Sericite 40Ar/39Ar Dating and Indosinian Mineralization in the Liushuping Au–Zn Deposit, West Qinling Orogen, China
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Analytical Methods
3.1. 40Ar/39Ar Geochronology
3.2. Sr Isotope Analysis
4. Results
4.1. Sericite 40Ar/39Ar Geochronology
4.2. Sr Isotopes of Sphalerite
5. Discussion
5.1. Timing of Au–Zn Deposit Formation
5.2. Source of Ore-Forming Materials
5.3. Geodynamic Setting of Au–Zn Mineralization
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.J.; Zhai, M.G.; Jiang, S.Y. Significant Achievements and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent. Acta Petrol. Sin. 2009, 25, 2695–2726. [Google Scholar]
- Chen, Y.J. Indosinian Tectonic Setting, Magmatism and Metallogenesis in Qinling Orogen, Central China. Geol. China 2010, 37, 854–865. [Google Scholar]
- Chen, Y.J.; Santosh, M. Triassic Tectonics and Mineral Systems in the Qinling Orogen, Central China. Geol. J. 2014, 49, 338–358. [Google Scholar] [CrossRef]
- Chen, Y.J. Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential. Geol. China 2006, 33, 1181–1196. [Google Scholar]
- Chen, Y.J. The Development of Continental Collision Metallogeny and Its Application. Acta Petrol. Sin. 2013, 29, 1–17. [Google Scholar]
- Yue, S.W.; Lin, Z.W.; Deng, X.H.; Li, F.R.; He, H.X.; Feng, A.G. C, H, O, S, Pb Isotopic Geochemistry of the Jianchaling Gold Deposit, Shaanxi Province. Geotecton. Metallog. 2013, 37, 653–670. [Google Scholar]
- Chen, J.X.; Wei, Z.D.; Tian, X.A.; Wang, S.X.; Wang, C.C. Mineralization and Geology of the Liushuping Gold Deposit in Lueyang County, Shaanxi Province. Geol. Shaanxi 2013, 31, 13–19. [Google Scholar]
- Chen, J.X.; Yuan, P.; Wang, C.C.; Wei, D.; Tian, X.A.; Liu, Y. The Geological Features and Ore-Controlling Factors of the Liushuping Gold and Zinc Ore Deposits in Lueyang, Shaanxi Province. J. Geomech. 2016, 22, 212–222. [Google Scholar]
- Chen, J.X.; Yuan, P.; Wang, C.C.; Zhao, F.L.; Tian, X.A. Lithostratigraphic Unit Division and Sedimentary Environment Analysis of Nanhua-Sinian System in Liushuping Au–Zn Deposit, Lueyang County, Shaanxi Province. West-China Explor. Eng. 2019, 31, 167–170. [Google Scholar]
- Deng, X.H.; Wang, J.B.; Santosh, M.; Li, Y.C.; Wang, Y.W.; Mao, Q.-G.; Long, L.L.; Chen, X. New 40Ar/39Ar Ages from the Kalatag District in the Eastern Tianshan, NW China: Constraints on the Timing of Cu Mineralization and Stratigraphy. Ore Geol. Rev. 2018, 100, 250–262. [Google Scholar] [CrossRef]
- Lin, Z.W.; Zhou, Y.Z.; Qin, Y.; Yue, S.W. Fuchsite 40Ar/39Ar Geochronology of the Huachanggou Gold Deposit and Its Tectonic Implications. Geotecton. Metallog. 2017, 41, 315–324. [Google Scholar] [CrossRef]
