149–161. [Google Scholar] [CrossRef]
- Shahin, H.A.E.R.A. Zr-Y-Nb-REE mineralization associated with microgranite and basic dykes at EL Sela shear zone, South Eastern Desert, Egypt. J. Korean Phys. Soc. 2014, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Raslan, M.F.; El-Feky, M.G. Radioactivity and mineralogy of the altered granites of the Wadi Ghadir shear zone, South Eastern Desert, Egypt. Chinese J. Geochemistry 2012, 31, 30–40. [Google Scholar] [CrossRef]
- Clark, R.L.; Hickey, R.C.; Butler, J.J.; Ibanez, M.L.; Ballantyne, A.J. Thyroid cancer discovered incidentally during treatment of an unrelated head and neck cancer: Review of 16 cases. Ann. Surg. 1966, 163, 665–671. [Google Scholar] [CrossRef]
- El Mamoney, M.H.; Khater, A.E.M. Environmental characterization and radio-ecological impacts of non-nuclear industries on the Red Sea coast. J. Environ. Radioact. 2004, 73, 151–168. [Google Scholar] [CrossRef]
- Gaafar, I.; Cuney, M.; Gawad, A.A. Mineral Chemistry of Two-Mica Granite Rare Metals: Impact of Geophysics on the Distribution of Uranium Mineralization at. Open J. Geol. 2014, 4, 137–160. [Google Scholar] [CrossRef]
- Thabayneh, K.M. Measurement of natural radioactivity and radon exhalation rate in granite samples used in palestinian buildings. Arab. J. Sci. Eng. 2013, 38, 201–207. [Google Scholar] [CrossRef]
- AlZahrani, J.H.; Alharbi, W.R.; Abbady, A.G.E. Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from Northwestern Saudi Arabia. Aust. J. Basic Appl. 2011, 5, 683–690. [Google Scholar]
- Guillén, J.; Tejado, J.J.; Baeza, A.; Corbacho, J.A.; Muñoz, J.G. Assessment of radiological hazard of commercial granites from Extremadura (Spain). J. Environ. Radioact. 2014, 132, 81–88. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Raghu, Y.; Sivakumar, S.; Chandrasekaran, A.; Prem Anand, D.; Ravisankar, R. Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thiruvannamalai, Tamilnadu, India. J. Radiat. Res. Appl. Sci. 2014, 7, 116–122. [Google Scholar] [CrossRef]
- Abbasi, A. Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat. Prot. Dosimetry 2013, 155, 335–342. [Google Scholar] [CrossRef]
- Aykamiş, A.Ş.; Turhan, S.; Aysun Ugur, F.; Baykan, U.N.; Kiliç, A.M. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples usedas construction material in Turkey. Radiat. Prot. Dosimetry 2013, 157, 105–111. [Google Scholar] [CrossRef]
- Sharaf, J.M.; Hamideen, M.S. Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate. Appl. Radiat. Isot. 2013, 80, 61–66. [Google Scholar] [CrossRef]
- Amin, R.M. Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites. Environ. Earth Sci. 2012, 67, 771–775. [Google Scholar] [CrossRef]
- Sabbarese, C.; Ambrosino, F.; Onofrio, A.D.; Roca, V. Radiological characterization of natural building materials from the Campania region ( Southern Italy ). Constr. Build. Mater. 2020, 121087. [Google Scholar] [CrossRef]
- Ravisankar, R.; Chandramohan, J.; Chandrasekaran, A.; Prakash, J.P.; Vijayalakshmi, I.; Vijayagopal, P.; Venkatraman, B. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar. Pollut. Bull. 2015, 97, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Ravisankar, R.; Sivakumar, S.; Chandrasekaran, A.; Prince Prakash Jebakumar, J.; Vijayalakshmi, I.; Vijayagopal, P.; Venkatraman, B. Spatial distribution of gamma radioactivity levels and radiological hazard indices in the East Coastal sediments of Tamilnadu, India with statistical approach. Radiat. Phys. Chem. 2014, 103, 89–98. [Google Scholar] [CrossRef]
- USEPA EPA. Radiogenic Cancer Risk Models and Projections for the U.S. Population; EPA: Washington, DC, USA, 2011. Available online: https://www.epa.gov/radiation/epa-radiogenic-cancer-risk-models-and-projections-us-population (accessed on 25 January 2021).
