Petrogenesis and Tectonic Setting of the Madeng Dacite, SW Sanjiang Indosinian Orogen: Evidence from Zircon U-Pb-Hf Isotopes, and Whole-Rock Geochemistry and Sr-Nd Isotopes
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Techniques
3.1. Sampling and Petrography
3.2. Analytical Methods
3.2.1. LA-ICP-MS Zircon U-Pb Dating
3.2.2. Whole-Rock Geochemistry and Sr-Nd Isotopes
3.2.3. LA-ICP-MS Zircon Hf Isotope Analysis
4. Results
4.1. Zircon U-Pb Age
4.2. Whole-Rock Major and Trace Elemental Geochemistry
4.3. Zircon Lu-Hf Isotopic Compositions
4.4. Whole-Rock Sr-Nd Isotope Compositions
5. Discussion
5.1. Timing of Magmatism
5.2. Petrogenesis and Magma Source
5.2.1. Genetic Type
5.2.2. Magma Source
5.2.3. Magmatic Evolution
5.3. Tectonic Implications
6. Conclusions
- LA-ICP-MS zircon U-Pb dating on the Madeng dacite yielded 241.7 and 243.4 Ma. Regional magmatic age correlation suggests that this Middle Triassic volcanism was likely formed in a subduction setting, indicating that the Paleo-Tethyan Longmucuo–Shuanghu Ocean subduction may have persisted in the Triassic.
- The Madeng dacite is characterized by being high-Al, alkali-rich, and low-Mg. The rocks are peraluminous S-type, and display clear LILE enrichments and HFSE depletions with markedly negative Eu anomalies. This suggests the fractionation of Ti-bearing minerals (e.g., rutile and ilmenite) and plagioclase.
- The initial 87Sr/86Sr ratios (0.705698–0.710277) with negative εNd(t) values (−11.28 to −10.64) and εHf(t) values (−13.99 to −8.6), together with the average Nb/Ta (12.24) and Th/U (4.65), indicate that Madeng dacite was formed from partial melting of the ancient crustal (meta-sedimentary rocks).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, Z.Q.; Wang, L.Q.; Khin, Z.; Mo, X.X.; Wang, M.J.; Li, D.M.; Pan, G.T. Post collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China. Ore Geol. Rev. 2003, 22, 177–179. [Google Scholar] [CrossRef]
- Mo, X.X.; Pan, G.T. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events. Earth Sci. Fron. 2006, 13, 43–51, (In Chinese with English Abstract). [Google Scholar]
- Tapponnier, P.; Lacassin, R.; Leloup, P.H.; Schärer, U.; Zhong, D.L.; Wu, H.W.; Liu, X.H.; Ji, S.C.; Zhang, L.S.; Zhong, H.Y. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature 1990, 343, 431–437. [Google Scholar] [CrossRef]
- Mo, X.X.; Deng, J.F.; Dong, F.L.; Yu, X.H.; Wang, Y.; Zhou, S.; Yang, W.G. Volcanic petrotectonic assemblages in Sanjiang Orogenic belt, SW China and implication for tectonics. Geol. J. China Univ. 2001, 7, 121–138, (In Chinese with English Abstract). [Google Scholar]
- Hou, Z.Q.; Zaw, K.; Pan, G.T.; Xu, Q.; Hu, Y.Z.; Li, X.Z. Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types. Ore Geol. Rev. 2007, 31, 48–87. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Yang, J.S.; Li, W.C.; Zeng, L.S.; Xu, C.P. Tectonic background of important metallogenic belts in Southern and Southeastern Tibetan plateau and ore prospecting. Acta Geol. Sin. 2012, 86, 1857–1868, (In Chinese with English Abstract). [Google Scholar]
- Yang, T.N.; Xue, C.D.; Xin, D.; Liang, M.J.; Liao, C. Paleo-Tethyan tectonic evolution of the Sanjiang Orogenic Belt, SW China: Temporal and spatial distribution pattern of arc-like igneous rocks. Acta Petrol. Sin. 2019, 35, 1324–1340, (In Chinese with English Abstract). [Google Scholar]
- Zhu, J.J.; Hu, R.Z.; Bi, X.W.; Zhong, H.; Chen, H. Zircon U-Pb ages, Hf-O isotopes, and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constrains on the petrogenesis and tectonics evolution of the Paleo-Tethys Ocean. Lithos 2011, 126, 248–264. [Google Scholar] [CrossRef]
