Europium-Doped Carbonated Apatites
1. Introduction
1.1. Charge-Balance Mechanisms
1.2. IR Spectra
1.3. Substitution of Eu3+
2. Materials and Methods
2.1. Synthesis of Apatites
2.2. Characterization
3. Results
3.1. Composition
3.2. IR and NMR Carbonate Spectra
3.3. Lattice Parameters
4. Discussion
4.1. Charge-Balance Mechanism
4.2. Distribution of Carbonate
4.3. Lattice Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasteris, J.D. A mineralogical view of apatitic biomaterials. Am. Mineral. 2016, 101, 2594–2610. [Google Scholar] [CrossRef]
- McConnell, D. The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissues. J. Dental Res. 1952, 31, 53–63. [Google Scholar] [CrossRef]
- LeGeros, R.Z.; Trautz, O.R.; LeGeros, J.P.; Klein, E.J. Spectral properties of carbonate in carbonate-apatites. Appl. Spectrosc. 1968, 22, 357–358. [Google Scholar]
- LeGeros, R.Z.; Trautz, O.R.; Klein, E.; LeGeros, J.P. Two Types of Carbonate Substitution in the apatite structure. Experientia 1969, 25, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Fleet, M.E. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. In Reviews in Mineralogy and Geochemistry; Kohn, M., Rakovan, J., Hughes, J.M., Eds.; Mineralogical Society of America: Washington, DC, USA, 2002; Volume 48, pp. 13–49. [Google Scholar]
- Demarco, P.V.; Elzey, T.K.; Lewis, R.B.; Wenkert, E. Tri(dipivalomethanato)europium (III). Shift reagent for use in the proton magnetic resonance analysis of steroids and terpenoids. J. Am. Chem. Soc. 1970, 92, 5737–5739. [Google Scholar] [CrossRef]
- Morales, J.G.; Escamilla, C.V.; Penas, R.F.; Parra-Milla, C.M.; Drouet, C.; Maube-Bosc, F.; Oltolina, F.; Prat, M.; Ffernandez-Sanchez, J.F. Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: Physico-chemistry and cytocompatibility. RSC Adv. 2018, 9, 2385–2397. [Google Scholar] [CrossRef] [Green Version]
- Perera, T.S.H.; Han, Y.; Lu, X.; Wang, X.; Dai, H.; Li, S. Rare earth doped apatite nanomaterials for biological application. J. Nanomater. 2015, 2015, 705390. [Google Scholar] [CrossRef] [Green Version]
- De Maeyer, E.A.P.; Verbeeck, R.M.H.; Pieters, I.Y. Carbonate and alkalimetal incorporation in calciumhydroxyapatite. Trends Inorg. Chem. 1996, 4, 157–171. [Google Scholar]
- Fleet, M.E. Infrared spectra of carbonate apatites: Evidence for a connection between bone mineral and body fluids. Am. Mineral. 2017, 102, 149–157. [Google Scholar] [CrossRef]
- Yoder, C.H.; Bollmeyer, M.M.; Stepien, K.R.; Dudrick, R.N. The effect of incorporated carbonate and sodium on the IR spectra of A-, B-, and AB-type carbonate apatites. Am. Mineral. 2019, 104, 869–877. [Google Scholar] [CrossRef]
- Bollmeyer, M.M.; Carney, M.C.; Yoder, C.H. A-type carbonate in strontium apatites. Am. Mineral. 2019, 104, 438–446. [Google Scholar] [CrossRef]