- Qureshi, A.A.; Tariq, S.; Kamal, U.; Manzoor, S.; Calligaris, C.; Waheed, A. ScienceDirect Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J. Radiat. Res. Appl. Sci. 2014, 7, 438–447. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Definition | Formula |
---|---|---|---|
Radium equivalent activity | Raeq | Radium equivalent activity is a weighted sum of the 226Ra, 232Th, and 40K activities according to the hypothesis that 370 Bq kg−1 of 226Ra, 259 Bq/kg of 232Th, and 4810 Bq/kg of 40K attain the same dose rates of gamma rays. | Raeq (Bq kg−1) = ARa + 1.43 ATh + 0.077 AK |
External hazard index | Hex | The external hazard index comprises the radiological parameters applied to assess of the hazard of γ-radiation | |
Internal hazard index | Hin | The internal hazard index is applied to the internal exposure from radon and its decay products. | |
Radiation level index | Iγ | The other index used to estimate the level of γ-radiation hazard associated with the natural radionuclides in the samples was suggested by a group of experts due to the different combinations of specific natural activities in the sample. | |
Absorbed dose rate | D (nGy/h) | The absorbed dose rate is the radioactive factor that was applied to detect the effect of gamma radiation at 1 m from the radiation sources in the air due to the concentrations of 238U, 232Th, and 40K | Dair (nGy h−1) = 0.430 AU + 0.666 ATh + 0.042 AK |
Outdoor annual effective dose | AEDout | The annual effective dose is a radioactive factor utilized to detect the exposure level for radiation during a stationary duration (1 year). | AEDout (mSv/y) = Dair (nGy/h) × 0.2 × 8760 (h/y) × 0.7 (Sv/Gy) × 10−6 (mSv/nGy) |
Indoor annual effective dose | AEDin | AEDin (mSv/y) = Dair (nGy/h) × 0.8 × 8760 (h/y) × 0.7 (Sv/Gy) × 10−6 (mSv/nGy) | |
Annual gonadal dose equivalent | AGDE | The annual gonadal dose equivalent is the radioactive parameter used to estimate the doses absorbed by the gonads due to exposure to gamma radiation. | AGDE (mSv y−1) = 3.09 ARa + 4.18 ATh + 0.314 AK |
Excess lifetime cancer risk | ELCR | Excess lifetime cancer risk is the radioactive factor applied to detect fatal cancer resulting from gamma radiation exposure. | ELCR = AEDout × DL × RF |
Rock Type | eU (ppm) | eTh (ppm) | eK (%) | eTh/eU | eTh/eK | eU-eTh/3.5 |
---|---|---|---|---|---|---|
CG | 1.4 | 10.5 | 2.4 | 7.5 | 4.4 | −1.6 |