- Yue, S.W.; Deng, X.H.; Bagas, L.; Lin, Z.W.; Fang, J.; Zhu, C.H.; Zhang, W. Fluid Inclusion Geochemistry and 40Ar/39Ar Geochronology Constraints on the Genesis of the Jianchaling Au Deposit, China. Ore Geol. Rev. 2017, 80, 676–690. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Chen, Y.J.; Qin, Y.J.; Liu, C.F. Geology, Fluid Inclusion Geochemistry, and 40Ar/39Ar Geochronology of the Wulasigou Cu Deposit, and Their Implications for Ore Genesis, Altay, Xinjiang, China. Ore Geol. Rev. 2012, 49, 128–140. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Li, D.-F.; Kapsiotis, A.; Chen, Y.-J. Genesis of the Dadonggou Pb–Zn Deposit in Kelan Basin, Altay, NW China: Constraints from Zircon U–Pb and Biotite 40Ar/39Ar Geochronological Data. Ore Geol. Rev. 2015, 64, 128–139. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Y.; Cawood, P.A.; Wang, Y.; Chen, H.; Zhang, L.; Li, D. Late Permian–Triassic Metallogeny in the Chinese Altay Orogen: Constraints from Mica 40Ar/39Ar Dating on Ore Deposits. Gondwana Res. 2017, 43, 4–16. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Han, F.; Shen, J.Z.; Palmer, M.R. Chemical and Rb-Sr, Sm-Nd Isotopic Systematics of Tourmaline from the Dachang Sn-Polymetallic Ore Deposit, Guangxi Province, P.R. China. Chem. Geol. 1999, 157, 49–67. [Google Scholar] [CrossRef]
- Kempe, U.; Belyatsky, B.; Krymsky, R.; Kremenetsky, A.; Ivanov, P. Sm-Nd and Sr Isotope Systematics of Scheelite from the Giant Au(-W) Deposit Muruntau (Uzbekistan): Implications for the Age and Sources of Au Mineralization. Miner. Depos. 2001, 36, 379–392. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhou, X.H. Rb-Sr, Sm-Nd, and Pb Isotopes Systematics of Pyrite: Implications for the Age and Genesis of Lode Gold Deposits. Geology 2002, 29, 711–714. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Sui, Y.H. Isotope Geochemistry of the Tieluping Silver-Lead Deposit, Henan, China: A Case Study of Orogenic Silver-Dominated Deposits and Related Tectonic Setting. Miner. Depos. 2004, 39, 560–575. [Google Scholar] [CrossRef]
- Barker, S.L.L.; Bennett, V.C.; Cox, S.F.; Norman, M.D.; Gagan, M.K. Sm-Nd, Sr, C and O Isotope Systematics in Hydrothermal Calcite-Fluorite Veins: Implications for Fluid-Rock Reaction and Geochronology. Chem. Geol. 2009, 268, 58–66. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer; Geological Survey of Western Australia: Pilbara, Australia, 2009; ISBN 9781402086120.
- Zhang, L.; Yang, R.S.; Mao, S.D.; Lu, Y.H.; Qin, Y.; Liu, H.J. Sr and Pb Isotopic Feature and Ore-Forming Material Source of the Yangshan Gold Deposit. Acta Petrol. Sin. 2009, 25, 2811–2822. [Google Scholar]
- Ni, Z.Y.; Chen, Y.J.; Li, N.; Zhang, H. Pb–Sr–Nd Isotope Constraints on the Fluid Source of the Dahu Au–Mo Deposit in Qinling Orogen, Central China, and Implication for Triassic Tectonic Setting. Ore Geol. Rev. 2012, 46, 60–67. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Santosh, M.; Yao, J.M.; Sun, Y.L. Re–Os and Sr–Nd–Pb Isotope Constraints on Source of Fluids in the Zhifang Mo Deposit, Qinling Orogen, China. Gondwana Res. 2016, 30, 132–143. [Google Scholar] [CrossRef]
- Deng, X.H.; Chen, Y.J.; Santosh, M.; Wang, J.B.; Li, C.; Yue, S.W.; Zheng, Z.; Chen, H.J.; Tang, H.S.; Dong, L.H. U–Pb Zircon, Re–Os Molybdenite Geochronology and Rb–Sr Geochemistry from the Xiaobaishitou W (–Mo) Deposit: Implications for Triassic Tectonic Setting in Eastern Tianshan, NW China. Ore Geol. Rev. 2017, 80, 332–351. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.Y.; Song, G.S.; Wang, H.H.; Chen, J.L.; Li, T. Zircon LA-ICP-MS U-Pb Dating and Significance of Yudongzi Group Deformation Granite from Lueyang Area, Western Qinling, China. Geol. Bull. China 2010, 29, 510–517. [Google Scholar]