- Fleet, M.E. Infrared spectra of carbonate apatites: ν2-Region bands. Biomaterials 2009, 30, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Fleet, M.E. Carbonated Hydroxyapatite: Materials, Synthesis, and Application; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Pogosova, M.A.; Eliseev, A.A.; Kazin, P.E.; Azarmi, F. Synthesis, structure, luminescence, and color features of the Eu- and Cu-doped calcium apatite. Dye. Pigment. 2017, 141, 209–216. [Google Scholar] [CrossRef]
- Pazik, R.; Nedelec, J.-M.; Wiglusz, R.J. Preferential site substitution of Eu3+ ions in Ca10(PO4)6Cl2 nanoparticles obtained using a microwave stimulated wet chemistry technique. CrystEngComm 2014, 16, 5308–5318. [Google Scholar] [CrossRef]
- Ternane, R.; Trabelsi-Ayedi, M.; Jbir-Ariguib, N.; Piriou, B.L. Luminescent properties of Eu3+ in calcium hydroxyapatite. J. Lumin. 1999, 81, 165–170. [Google Scholar] [CrossRef]
- Piriou, B.; Fahmi, D.; Dexpert-Ghys, J.; Taitai, A.; Lacout, J.L. Unusual fluorescent properties of Eu3+ in oxyapatites. J. Lumin. 1987, 29, 97–103. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Drouet, C.; Al-Kattan, A.; Navrotsky, A. Energetics of lanthanide-doped calcium phosphate apatite. Am. Mineral. 2014, 99, 2320–2327. [Google Scholar] [CrossRef] [Green Version]
- Yoder, C.H.; Havlusch, M.D.; Dudrick, R.N.; Shermerhorn, J.T.; Tran, L.K.; Deymier, A.C. The synthesis of phosphate and vanadate apatites using an aqueous one-step method. Polyhedron 2017, 127, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Vignoles, M.; Bonel, G.; Holcomb, D.W.; Young, R.A. Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions. Calcif. Tissue Int. 1988, 43, 33–40. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Bollmeyer, M.M.; Yoder, C.H. Incorporation of fluorophosphate in apatite. Polyhedron 2018, 145, 176–181. [Google Scholar] [CrossRef]
- Al-Kattan, A.; Dufour, P.; Dexpert-Ghys, I.; Drouet, C. Preparation and physicochemical characteristics of luminescent apatite-based colloids. J. Phys. Chem. C. 2010, 113, 2918–2924. [Google Scholar] [CrossRef]
- Yoder, C.H.; Stepien, K.R.; Dudrick, R.N. The distribution of carbonate in apatite: The environment model. Am. Mineral. 2022, 3, 1713–1728. [Google Scholar]
- Vignoles, M.; Bonel, G.; Young, R.A. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatites. Calcif. Tissue Int. 1987, 40, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Fleet, M.E.; Liu, X.; Liu, X. Orientation of channel carbonate ions in apatite: Effect of pressure and composition. Am. Mineral. 2011, 96, 1148–1157. [Google Scholar] [CrossRef]
- Rey, C.; Collins, B.; Goehl, T.; Dickson, I.R.; Glimcher, M.J. The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study. Calcif. Tissue Int. 1989, 45, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Bashah, K.; Rey, C.; Gllmcher, M.J.; Schimizu, M.; Griffin, R.G. Solid state carbon-13 and proton NMR studies of carbonate-containing phosphate and enamel. J. Solid State Chem. 1990, 84, 71–81. [Google Scholar] [CrossRef]