53.6 | 57.6 | 6.3 | 1.1 | 9.1 | 37.1 | |
6.52 | 23.7 | 3.8 | 3.63 | 6.2 | −0.3 | |
1.3 | 9.4 | 2.1 | 7.23 | 4.5 | −1.4 | |
9.9 | 57.4 | 5.6 | 5.8 | 10.3 | −6.5 | |
5.33 | 26.4 | 4 | 4.9 | 6.6 | −2.2 | |
2.1 | 5 | 1.5 | 2.2 | 3.3 | 0.7 | |
20 | 38.5 | 5.5 | 1.9 | 7.0 | 9 | |
6.5 | 19 | 3.3 | 2.9 | 5.8 | 1.1 | |
Ave. | 11.9 | 27.5 | 3.8 | 4.2 | 6.3 | 4 |
FG | 2.3 | 13.5 | 3 | 5.9 | 4.5 | −1.6 |
42.1 | 38.9 | 5.1 | 0.9 | 7.6 | 31 | |
7.6 | 24.6 | 4 | 3.2 | 6.1 | 0.6 | |
1.2 | 12 | 2.4 | 10 | 5 | −2.2 | |
9.1 | 49 | 5.2 | 5.4 | 9.4 | −4.9 | |
6.56 | 36 | 4.5 | 5.5 | 7.9 | −3.7 | |
6.49 | 7.8 | 2.1 | 1.2 | 3.7 | 4.3 | |
40 | 50.2 | 5.3 | 1.3 | 9.5 | 25.7 | |
14.5 | 28.7 | 3.9 | 1.9 | 7.4 | 6.3 | |
Ave. | 14.4 | 29 | 4 | 3.9 | 6.8 | 6.2 |
B | 2.8 | 13.4 | 3 | 4.8 | 4.5 | −1 |
39.1 | 53.3 | 5.8 | 1.4 | 9.2 | 23.9 | |
19 | 25 | 3.8 | 1.3 | 6.6 | 11.9 | |
11.2 | 23.5 | 3.9 | 2.1 | 6 | 4.5 | |
30 | 47.1 | 5.2 | 1.6 | 9.1 | 16.5 | |
3.9 | 15 | 3 | 3.9 | 5 | −0.4 | |
49.5 | 57.4 | 6.3 | 1.2 | 9.1 | 33.1 | |
26 | 30.5 | 2.9 | 1.2 | 10.5 | 17.3 | |
13.2 | 28.3 | 4.4 | 2.1 | 6.4 | 5.1 | |
Ave. | 21.6 | 32.6 | 4.3 | 2.2 | 7.4 | 12.3 |
L | 2.2 | 1.2 | 0.1 | 0.6 | 24 | 1.9 |
760 | 34.9 | 4.5 | 0.1 | 7.8 | 750 | |
40.3 | 15.2 | 2.6 | 0.4 | 5.8 | 35.9 | |
6 | 4.1 | 1.7 | 0.7 | 2.4 | 4.8 | |
68.2 | 44.7 | 4.3 | 0.7 | 10.4 | 55.4 | |
420.5 | 35.5 | 4.7 | 0.1 | 7.6 | 410.4 | |
26 | 16.6 | 2.8 | 0.6 | 5.9 | 21.3 | |
4.2 | 3.9 | 1.5 | 0.9 | 2.6 | 3.1 | |
20.3 | 16.8 | 2.6 | 0.8 | 6.5 | 15.5 | |
Ave. | 149.7 | 19.2 | 2.8 | 0.5 | 8.1 | 144.3 |
Earth’s crust | 2.9 | 10.8 | 2.7 | |||
Safety for building | 4 | 12.3 | 1.6 |
Radionuclides | N * | Mean | SD ** | Min | Max | Skewness | Kurtosis | CV, % |
---|---|---|---|---|---|---|---|---|
Bq kg−1 | Bq kg−1 | Bq kg−1 | Bq kg−1 | |||||
Coarse-grained (CG) | ||||||||
238U | 9 | 146 | 206 | 16 | 662 | 2.4 | 6.1 | 141 |
232Th | 9 | 111 | 80 | 20 | 233 | 0.7 | −0.9 | 72 |
40K | 9 | 1199 | 528 | 469 | 1971 | 0.1 | −1.4 | 44 |
Fine-grained (FG) | ||||||||
238U | 9 | 178 | 192 | 14 | 519 | 1.4 | 0.3 | 108 |
232Th | 9 | 117 | 64 | 31 | 203 | 0.0 | −1.5 | 55 |
40K | 9 | 1234 | 379 | 657 | 1658 | −0.4 | −1.4 | 31 |
Bostonite (B) | ||||||||
238U | 9 | 267 | 196 | 34 | 611 | 0.5 | −0.6 | 74 |
232Th | 9 | 132 | 65 | 54 | 233 | 0.5 | −1.3 | 50 |
40K | 9 | 1332 | 396 | 907 | 1971 | 0.5 | −1.2 | 30 |
Lamprophyre (L) | ||||||||