- Yan, Q.R.; Wang, Z.Q.; Hanson, A.D.; Druschke, P.A.; Yan, Z.; Liu, D.Y.; Jian, P.; Song, B.; Wang, T.; Jiang, C.F. SHRIMP Age and Geochemistry of the Bikou Volcanic Terrane: Implications for Neoproterozoic Tectonics on the Northern Margin of the Yangtze Craton. Acta Geol. Sin. 2003, 77, 479–490. [Google Scholar]
- Qin, K.L.; Yang, J.H. The Age of Phosphorite deposit and Rb-Sr isotopic data in the Hejiayan County, Shannxi Province. Northwestern Geol. 1983, 12, 43–48. [Google Scholar]
- Dong, Y.P.; Santosh, M. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Koppers, A.A.P. ArArCALC—Software for 40Ar/39Ar Age Calculations. Comput. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
- Renne, P.R.; Mundil, R.; Balco, G.; Min, K.; Ludwig, K.R. Joint Determination of 40K Decay Constants and 40Ar/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology. Geochim. Cosmochim. Acta 2010, 74, 5349–5367. [Google Scholar] [CrossRef]
- Ma, J.Q. Qinling Orogenic Belt Mianluening Gold Deposit Formation Mode and Prospecting Direction; Institute of Geochemistry (Guiyang), Chinese Academy of Sciences: Guiyang, China, 1998. [Google Scholar]
- Yue, S.W.; Li, D.F.; Bagas, L.; Fang, J.; Lin, Z.W. Geology and Isotope Systematics of the Jianchaling Au Deposit, Shaanxi Province, China: Implications for Mineral Genesis. Geosciences 2018, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.R.; Andrew, D.H.; Wang, Z.Q.; Yan, Z.; Peter, A.D.; Wang, T.; Liu, D.Y.; Song, B.; Jiang, C.F. Geochemistry and Tectonic Setting of the Bikou Volcanic Terrane on the Northern Margin of the Yangtze Plate. Acta Petrol. Mineral. 2004, 23, 1–11. [Google Scholar]
- Li, Y.F.; Lai, S.C.; Qin, J.F.; Liu, X.; Wang, J. Geochemistry and Sr-Nd-Pb Isotopic Composition of Bikou Group Volcanic Rocks: Evidence of North Yangtze Splitting. Sci. China Ser. D Earth Sci. 2007, 37, 295–306. [Google Scholar]
- Xia, L.Q.; Xia, Z.C.; Xu, X.Y.; Li, X.M.; Ma, Z.P. Petrogenesis of the Bikou Group Volcanic Rocks. Earth Sci. Front. 2007, 14, 84–101. [Google Scholar]
- Lee, J.Y.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.S.; Lee, J.B.; Kim, J.S. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Li, N.; Guo, D.S.; Yong, L. Isotope Systematics and Fluid Inclusion Studies of the Qiyugou Breccia Pipe-Hosted Gold Deposit, Qinling Orogen, Henan Province, China: Implications for Ore Genesis. Ore Geol. Rev. 2009, 35, 245–261. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Qi, J.P. The Shanggong Gold Deposit, Eastern Qinling Orogen, China: Isotope Geochemistry and Implications for Ore Genesis. J. Asian Earth Sci. 2008, 33, 252–266. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Qi, J.P. Origin of Gold Metallogeny and Sources of Ore-Forming Fluids, Jiaodong Province, Eastern China. Int. Geol. Rev. 2005, 47, 530–549. [Google Scholar] [CrossRef]
