Removal of Aqueous Cu2+ by Amorphous Calcium Carbonate: Efficiency and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ACC
2.2. Cu2+ Removal by ACC
2.2.1. Effect of Initial pH
2.2.2. Effect of Contact Time
2.2.3. Effect of Initial Cu2+ Concentration
2.2.4. Effect of Material Dosage
2.2.5. Comparison of Cu2+ Removal Ability by Different Calcium Carbonate
2.3. Characterization
2.4. Data Processing
3. Results and Discussion
3.1. Characterization of CaCO3
3.2. Removal of Cu2+ by Amorphous Calcium Carbonate
3.2.1. Effect of Initial pH
3.2.2. Effect of Contact Time
3.2.3. Effect of Initial Cu2+ Concentration
3.2.4. Effect of Material Dosage
3.3. Comparison of Cu2+ Removal Ability by Different Calcium Carbonate
3.3.1. Cu2+ Removal Capacity of Different Calcium Carbonate
3.3.2. XRD Characterization of Products after Cu2+ Removal
3.3.3. SEM Observation of Products after Cu2+ Removal
4. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Zhou, Q.; Ren, B.; Luo, J.; Yuan, J.; Ding, X.; Bian, H.; Yao, X. Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970 to 2017. Rev. Environ. Contam. Toxicol. 2020, 251, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Saluja, R.; Joshi, V.; Garg, J.K. Heavy metal pollution in surface water of the Upper Ganga River, India: Human health risk assessment. Environ. Monit. Assess. 2020, 192, 742. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah -Al- Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Ind. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Roy, A.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health B Crit. Rev. 2001, 4, 341–394. [Google Scholar] [CrossRef] [PubMed]
- Moffett, J.W.; Zika, R.G. Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico. Geochim. Cosmochim. Acta 1988, 52, 1849–1857. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Ma, J.; Pang, S.; Zhang, T. A review on advanced oxidation processes homogeneously initiated by copper(II). Chem. Eng. J. 2022, 427, 131721. [Google Scholar] [CrossRef]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Rowell, D.L. The reactions of copper and zinc with calcium carbonate surfaces. Eur. J. Soil Sci. 1989, 40, 39–48. [Google Scholar] [CrossRef]
- Aziz, H.A.; Othman, N.; Yusuff, M.S.; Basri, D.R.H.; Ashaari, F.A.H.; Adlan, M.N.; Othman, F.; Johari, M.; Perwira, M. Removal of copper from water using limestone filtration technique: Determination of mechanism of removal. Environ. Int. 2001, 26, 395–399. [Google Scholar] [CrossRef]
- Aziz, H.A.; Adlan, M.N.; Ariffin, K.S. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresour. Technol. 2008, 99, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Sdiri, A.; Higashi, T.; Jamoussi, F.; Bouaziz, S. Effects of impurities on the removal of heavy metals by natural limestones in aqueous systems. J. Environ. Manag. 2012, 93, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, X.; Huang, P.; Zhang, Q.; Yuan, W. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate. J. Environ. Manag. 2017, 203, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wen, T.; Zhao, Y.; Hu, H.; Xiong, B.; Zhang, Q. Antibacterial activity of the sediment of copper removal from wastewater by using mechanically activated calcium carbonate. J. Clean. Prod. 2018, 203, 1019–1027. [Google Scholar] [CrossRef]
- Tang, H.; Xian, H.; He, H.; Wei, J.; Liu, H.; Zhu, J.; Zhu, R. Kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions. Sci. Total Environ. 2019, 668, 602–616. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Zhao, Y.; Zhang, T.; Xiong, B.; Hu, H.; Zhang, Q.; Song, S. Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate. Chemosphere 2019, 230, 127–135. [Google Scholar] [CrossRef]
- Nassrallah-Aboukaïs, N.; Boughriet, A.; Fischer, J.C.; Wartel, M.; Langelin, H.R.; Aboukaïs, A. Electron paramagnetic resonance (EPR) study of Cu2+ and Mn2+ ions interacting as probes with calcium carbonate during the transformation of vaterite into cubic calcite. J. Chem. Soc. Faraday Trans. 1996, 92, 3211–3216. [Google Scholar] [CrossRef]
- Nassrallah-Aboukais, N.; Boughriet, A.; Laureyns, J.; Aboukais, A.; Fischer, J.C.; Langelin, H.R.; Wartel, M. Transformation of vaterite into cubic calcite in the presence of copper(II) species. Chem. Mater. 1998, 10, 238–243. [Google Scholar] [CrossRef]