- Babonneau, F.; Bonhomme, C.; Hayakawa, S.; Osaka, A. Solid state NMR characterization of nano-crystalline hydroxyl-carbonate apatite using 1H-31P-13C triple resonance experiments. Mater. Res. Soc. Symp. Proc. 2007, 984, 39–44. [Google Scholar]
- Silva, F.R.O.; de Lima, N.B.; Bressiani, A.H.A.; Courrol, L.C.; Gomes, L. Synthesis, characterization and luminescence properties of Eu3+-doped hydroxyapatite nanocrystals and thermal treatment effects. Opt. Mater. 2015, 47, 135–142. [Google Scholar] [CrossRef]
- Han, Y.; Wang, X.; Dai, H.; Li, S. Synthesis and luminescence of Eu3+ doped hydroxyapatite nanocrystallines: Effect of calcinations and Eu3+ content. J. Lumin. 2013, 135, 281–287. [Google Scholar] [CrossRef]
- LeGeros, R.Z. Effect of carbonate on the lattice parameters of apatite. Nature 1965, 206, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Deymier, A.C.; Nair, A.K.; Dapalie, B.; Qin, Z.; Arcot, K.; Drouet, C.; Yoder, C.H.; Buehler, M.J.; Thomopoulos, S.; Genin, G.M.; et al. Protein-free Formation of bone-like apatite; New insights into the key role of carbonation. Biomaterials 2017, 127, 75–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | CO3:PO4 Ratio | Eu:Ca Ratio | PO4 Reagent * | CO3 Reagent * | Synthesis Method |
---|---|---|---|---|---|
KS-87 | 1 | 1:9 | T | 13NaH | One-step |
KS-90 | 2 | 1:9 | T | 13NaH | One-step |
KS-92 | 1 | 2:8 | T | 13NaH | One-step |
KS-114 | 1 | 1:9 | Na2HPO4 | 13NaH | One-step |
KS-116 | 1 | 1:9 | T | 13NaH | One-step + 0.5 g NaNO3 |
KS-148 | 1 | 0.3:9.7 | T | 13NaH | Direct |
KS-152 | 0.2 | 1:9 | T | 13NaH | Direct |
ID | % CO3 | % Na | % Eu | Ca/Eu | Ca/P | (Ca + Eu)/P |
---|---|---|---|---|---|---|
KS-87 | 4.8 | 0.47 | 15.17 | 7.35 | 1.31 | 1.49 |
KS-90 | 10.9 | 1.35 | 16.49 | 6.91 | 1.44 | 1.65 |
KS-92 | 9.9 | 0.64 | 27.18 | 3.11 | 1.12 | 1.56 |
KS-114 | 8.25 | 1.48 | 16.81 | 6.80 | 1.50 | 1.73 |
KS-116 | 3.9 | 1.4 | 15.97 | 6.95 | 1.37 | 1.56 |
KS-117 * | 2.5 | 0.66 | 0 | - | 1.59 | - |
KS-148 | 4.6 | 0.82 | 4.8 | 28.7 | 1.55 | 1.61 |
KS-152 | 2 | 0.36 | 16.03 | 7.03 | 1.36 | 1.55 |
Starting Mole Ratios | Moles in ca. 1029 g | ||||
---|---|---|---|---|---|
ID | Ca: Eu, X: 9 | CO3:PO4 | Ca | PO4 | Eu |
KS-148 | 0.3 | 1 | 9.3 | 6 | 0.33 |
KS-87 | 1 | 1 | 7.5 | 5.7 | 1 |
KS-114 | 1 | 1 | 7.5 | 5 | 1.1 |
KS-116 | 1 | 1 | 7.3 | 5 | 1.1 |
KS-152 | 1 | 0.2 | 7.6 | 5.6 | 1.1 |
KS-90 | 1 | 2 | 7.6 | 5.3 | 1.1 |
KS-92 | 2 | 1 | 5.7 | 5.1 | 1.8 |
KS-117 * | - | 1 | 10 | 6.3 | - |
ID | CO32− Environment | IR ν3 | IR ν2 | NMR | Average (IR ν3 + NMR) | |||
---|---|---|---|---|---|---|---|---|
Position (cm−1) | % | Position (cm−1) | % | Position (ppm) | % | |||
87 | A | 1419, 1504 | 39 | 853 | 55 | 165.6 | 40 | 39.5 |
A’ | 1366, 1451 | 25 | 840 | 39 | 167.9 | 20 | 22.5 | |
B | 1380, 1413 | 36 | 847 | 6 | 169.6 | 40 | 38 | |
90 | A | 1431, 1506 | 13 | 854 | 22 | 165.8 | 20 | 16.5 |