- Li, N.; Yang, L.Q.; Groves, D.I.; Li, H.X.; Liu, X.W.; Liu, J.; Ye, Y.; Li, H.R.; Liu, C.X.; Yin, C. Tectonic and District to Deposit-Scale Structural Controls on the Ge’erke Orogenic Gold Deposit within the Dashui-Zhongqu District, West Qinling Belt, China. Ore Geol. Rev. 2020, 120, 103436. [Google Scholar] [CrossRef]
- Yue, S.W.; Deng, X.H.; Lin, Z.W. Direct Re–Os Dating of Pyrite from the Jianchaling Au Deposit, West Qinling, China. Acta Geochim. 2021. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, J.; Zhang, F.X.; Li, C. Carlin and Carlin-like Gold Deposits in Western Qinling Mountains and Their Metallogenic Time, Tectonic Setting and Model. Geol. Rev. 2004, 50, 134–152. [Google Scholar]
- Chen, Y.J.; Fu, S.G. Gold Mineralization in West Henan; Seismological Press: Beijing, China, 1992; ISBN 9787502808013. [Google Scholar]
- Wu, Y.F.; Li, J.W.; Evans, K.; Vasconcelos, P.M.; Thiede, D.S.; Fougerouse, D.; Rempel, K. Late Jurassic to Early Cretaceous Age of the Daqiao Gold Deposit, West Qinling Orogen, China: Implications for Regional Metallogeny. Miner. Depos. 2018, 54, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.K.; Ran, H.Y. The Metallogenetic Characteristics of Gold Deposits Related to Carbonatized Ultramafites in Ophiolites. Bull. Mineral. Petrol. Geochem. 1996, 15, 153–156. [Google Scholar]
- Yang, R.S.; Chen, Y.J.; Zhang, F.X.; Li, Z.H.; Mao, S.D.; Liu, H.J.; Zhao, C.H. Chemical Th-U-Pb Ages of Monazite from the Yangshan Gold Deposit, Gansu Province and Their Geologic and Metallogenic Implications. Acta Petrol. Sin. 2006, 22, 2603–2610. [Google Scholar]
- Qi, J.Z.; Li, L.; Yuan, S.S.; Liu, Z.J.; Liu, D.Y.; Wang, Y.B.; Li, Z.H. A SHRIMP U-Pb Chronological Study of Zircons from Quartz Veins of Yangshan Gold Deposit, Gansu Province. Miner. Depos. 2005, 24, 141–150. [Google Scholar]
- Qi, J.Z.; Yuan, S.S.; Li, L.; Sun, B.; Guo, J.H.; Li, Z.H.; Fan, Y.X.; Liu, W.; Gao, Q. Bin Geological Features and Ore-Controlling Factors of the Yangshan Superlarge Gold Deposit, Gansu Province, China. Geol. Rev. 2003, 49, 85–92. [Google Scholar]
- Wang, K.Y.; Yao, S.Z.; Yang, Y.C.; Dai, J.Z. Geological Characteristics and Origin of Manaoke Fine-Grained Disseminated Gold Deposit in Northwestern Sichuan Province. Miner. Depos. 2004, 23, 494–501. [Google Scholar]
- Li, L.J.; Li, T.J.; Wang, D. Calcite Sm-Nd Isochron Age of the Dashui Gold Deposit in West Qinling Orogenic Belt and Its Implications. Geoscience 2019, 33, 469. [Google Scholar]
- Liu, X.L.; Wang, Y.T.; Hu, Q.Q.; Wang, R.T.; Peng, L.H.; Zhang, G.L.; Liu, M.; Ouyang, S. Evidence of 40Ar/39Ar Age Data for Ore-Forming Time of Chaima Gold Deposit in Fengtai Ore Concentration Area, Shaanxi Province. Miner. Depos. 2018, 37, 163–174. [Google Scholar]
- Wang, Y.T.; Li, X.; WANG, R.T.; Liu, X.L.; Hu, Q.Q.; Li, J.H.; Wang, C.A.; Wen, B.; Wen, S.W.; Wang, S.L. Evidence of Ar-Ar Age for the Metallogenic Epoch of Simaoling Gold Deposit in Fengxian-Taibai Ore Cluster of Shaanxi. J. Earth Sci. Environ. 2014, 36, 61–69. [Google Scholar]
- Wang, Y.T.; Mao, J.W.; Zhang, J.; Wang, R.T.; Chen, G.M.; Hu, Q.Q.; Chen, S.C.; Liu, X.L. Geochronological Constraints on the Baguamiao Gold Deposit, West Qinling Orogen, Central China: Implications for Ore Genesis and Geodynamic Setting. Ore Geol. Rev. 2020, 122, 103508. [Google Scholar] [CrossRef]