- Nassrallah-Aboukaïs, N.; Boughriet, A.; Laureyns, J.; Gengembre, L.; Aboukaïs, A. Stabilization of the vaterite structure in the presence of copper(II): Thermodynamic and spectroscopic studies. Chem. Mater. 1999, 11, 44–51. [Google Scholar] [CrossRef]
- Schosseler, P.M.; Wehrli, B.; Schweiger, A. Uptake of Cu2+ by the calcium carbonates vaterite and calcite as studied by continuous wave (cw) and pulse electron paramagnetic resonance. Geochim. Cosmochim. Acta 1999, 63, 1955–1967. [Google Scholar] [CrossRef]
- Cartwright, J.H.E.; Checa, A.G.; Gale, J.D.; Gebauer, D.; Sainz-Diaz, C.I. Calcium carbonate polyamorphism and its role in biomineralization: How many amorphous calcium carbonates are there? Angew. Chem. Int. Ed. 2012, 51, 11960–11970. [Google Scholar] [CrossRef] [PubMed]
- Du, H.C.; Amstad, E. Water: How does it influence the CaCO3 formation? Angew. Chem. Int. Ed. 2020, 59, 1798–1816. [Google Scholar] [CrossRef]
- Olsson, J.; Stipp, S.L.S.; Makovicky, E.; Gislason, S.R. Metal scavenging by calcium carbonate at the Eyjafjallajokull volcano: A carbon capture and storage analogue. Chem. Geol. 2014, 384, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.; Gray, W.R.; Rae, J.W.B.; Greenop, R.; Webb, P.B.; Penkman, K.; Kröger, R.; Allison, N. Trace and major element incorporation into amorphous calcium carbonate (ACC) precipitated from seawater. Geochim. Cosmochim. Acta 2020, 290, 293–311. [Google Scholar] [CrossRef]
- Littlewood, J.L.; Shaw, S.; Peacock, C.L.; Bots, P.; Trivedi, D.; Burke, I.T. Mechanism of enhanced strontium uptake into calcite via an amorphous calcium carbonate crystallization pathway. Cryst. Growth Des. 2017, 17, 1214–1223. [Google Scholar] [CrossRef]
- Saito, A.; Kagi, H.; Marugata, S.; Komatsu, K.; Enomoto, D.; Maruyama, K.; Kawano, J. Incorporation of incompatible strontium and barium ions into calcite (CaCO3) through amorphous calcium carbonate. Minerals 2020, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.-B.; Zhao, G.-X.; Wang, X.-K.; Yu, S.-H. Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. J. Phys. Chem. C 2010, 114, 12948–12954. [Google Scholar] [CrossRef]
- Kellermeier, M.; Melero-Garcia, E.; Glaab, F.; Klein, R.; Drechsler, M.; Rachel, R.; Manuel Garcia-Ruiz, J.; Kunz, W. Stabilization of amorphous calcium carbonate in inorganic silica-rich environments. J. Am. Chem. Soc. 2010, 132, 17859–17866. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Martens, W.; Kloprogge, J.T.; Williams, P.A. Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite: Implications for the study of copper, brass and bronze objects of archaeological significance. J. Raman Spectrosc. 2002, 33, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, J.B.; Lewin, S.Z. Conditions governing formation of atacamite and paratacamite. Am. Mineral. 1971, 56, 179–192. [Google Scholar]
- Pollard, A.M.; Thomas, R.G.; Williams, P.A. Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite. Mineral. Mag 1989, 53, 557–563. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, H.; Zhang, J.; Ma, Y.; Tian, H.; Wu, L.; Cui, Q.; Ma, Y. Pressure-induced phase transformation of botallackite α-Cu2(OH)3Cl with a two-dimensional layered structure synthesized via a hydrothermal strategy. J. Phys. Chem. C 2020, 124, 9581–9590. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Chen, F. Nano precipitates formed during the dissolution of calcite incorporated with Cu and Mn. Minerals 2018, 8, 484. [Google Scholar] [CrossRef] [Green Version]
- Belardi, G.; Piga, L. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products. Thermochim. Acta 2013, 573, 220–228. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Wu, S.; Zhang, H.; Chen, F. Removal of Aqueous Cu2+ by Amorphous Calcium Carbonate: Efficiency and Mechanism. Minerals 2022, 12, 362. https://doi.org/10.3390/min12030362
Liao Z, Wu S, Zhang H, Chen F. Removal of Aqueous Cu2+ by Amorphous Calcium Carbonate: Efficiency and Mechanism. Minerals. 2022; 12(3):362. https://doi.org/10.3390/min12030362
Chicago/Turabian StyleLiao, Zisheng, Shijun Wu, Hanxiao Zhang, and Fanrong Chen. 2022. "Removal of Aqueous Cu2+ by Amorphous Calcium Carbonate: Efficiency and Mechanism" Minerals 12, no. 3: 362. https://doi.org/10.3390/min12030362
APA StyleLiao, Z., Wu, S., Zhang, H., & Chen, F. (2022). Removal of Aqueous Cu2+ by Amorphous Calcium Carbonate: Efficiency and Mechanism. Minerals, 12(3), 362. https://doi.org/10.3390/min12030362