A’ | 1363, 1454 | 46 | 840 | 33 | 168.4 | 39 | 42.5 | |
B | 1377, 1409 | 41 | 847 | 45 | 170.2 | 41 | 41 | |
92 | A | 1422, 1504 | 36 | 853 | 44 | 166.5 | 25 | 30.5 |
A’ | 1362, 1455 | 34 | 841 | 20 | 169.2 | 38 | 36 | |
B | 1380, 1409 | 30 | 846 | 36 | 170.4 | 37 | 33.5 | |
114 | A | 1435, 1503 | 21 | 853 | 25 | 165.3 | 23 | 22 |
A’ | 1358, 1460 | 37 | 839 | 30 | 167.7 | 38 | 37.5 | |
B | 1379, 1410 | 42 | 846 | 45 | 169.3 | 39 | 40.5 | |
116 | A | 1431, 1500 | 23 | 853 | 32 | 166.5 | 20 | 21.5 |
A’ | 1353, 1457 | 32 | 840 | 19 | 168.8 | 36 | 34 | |
B | 1376, 1410 | 45 | 846 | 48 | 170.3 | 43 | 44 | |
117 * | A | 1422, 1505 | 29 | 853 | 46 | 166.7 | 25 | 27 |
A’ | 1360, 1450 | 32 | 842 | 14 | 169.4 | 34 | 33 | |
B | 1377, 1414 | 39 | 847 | 39 | 170.5 | 41 | 40 | |
148 | A | 1426, 1507 | 20 | 853 | 34 | 166.4 | 18 | 19 |
A’ | 1365, 1454 | 45 | 841 | 24 | 168.9 | 44 | 44.5 | |
B | 1378, 1411 | 35 | 847 | 42 | 170.1 | 38 | 36.5 | |
150 * | A | 1429, 1499 | 19 | 853 | 35 | 166.1 | 13 | 16 |
A’ | 1363, 1454 | 39 | 841 | 28 | 168.3 | 41 | 40 | |
B | 1379, 1409 | 42 | 847 | 38 | 169.6 | 46 | 44 | |
152 | A | 1421, 1505 | 30 | 853 | 41 | 165.1 | 14 | 22 |
A’ | 1365, 1451 | 33 | 842 | 16 | 167.3 | 38 | 35.5 | |
B | 1380, 1411 | 37 | 847 | 44 | 169.1 | 47 | 42 |
ID | % CO3 | % Na | a-axis (Å) | c-axis (Å) | Unit cell Volume (Å3) |
---|---|---|---|---|---|
87 | 4.8 | 0.47 | 9.453(7) | 6.894(7) | 533.6(7) |
90 | 10.9 | 1.35 | 9.42(1) | 6.89(2) | 529.(1) |
92 | 9.9 | 0.64 | 9.430(6) | 6.870(6) | 529.0(6) |
114 | 8.25 | 1.48 | 9.406(1) | 6.879(4) | 527.1(4) |
116 | 3.9 | 1.4 | 9.405(5) | 6.894(4) | 528.1(4) |
117 * | 2.5 | 0.66 | 9.424(1) | 6.885(2) | 529.5(2) |
148 | 4.6 | 0.82 | 9.411(1) | 6.876(4) | 527.5(4) |
150 * | 6.05 | 0.58 | 9.408(8) | 6.888(8) | 527.0(8) |
152 | 2 | 0.36 | 9.426(6) | 6.889(6) | 530.0(6) |
Charge-Balance Mechanism (Equation (3)) | Charge-Balance Mechanism (Equation (4)) | |||||
---|---|---|---|---|---|---|
ID | Ca | PO4 | OH | Ca | PO4 | OH |
KS-148 | 9.38 | 5.71 | 0.67 | 9.21 | 5.71 | 1 |
KS-87 | 8.69 | 5.69 | -0.02 | 8.19 | 5.69 | 0.89 |
KS-114 | 8.33 | 5.43 | -0.7 | 7.78 | 5.43 | 0.4 |
KS-152 | 8.76 | 5.86 | 0.5 | 8.21 | 5.86 | |
KS-90 | 8.12 | 5.22 | -1.48 | 7.57 | 5.22 | 1.6 |
KS-92 | 7.63 | 5.43 | -2.38 | 6.73 | 5.43 | -0.38 |
KS-117 * | 9.83 | 5.83 | 1.48 | -0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepien, K.R.; Yoder, C.H. Europium-Doped Carbonated Apatites. Minerals 2022, 12, 503. https://doi.org/10.3390/min12050503
Stepien KR, Yoder CH. Europium-Doped Carbonated Apatites. Minerals. 2022; 12(5):503. https://doi.org/10.3390/min12050503
Chicago/Turabian StyleStepien, Kathleen R., and Claude H. Yoder. 2022. "Europium-Doped Carbonated Apatites" Minerals 12, no. 5: 503. https://doi.org/10.3390/min12050503
APA StyleStepien, K. R., & Yoder, C. H. (2022). Europium-Doped Carbonated Apatites. Minerals, 12(5), 503. https://doi.org/10.3390/min12050503