- Wei, L.M. Metallogenic Environment and Prediction for Baguamiao Gold Deposit Type in Qinling Region, China; Chengdu University of Technology: Chengdu, China, 2004. [Google Scholar]
- Shao, S.C.; Wang, D.B. 39Ar-40Ar Dating of the Three Typical Gold Deposits and Its Geological Significance in the Southern Qinling Region. Acta Geol. Sin. 2001, 75, 106–110. [Google Scholar]
- Feng, J.Z.; Shao, S.C.; Wang, D.B.; Wang, X.M.; Ma, Z.G. Baguamiao Superlarge Gold Deposit in the Qinling Orogen: The Characteristics of Its Control by the Brittle–Ductile Shear Zone and Dynamic Mechanism for Ore-Forming Structure. Geol. China 2002, 29, 58–66. [Google Scholar]
- Liu, X.L.; Wang, Y.T.; Hu, Q.Q.; Wei, R.; Wang, R.T.; Wen, S.W.; Chen, M.S.; Yang, G.H. Sm-Nd Isotopic Dating of Carbonate Minerals from the Chaima Gold Deposit in the Fengxian-Taibai Ore Concentration Area, Shaanxi Province and Its Implications. Acta Petrol. Sin. 2014, 30, 271–280. [Google Scholar]
- Wang, Y.T.; Liu, X.L.; Hu, Q.Q.; Zhang, J.; Chen, S.C.; Wang, R.-T.; Dai, J.Z.; Gao, W.H.; Wen, S.W.; Chen, M.S. Rb–Sr Isotopic Dating of Vein-like Sphalerites from the Chaima Au Deposit in Fengxian-Taibai Ore-Concentration Area, Shaanxi Province and Its Geological Significance. Northwestern Geol. 2018, 51, 121–132. [Google Scholar]
- Feng, J.Z.; Wang, D.B.; Wang, X.M.; Shao, S.C.; Lin, G.F.; Shi, J.J. Geology and Metallogenesis of Liba Large-Size Gold Deposit in Lixian, Gansu Province. Miner. Depos.-Beijing 2003, 22, 257–263. [Google Scholar]
- Zeng, Q.T.; McCuaig, T.C.; Hart, C.J.R.; Jourdan, F.; Muhling, J.; Bagas, L. Structural and Geochronological Studies on the Liba Goldfield of the West Qinling Orogen, Central China. Miner. Depos. 2012, 47, 799–819. [Google Scholar] [CrossRef]
- Lu, Y.M.; Li, H.G.; Chen, Y.G.; Zhang, G.L. 40Ar/39Ar Dating of Alteration Minerals from Zhaishang Gold Deposit in Minxian County, Gansu Province, and Its Geological Significance. Miner. Depos. 2006, 25, 590–597. [Google Scholar]
- Qiu, K.F.; Yu, H.C.; Deng, J.; McIntire, D.; Gou, Z.Y.; Geng, J.Z.; Chang, Z.S.; Zhu, R.; Li, K.N.; Goldfarb, R. The Giant Zaozigou Au-Sb Deposit in West Qinling, China: Magmatic- or Metamorphic-Hydrothermal Origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Nassif, M.T.; Geng, J.Z.; Sai, S.X.; Duo, D.W.; Huang, Y.Q.; Wang, J. Early Orogenic Gold Mineralization Event in the West Qinling Related to Closure of the Paleo-Tethys Ocean—Constraints from the Ludousou Gold Deposit, Central China. Ore Geol. Rev. 2020, 117, 103217. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Sai, S.X.; McIntire, D.C.; Pirajno, F.; Duo, D.W.; Miggins, D.P.; Wang, J.; Jia, R.Y.; Wu, M.Q. Paleo-Tethys Late Triassic Orogenic Gold Mineralization Recorded by the Yidi’nan Gold Deposit, West Qinling, China. Ore Geol. Rev. 2020, 116, 103211. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Santosh, M.; Pirajno, F. Compositional Polarity of Triassic Granitoids in the Qinling Orogen, China: Implication for Termination of the Northernmost Paleo-Tethys. Gondwana Res. 2015, 27, 244–257. [Google Scholar] [CrossRef]