238U | 9 | 1849 | 3267 | 27 | 9386 | 2.0 | 3.4 | 177 |
232Th | 9 | 78 | 63 | 5 | 181 | 0.5 | −1.2 | 82 |
40K | 9 | 862 | 482 | 31 | 1471 | −0.2 | −0.6 | 56 |
GR + L | ||||||||
238U | 36 | 610 | 1730 | 14 | 9386 | 4.5 | 20.8 | 284 |
232Th | 36 | 110 | 69 | 5 | 233 | 0.4 | −1.0 | 63 |
40K | 36 | 1157 | 467 | 31 | 1971 | −0.2 | −0.5 | 40 |
Radionuclide | Kolmogorov-Smirnov * | ||
---|---|---|---|
DF | Statistic | p-Value | |
238U | 36 | 0.40 | 7.7 × 10–6 |
232Th | 36 | 0.12 | 0.70 |
40K | 36 | 0.10 | 0.96 |
Country | 238U | 232Th | 40K | References |
---|---|---|---|---|
Egypt | 610.3 ± 1730.9 | 109.9 ± 68.9 | 1157.2 ± 466.8 | Present study |
Palestine | 71 | 82 | 780 | [25] |
Saudi Arabia | 28.82 | 34.83 | 665.08 | [26] |
Spain | 84 | 42 | 1138 | [27] |
India | 25.88 | 42.82 | 560.6 | [28] |
Iran | 77.4 ± 21 | 44.5 ± 12 | 1017.2 ± 154 | [29] |
Turkey | 80 ± 11 | 101 ± 17 | 974 ± 102 | [30] |
Nigeria | 63.29 ± 13.87 | 226.67 ± 28.05 | 832.59 ± 241.53 | [2] |
Egypt | 2989 ± 2757 | 460 ± 311 | 1073 ± 560 | [10] |
Jordan | 41.52 ± 3.23 | 58.42 ± 0.44 | 897 ± 43 | [31] |
Greek | 74 ± 51 | 85 ± 54 | 881 ± 331 | [18] |
Egypt | 137 | 82 | 1082 | [32] |
Granites | (Statistical parameter) | Raeq | Hin | Hex | Iγ | Dair | AEDout | AEDin | AGDE | ELCR |
---|---|---|---|---|---|---|---|---|---|---|
×10−3 | ||||||||||
CG | Range | 91–1148 | 0.3–4.9 | 0.25–3.1 | 0.3–4.0 | 43.5–528 | 0.05–0.64 | 0.21–2.5 | 0.31–3.6 | 0.18–2.27 |
Mean ± SD | 398 ± 337 | 1.5 ± 1.4 | 1.1 ± 0.9 | 1.4 ± 1.2 | 184 ± 154 | 0.23 ± 0.18 | 0.9 ± 0.7 | 1.29 ± 1.0 | 0.8 ± 0.6 | |
FG | Range | 142–913 | 0.4–3.8 | 0.3–2.4 | 0.5–3.2 | 67–419 | 0.08–0.5 | 0.32–2.05 | 0.48–2.89 | 0.28–1.8 |
Mean ± SD | 441 ± 285 | 1.67 ± 1.2 | 1.2 ± 0.7 | 1.6 ± 0.9 | 204 ± 131 | 0.25 ± 0.16 | 1.0 ± 0.64 | 1.4 ± 0.8 | 0.87 ± 0.56 | |
B | Range | 184–1096 | 0.6–4.6 | 0.5–2.9 | 0.7–3.8 | 87–504 | 0.1–0.6 | 0.4–2.5 | 0.6–3.5 | 0.37–2.1 |
Mean ± SD | 559 ± 315 | 2.2 ± 1.4 | 1.5 ± 0.8 | 2.0 ± 1.0 | 258 ± 143 | 0.3 ± 0.17 | 1.26 ± 0.7 | 1.8 ± 0.9 | 1.1 ± 0.62 | |
L | Range | 36–9697 | 0.17–51.5 | 0.09–26 | 0.12–32.4 | 16.7–4479 | 0.02–5.4 | 0.08–22 | 0.11–30 | 0.07–1.9 |
Mean ± SD | 2027 ± 3349 | 10.5 ± 17.8 | 5.5 ± 9.0 | 6.8 ± 11.1 | 936 ± 1546 | 1.1 ± 1.8 | 4.5 ± 7.5 | 6.3 ± 10.3 | 4 ± 6 | |
GR | Range | 36–9697 | 0.17–51.5 | 0.09–26 | 0.12–32.4 | 16.7–4479 | 0.02–5.4 | 0.08–22 | 0.11–30 | 0.07–19 |