- Wang, B.D.; Wang, L.Q.; Qiangba, Z.X.; Zeng, Q.G.; Zhang, W.P.; Wang, D.B.; Cheng, W.H. Early Triassic collision of northern Lancangjiang suture: Geochronological, geochemical and Hf isotope evidences from the granitic genesis in Leiwuqi area, East Tibet. Acta Petrol. Sin. 2011, 27, 2752–2762, (In Chinese with English Abstract). [Google Scholar]
- Wang, B.D.; Wang, L.Q.; Chen, J.L.; Yin, F.G.; Wang, D.B.; Zhang, W.P.; Chen, L.K.; Liu, H. Triassic three-stage collision in the Paleo-Tethys: Constrains from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China. Gondwana Res. 2014, 26, 475–491. [Google Scholar] [CrossRef]
- Zi, J.W.; Cawood, P.A.; Fan, W.M.; Tohver, E.; Wang, Y.J.; McCuaig, T.C. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos 2012, 140–141, 166–182. [Google Scholar] [CrossRef]
- Yang, T.N.; Ding, Y.; Zhang, H.R.; Fan, J.W.; Liang, M.J.; Wang, X.H. Two-phase subduction and subsequent collision define the Paleo-Tethyan tectonics of the southeastern Tibetan Plateau: Evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, southwest China. Geol. Soc. Am. Bull. 2014, 126, 1654–1682. [Google Scholar] [CrossRef]
- Liang, M.J.; Yang, T.N.; Shi, P.L.; Xue, C.D.; Xiang, K.; Liao, C. U-Pb geochronology, Hf isotopes if zircons from the volcanic rocks along the eastern margin of Lanping basin, Sanjiang orogenic belt. Acta Petrol. Sin. 2015, 31, 3247–3268, (In Chinese with English Abstract). [Google Scholar]
- Tang, J.; Xue, C.D.; Yang, T.N.; Liang, M.J.; Xiang, K.; Liao, C.; Jiang, L.L.; Xin, D. Late Permian to Early Triassic tectonostratigraphy of Madeng area, northwestern Yunnan, S.W. China: Volcanics zircon U-Pb dating. Acta Petrol. Sin. 2016, 32, 2535–2554, (In Chinese with English Abstract). [Google Scholar]
- Xin, D.; Yang, T.N.; Liang, M.J.; Xue, C.D.; Han, X.; Liao, C.; Tang, J. Syn-subduction crustal shortening produced a magmatic flare-up in middle Sanjiang orogenic belt, southeastern Tibet Plateau: Evidence from geochronology, geochemistry, and structural geology. Gondwana Res. 2018, 62, 93–111. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.J.; Han, S.Y.; Zhang, H.Y.; Luo, C.; Wang, H.; Chen, S.R. U-Pb dating of zircon from the Linong granodiorite, Re-Os dating of molybdenite from the ore body and their geological significances in Yangla copper deposit, Yunnan. Acta Geol. Sin. 2011, 27, 2567–2576, (In Chinese with English Abstract). [Google Scholar]
- Jian, P.; Liu, D.Y.; Sun, X.M. SHRIMP dating of Baimaxueshan and Ludian granitoid batholiths, northwestern Yunnan province, and its geological implication. Acta Geosci. Sin. 2003, 24, 337–342, (In Chinese with English Abstract). [Google Scholar]
- Xu, W.; Liu, F.L.; Ji, L.; Wang, F.; Xu, W.T.; Wang, D. Middle Permian-Late Triassic magmatism in the Deqen-Weixi area of the Sanjiang Orogenic Belt: Implication for Paleo-Tethyan evolution. Acta Geosci. Sin. 2021, 37, 462–480, (In Chinese with English Abstract). [Google Scholar]
- He, L.Q.; Song, Y.C.; Chen, K.X.; Hou, Z.Q.; Yu, F.M.; Yang, Z.S.; Wei, J.Q.; Li, Z.; Liu, Y.C. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geol. Rev. 2009, 36, 106–132. [Google Scholar] [CrossRef]
- Deng, J.; Hou, Z.Q.; Mo, X.X.; Yang, L.Q.; Wang, Q.F.; Wang, C.M. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Miner. Depos. 2010, 29, 37–42, (In Chinese with English Abstract). [Google Scholar]
- David, L.L.; Song, Y.C. Sediment-Hosted Zinc-Lead and Copper Deposits in China. SEG Spec. Publ. 2020, 22, 1–85. [Google Scholar]
- Song, Y.C.; Hou, Z.Q.; Xue, C.D.; Huang, S.Q. New mapping of the world-class Jinding Zn-Pb deposits, Lanping basin, Southwest China: Genesis of ore host rocks and records of hydrocarbon-rock interaction. Econ. Geol. 2020, 115, 981–1002. [Google Scholar] [CrossRef]