Incremental Heating | 36Ar(a) | 37Ar(ca) | 38Ar(cl) | 39Ar(k) | 40Ar(r) | Age ± 2σ | 40Ar(r) | 39Ar(k) | K/Ca ± 2σ | |
---|---|---|---|---|---|---|---|---|---|---|
(Ma) | (%) | (%) | ||||||||
0M67697 | 2.5% | 0.0000385 | 0.0039036 | 0.0001424 | 0.1607798 | 1.8669641 | 215.27 | ±0.30 | 99.38 | 77.30 |
0M67699 | 3.0% | 0.0000047 | 0.0007704 | 0.0000187 | 0.0104344 | 0.1218713 | 216.45 | ±3.40 | 98.85 | 5.02 |
0M67700 | 3.4% | 0.0000045 | 0.0000117 | 0.0000000 | 0.0087171 | 0.1017693 | 216.36 | ±4.02 | 98.68 | 4.19 |
0M67701 | 3.8% | 0.0000043 | 0.0003129 | 0.0000000 | 0.0047127 | 0.0548295 | 215.66 | ±7.39 | 97.70 | 2.27 |
0M67703 | 4.2% | 0.0000017 | 0.0001409 | 0.0000000 | 0.0017017 | 0.0196322 | 213.95 | ±20.74 | 97.43 | 0.82 |
0M67704 | 4.6% | 0.0000014 | 0.0006985 | 0.0000116 | 0.0019322 | 0.0227152 | 217.79 | ±18.03 | 98.20 | 0.93 |
0M67705 | 5.0% | 0.0000054 | 0.0001915 | 0.0000286 | 0.0009990 | 0.0113136 | 210.25 | ±34.98 | 87.57 | 0.48 |
0M67707 | 5.5% | 0.0000062 | 0.0015218 | 0.0000069 | 0.0006195 | 0.0068257 | 204.86 | ±56.50 | 78.74 | 0.30 |
0M67708 | 6.0% | 0.0000093 | 0.0007242 | 0.0000119 | 0.0006258 | 0.0075472 | 223.07 | ±55.33 | 73.16 | 0.30 |
0M67709 | 6.5% | 0.0000151 | 0.0005116 | 0.0000000 | 0.0002997 | 0.0035882 | 221.54 | ±116.51 | 44.38 | 0.14 |
0M67711 | 7.0% | 0.0000185 | 0.0008419 | 0.0000000 | 0.0002294 | 0.0029980 | 240.58 | ±151.85 | 35.14 | 0.11 |
0M67712 | 8.0% | 0.0000311 | 0.0000332 | 0.0000166 | 0.0003255 | 0.0037955 | 216.13 | ±108.81 | 28.99 | 0.16 |
0M67713 | 10.0% | 0.0000747 | 0.0005468 | 0.0000152 | 0.0001985 | 0.0011488 | 110.51 | ±185.36 | 4.90 | 0.10 |
0M67715 | 15.0% | 0.0002189 | 0.0008156 | 0.0000000 | 0.0005482 | 0.0029633 | 103.40 | ±70.91 | 4.34 | 0.26 |
0M67716 | 20.0% | 0.0002823 | 0.0002758 | 0.0000210 | 0.0011638 | 0.0000955 | 1.62 | ±34.68 | 0.11 | 0.56 |
0M67717 | 25.0% | 0.0002357 | 0.0009840 | 0.0000047 | 0.0022553 | 0.0029179 | 25.29 | ±18.29 | 3.98 | 1.08 |
0M67719 | 35.0% | 0.0003918 | 0.0003067 | 0.0000313 | 0.0055102 | 0.0092863 | 32.88 | ±8.05 | 7.35 | 2.65 |
0M67720 | 45.0% | 0.0004254 | 0.0009277 | 0.0000000 | 0.0069444 | 0.0216853 | 60.46 | ±5.40 | 14.58 | 3.34 |
Samples No. | Location | Sample | Rb (ppm) | Sr (ppm) | 87Rb/86Sr | 87Sr/86Sr | 2σ | ISr (215 Ma) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Duantouya Formation in Jianchaling Au deposit | |||||||||
PX406-Y-43W | Jianchaling deposit | Dolomite | 1.69 | 108.0000 | 0.0453 | 0.719000 | 0.718861 | [32] | |
G-E-1 | Jianchaling deposit | Serpentinized dolomite | 8.98 | 101.0000 | 0.2576 | 0.723300 | 0.722512 | [32] | |
PD404-43-B | Jianchaling deposit | Altered dolomite | 36.2 | 89.6 | 1.1696 | 0.713400 | 0.709824 | [32] | |
960-28-1 | Jianchaling deposit | Dolomite | 0.027 | 17.9000 | 0.0044 | 0.720582 | 0.720569 | [33] | |
Zh-5 | Jianchaling deposit | Slate | 78.4 | 12.6 | 18.2861 | 0.868400 | 0.812487 | [32] | |
H4 | Jianchaling deposit | Slate | 105 | 57.2000 | 5.3249 | 0.734027 | 0.717745 | [33] | |
Average | N = 6 | 0.746452 | 0.733666 | ||||||
Bikou Group | |||||||||
2000224 | Nanfanba-Mianwanli | Andesitic basalt | 19.554 | 594.5870 | 0.0951 | 0.704471 | 0.000020 | 0.704180 | [34] |