Mean ± SD | 856 ± 1762 | 3.9 ± 9.4 | 2.3 ± 4.7 | 2.9 ± 5.8 | 396 ± 814 | 0.48 ± 0.99 | 1.9 ± 3.9 | 2.7 ± 15.4 | 1.7 ± 3.4 |
238U | 232Th | 40K | Raeq | Hin | Hex | Iγ | Dair | AEDout | AEDin | AGDE | ELCR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
238U | 1 | |||||||||||
232Th | 0.19 | 1 | ||||||||||
40K | 0.21 | 0.95 | 1 | |||||||||
Raeq | 1.00 | 0.26 | 0.28 | 1 | ||||||||
Hin | 1.00 | 0.23 | 0.24 | 0.99 | 1 | |||||||
Hex | 1.00 | 0.26 | 0.28 | 1 | 0.99 | 1 | ||||||
Iγ | 1.00 | 0.27 | 0.29 | 0.99 | 0.99 | 0.99 | 1 | |||||
Dair | 1.00 | 0.26 | 0.28 | 1 | 0.99 | 0.99 | 0.99 | 1 | ||||
AEDout | 1.00 | 0.26 | 0.28 | 1 | 0.99 | 0.99 | 0.99 | 1 | 1 | |||
AED | 1.00 | 0.26 | 0.28 | 1 | 0.99 | 0.99 | 0.99 | 1 | 1 | 1 | ||
AGDE | 1.00 | 0.27 | 0.28 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 1 | |
ELCR | 1.00 | 0.26 | 0.28 | 1 | 0.99 | 0.99 | 0.99 | 1 | 1 | 1 | 0.99 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adel, E.-A.H.; El-Feky, M.G.; Taha, S.H.; El Minyawi, S.M.; Sallam, H.A.; Ebyan, O.A.; Yousef, E.-S.; Hanfi, M.Y. Natural Radionuclide Concentrations by γ-Ray Spectrometry in Granitic Rocks of the Sol Hamed Area, Southeastern Desert of Egypt, and Their Radiological Implications. Minerals 2022, 12, 294. https://doi.org/10.3390/min12030294
Adel E-AH, El-Feky MG, Taha SH, El Minyawi SM, Sallam HA, Ebyan OA, Yousef E-S, Hanfi MY. Natural Radionuclide Concentrations by γ-Ray Spectrometry in Granitic Rocks of the Sol Hamed Area, Southeastern Desert of Egypt, and Their Radiological Implications. Minerals. 2022; 12(3):294. https://doi.org/10.3390/min12030294
Chicago/Turabian StyleAdel, El-Afandy H., Mohamed G. El-Feky, Samia H. Taha, Salwa M. El Minyawi, Hanaa A. Sallam, Osama A. Ebyan, El-Sayed Yousef, and Mohamed Y. Hanfi. 2022. "Natural Radionuclide Concentrations by γ-Ray Spectrometry in Granitic Rocks of the Sol Hamed Area, Southeastern Desert of Egypt, and Their Radiological Implications" Minerals 12, no. 3: 294. https://doi.org/10.3390/min12030294
APA StyleAdel, E.-A. H., El-Feky, M. G., Taha, S. H., El Minyawi, S. M., Sallam, H. A., Ebyan, O. A., Yousef, E.-S., & Hanfi, M. Y. (2022). Natural Radionuclide Concentrations by γ-Ray Spectrometry in Granitic Rocks of the Sol Hamed Area, Southeastern Desert of Egypt, and Their Radiological Implications. Minerals, 12(3), 294. https://doi.org/10.3390/min12030294