- Wei, J.Q.; Wang, X.D.; Zhuang, X.; Liu, Y.H. Zircon SHRIMP U-Pb dating of diorite among Jicha serpentine and Eza gabbro from Lancangjiang belt, Yunnan Province and its geological significance. Acta Geosci. Sin. 2008, 24, 1297–1301, (In Chinese with English Abstract). [Google Scholar]
- Zong, K.Q.; Klemd, R.; Yuan, Y.; He, Z.Y.; Guo, J.L.; Shi, X.L.; Liu, Y.S.; Hu, Z.C.; Zhang, Z.M. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, N.; Schaltegger, U.; et al. PleŠovice zircon: New natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Anderson, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, pp. 25–32. [Google Scholar]
- Thirlwall, M.F. Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem. Geol. 1991, 94, 85–104. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamaoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H.; et al. JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Li, C.F.; Li, X.H.; Li, Q.L.; Guo, J.H.; Yang, Y.H. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Anal. Chim. Acta 2012, 727, 54–60. [Google Scholar] [CrossRef]
- Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; Jong, J.D.; Williams, G.A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.S.; et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 2006, 7, 139–149. [Google Scholar] [CrossRef]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.G.; Zhang, W.; Tong, X.R.; Lin, L.; Zong, K.Q.; Li, M.; Chen, H.H.; et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z. Estimation of isotopic reference values for Pure Materials and geological reference materials. At. Spectrosc. 2020, 41, 93–102. [Google Scholar] [CrossRef]
- Soderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Van Achterbergh, E.O.; Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.W.; Jackson, S.E.; Pearson, N.J.O.; Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorp. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 1–51. [Google Scholar] [CrossRef]
- Willson, M.F.; Irvine, A.K.; Walsh, N.G. Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica 1989, 21, 133–147. [Google Scholar] [CrossRef]
- Winchester, J.; Floyd, P. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Jian, P.; Liu, D.Y.; Kröner, A.; Zhang, Q.; Wang, Y.Z.; Sun, X.M.; Zhang, W. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos 2009, 113, 767–784. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- DePaolo, D.J.; Wasserburg, G.J. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett. 1976, 3, 743–746. [Google Scholar] [CrossRef]
- Roger, F.; Arnaud, N.; Gilder, S.; Tapponnier, P.; Jolivet, M.; Brunel, M.; Malavieille, J.; Xu, Z.Q.; Yang, J.S. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics 2003, 22, TC001466. [Google Scholar] [CrossRef]
- Yang, T.N.; Hou, Z.Q.; Wang, Y.; Zhang, H.R.; Wang, Z.L. Late Paleozoic to Early Mesozoic tectonic evolution of northeast Tibet: Evidence from the Triassic composite western Jinsha-Garzê-Litang suture. Tectonics 2012, 31, TC4004. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminums saturation in I and S type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.F.; Xu, Q.H.; Liu, Y.H. The genesis and significance of the Paleocene granitoids in the Riazhai Pb polymetallic deposit, southern Tibet. Acta Geol. Sin. 2019, 35, 3529–3548, (In Chinese with English Abstract). [Google Scholar]
- Atherton, M.P.; Petford, N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 1993, 362, 144–146. [Google Scholar] [CrossRef]
- Bolhar, R.; Weaver, S.D.; Whitehouse, M.J.; Palin, J.M.; Woodhead, J.D.; Cole, J.W. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet. Sci. Lett. 2008, 268, 312–324. [Google Scholar] [CrossRef]