2000225 | Nanfanba-Mianwanli | Andesite | 5.329 | 118.5830 | 0.1300 | 0.704899 | 0.000020 | 0.704502 | [34] |
2000226 | Nanfanba-Mianwanli | Basalt | 3.948 | 41.5780 | 0.2746 | 0.703211 | 0.000020 | 0.702371 | [34] |
2000228 | Nanfanba-Mianwanli | Basalt | 3.871 | 18.1520 | 0.6168 | 0.703534 | 0.000036 | 0.701648 | [34] |
2000230 | Nanfanba-Mianwanli | Basalt | 3.734 | 39.6950 | 0.2720 | 0.702650 | 0.000020 | 0.701818 | [34] |
2000231 | Nanfanba-Mianwanli | Basalt | 23.01 | 243.9600 | 0.2730 | 0.713325 | 0.000017 | 0.712490 | [34] |
BKL-19 | Metamorphosed basalt | 23.4 | 563 | 0.1203 | 0.710419 | 0.000024 | 0.710051 | [35] | |
BKL-01 | Metamorphosed basalt | 0.21 | 111 | 0.0055 | 0.707353 | 0.000022 | 0.707336 | [35] | |
BKL-06 | Metamorphosed basalt | 0.13 | 143 | 0.0026 | 0.706668 | 0.000028 | 0.706660 | [35] | |
87-104 | Hongyangou | Basic lavas | 6.464 | 287.2860 | 0.0651 | 0.706763 | 0.000078 | 0.706564 | [36] |
93-17 | Hongyangou | Basic lavas | 5.288 | 262.266 | 0.0583 | 0.705434 | 0.000085 | 0.705256 | [36] |
87-88 | Xintianba-Heimulin | Basic lavas | 14.55 | 138.8 | 0.3033 | 0.709308 | 0.000014 | 0.708380 | [36] |
93-55 | Xintianba-Heimulin | Basic lavas | 6.65 | 387.9 | 0.0496 | 0.706277 | 0.000012 | 0.706125 | [36] |
94-7-1 | Xintianba-Heimulin | Basic lavas | 9.11 | 594.94 | 0.0443 | 0.708368 | 0.000026 | 0.708233 | [36] |
94-7-2 | Xintianba-Heimulin | Basic lavas | 9.71 | 583.5 | 0.0482 | 0.708387 | 0.000061 | 0.708240 | [36] |
94-9 | Xintianba-Heimulin | Basic lavas | 27.6 | 351.75 | 0.2270 | 0.709297 | 0.000088 | 0.708603 | [36] |
94-10 | Xintianba-Heimulin | Basic lavas | 8.19 | 171.75 | 0.1380 | 0.708812 | 0.000049 | 0.708390 | [36] |
225 | Baiyang-Bikou | Basic lavas | 1.777 | 112.9 | 0.0455 | 0.704899 | 0.000020 | 0.704760 | [36] |
231 | Baiyang-Bikou | Basic lavas | 19.45 | 237.2 | 0.2374 | 0.713325 | 0.000017 | 0.712599 | [36] |
Average | N = 19 | 0.707232 | 0.706748 | ||||||
Sphalerite in Liushuping Au–Zn deposit | |||||||||
ZK802-20 | Liushuping deposit | Sphalerite | 0.2056 | 0.6272 | 0.9529 | 0.755716 | 0.000008 | 0.752802 | This study |
ZK802-23 | Liushuping deposit | Sphalerite | 0.6004 | 0.6125 | 2.8471 | 0.747161 | 0.000010 | 0.738455 | This study |
ZK802-28 | Liushuping deposit | Sphalerite | 0.1518 | 0.7607 | 0.5789 | 0.734831 | 0.000008 | 0.733061 | This study |
ZK802-46 | Liushuping deposit | Sphalerite | 0.4361 | 0.7524 | 1.68037 | 0.728131 | 0.000010 | 0.722993 | This study |
ZK802-62 | Liushuping deposit | Sphalerite | 2.2870 | 0.8390 | 7.90534 | 0.731619 | 0.000008 | 0.707447 | This study |
Average | N = 5 | 0.739492 | 0.730952 |
No. | Location | Deposit | Type | Metal | Reserves (t) | Analytical Methods | Mineralization Ages (Ma) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Plateau | Isochron | Integrate | Others | ||||||||
1 | Mian-Lue-Yang area | Jianchaling | Orogenic | Au | 52 | Fuchsite 40Ar/39Ar | 194.32 ± 2.41 | 198.90 ± 1.98 | [12] | ||
Fuchsite 40Ar/39Ar | 197.30 ± 1.99 | 198.21 ± 2.40 | |||||||||
Pyrite Re-Os | 206.3 ± 2.7 | [42] | |||||||||
Fuchsite K-Ar | 144.2 ± 14.9 | [46] | |||||||||