- Sylvester, P.J. Postcollisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Jung, S.; Pfander, E.M.; Kamo, S.; Su, S. Source composition and melting temperatures of orogenic granitoids: Constrains from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur. J. Mineral. 2012, 19, 859–870. [Google Scholar] [CrossRef]
- Althere, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Janoušek, V.; Finger, F.; Roberts, M.; Frýda, J.; Pin, C.; Dolejš, D. Deciphering the petrogenesis of deeply buried granites: Whole-rock geochemical constrains on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Geol. Soc. Am. Spec. Pap. 2004, 389, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environment. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Cai, K.D.; Sun, M.; Yuan, C.; Zhao, G.C.; Xiao, W.J.; Long, X.P.; Wu, F.Y. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos 2011, 127, 261–281. [Google Scholar] [CrossRef]
- Deng, X.G.; Ding, L.; Liu, X.H.; Yin, A.; Kapp, P.A.; Murphy, M.A.; Manning, C.E. Geochemical characteristics of the blueschists and its tectonic significance in the central Qiangtang area, Tibet. Acta Geol. Sin. 2002, 18, 517–525, (In Chinese with English Abstract). [Google Scholar]
- Deng, X.G.; Ding, L.; Liu, X.H.; Zhou, Y.; Yin, A.; Kapp, P.A.; Murphy, M.A.; Manning, C.E. The glaucophane schist and its 40Ar/39Ar geochronology in the Gangmarl area, central Qiangtang, Qinghai-Tibet Plateau. Chin. Sci. Bull. 2000, 45, 2322–2326, (In Chinese with English Abstract). [Google Scholar]
- Yu, M.; Wang, Y.X.; Wang, X.W.; Ren, W.X.; You, Z.H.; Gao, Z.J. The origin and geochemical and characteristics of island arc volcanic rocks. Gansu Geol. 2017, 26, 17–24, (In Chinese with English Abstract). [Google Scholar]
- Floyd, P.A.; Winchester, J.A. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. 1975, 27, 211–218. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Martin, H. The mechanisms of petrogenesis of the Archean continental crust-composition with modem processes. Lithos 1993, 30, 373–388. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Coordinates | Lithology |
---|---|---|
MD20-1-1 | 26°30′4.4″ N, 99°42′26.5″ E | dacite |
MD20-1-2 | 26°30′2.5″ N, 99°42′25.5″ E | dacite |
MD20-5-2 | 26°29′25.0″ N, 99°42′12.4″ E | dacite |
MD20-8-1 | 26°28′22.5″ N, 99°42′21.7″ E | dacite |
MD19-7-1 | 26°28′20.1″ N, 99°42′19.8″ E | dacite |
MD20-7-1 | 26°27′32.1″ N, 99°41′40.8″ E | dacite |
MD20-7-2 | 26°27′34.4″ N, 99°41′42.4″ E | dacite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Zhuang, L.-L.; Yang, Y.-Q.; Tian, L.-D.; Wu, W.; Liu, J.-H. Petrogenesis and Tectonic Setting of the Madeng Dacite, SW Sanjiang Indosinian Orogen: Evidence from Zircon U-Pb-Hf Isotopes, and Whole-Rock Geochemistry and Sr-Nd Isotopes. Minerals 2022, 12, 388. https://doi.org/10.3390/min12030388
Huang G, Zhuang L-L, Yang Y-Q, Tian L-D, Wu W, Liu J-H. Petrogenesis and Tectonic Setting of the Madeng Dacite, SW Sanjiang Indosinian Orogen: Evidence from Zircon U-Pb-Hf Isotopes, and Whole-Rock Geochemistry and Sr-Nd Isotopes. Minerals. 2022; 12(3):388. https://doi.org/10.3390/min12030388
Chicago/Turabian StyleHuang, Gang, Liang-Liang Zhuang, Ya-Qi Yang, Li-Dan Tian, Wei Wu, and Jin-Hong Liu. 2022. "Petrogenesis and Tectonic Setting of the Madeng Dacite, SW Sanjiang Indosinian Orogen: Evidence from Zircon U-Pb-Hf Isotopes, and Whole-Rock Geochemistry and Sr-Nd Isotopes" Minerals 12, no. 3: 388. https://doi.org/10.3390/min12030388
APA StyleHuang, G., Zhuang, L.-L., Yang, Y.-Q., Tian, L.-D., Wu, W., & Liu, J.-H. (2022). Petrogenesis and Tectonic Setting of the Madeng Dacite, SW Sanjiang Indosinian Orogen: Evidence from Zircon U-Pb-Hf Isotopes, and Whole-Rock Geochemistry and Sr-Nd Isotopes. Minerals, 12(3), 388. https://doi.org/10.3390/min12030388