Huachanggou | Orogenic | Au | 35 | Fuchsite 40Ar/39Ar | 209.4 ± 2.3 | 211.4 ± 3.6 | [11] | ||||
Fuchsite 40Ar/39Ar | 211.5 ± 2.5 | 215.3 ± 3.9 | |||||||||
Liushuping | Au–Zn | 2.2 | Sericite 40Ar/39Ar | 215.28 ± 0.39 | 215.7 ± 0.37 | This study | |||||
2 | Yangshan–Manaoke area | Yang shan | Carlin-like | Au | >300 | Monazite EPMA U-Th-Pb | 190 ± 3 | [47] | |||
Zircon SHRIMP U-Pb | 200.9–195.4 | [48] | |||||||||
137.0–121.4 | |||||||||||
Quartz 40Ar/39Ar | 195.40 ± 1.05 | 190.75 ± 2.36 | [49] | ||||||||
Manaoke | Carlin | Au | 40 | Fluid inclusions Rb-Sr | 210 ± 35 | [50] | |||||
3 | Dashui area | Dashui | Carlin-like | Au | >150 | Calcite Sm-Nd | 189.4 ± 1.4 | [51] | |||
4 | Fengxian–Taibai area | Shuangwang | Orogenic | Au | >70 | K-feldspar 40Ar/39Ar | 202.0–198.3 | [52] | |||
Simaoling | Orogenic | Au | Sericite 40Ar/39Ar | 211.9 ± 1.5 | [53] | ||||||
Baguamiao | Orogenic | Au | 106 | Calcite and ankerite Sm-Nd | 209.3 ± 4.2 | [54] | |||||
Muscovite | 209.5 ± 1.4 | ||||||||||
Dolomite and ankerite Sm-Nd | 208.1 ± 3.1 | ||||||||||
Pyrite U-Th-Pb | 210 | [55] | |||||||||
Sericite K-Ar | 199.1 ± 4.2 | ||||||||||
Sericite K-Ar | 194.4 ± 4.2 | ||||||||||
Quartz 40Ar/39Ar | 131.91 ± 0.89 | 129.45 ± 0.35 | [56] | ||||||||
Quartz 40Ar/39Ar | 232.58 ± 1.59 | 222.14 ± 3.45 | [57] | ||||||||
Chaima | Orogenic | Au | Calcite and dolomite Sm-Nd | 203.2 ± 1.6 | [58] | ||||||
Sericite 40Ar/39Ar | 219.0 ± 2.0 | [52] | |||||||||
Sphalerite Rb-Sr | 210.8 ± 2.4 | [59] | |||||||||
5 | Daqiao–Liba-Zhaishang area | Xiaogouli | Carlin | Au | 15 | Quartz 40Ar/39Ar | 197.45 ± 1.13 | 193.24 ± 0.93 | [56] | ||
Daqiao | Carlin-like | Au | >105 | Sericite (aliquots) 40Ar/39Ar | 143.2 ± 2.3 | 136.2 ± 3.2 | [45] | ||||
Sericite (aliquots) 40Ar/39Ar | 143.8 ± 1.4 | 139.2 ± 1.8 | |||||||||
Sericite (aliquots) 40Ar/39Ar | 142.3 ± 2.5 | 137.0 ± 3.6 | |||||||||
Sericite (aliquots) 40Ar/39Ar | 147.9 ± 0.9 | 132.2 ± 2.2 | |||||||||
Sericite (aliquots) 40Ar/39Ar | 150.7 ± 3.1 | 146.6 ± 2.5 | |||||||||
Sericite (aliquots) 40Ar/39Ar | 145.9 ± 2.5 | 138.7 ± 1.8 | |||||||||
Sericite 40Ar/39Ar | 140.1 ± 0.5 | 133.1 ± 1.7 | |||||||||
Sericite 40Ar/39Ar | 130.8 ± 3.1 | ||||||||||
Sericite (aliquots) 40Ar/39Ar | 128.8 ± 0.6 | 128.8 ± 0.6 | |||||||||
Sericite (aliquots) 40Ar/39Ar | 128.6 ± 0.6 | 128.5 ± 0.6 | |||||||||
Sericite (aliquots) 40Ar/39Ar | 127.2 ± 0.6 | 128.1 ± 0.6 | |||||||||
Sericite (aliquots) 40Ar/39Ar | 128.0 ± 0.6 | 129.4 ± 0.6 | |||||||||
Liba | Carlin-like | Au | 80 | Quartz 40Ar/39Ar | 210.6 ± 1.26 | 205.02 ± 3.53 | [60] | ||||
Muscovite and biotite 40Ar/39Ar | 216.4 ± 1.5 | [61] | |||||||||
Zhaishang | Carlin-like | Au | 148.7 | Quartz 40Ar/39Ar | 130.62 ± 1.38 | 129.24 ± 1.23 | [62] | ||||
Sericite 40Ar/39Ar | 125.28 ± 1.26 | 125.56 ± 1.20 | |||||||||
6 | Zaozigou area | Zaozigou | Orogenic | Au-Sb | 142 | Monazite LA-ICP-MS U-Pb | 211.1 ± 3 | [63] | |||
Ludousou | Orogenic | Au | 8 | Sericite 40Ar/39Ar | 235.68 ± 0.29 | 235.61 ± 0.41 | [64] | ||||
Yidinan | Orogenic | Au | >20 | Sericite 40Ar/39Ar | 220.21 ± 0.44 | 220.42 ± 7.69 | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, S.; Deng, X.; Yan, X.; Chen, J. Sericite 40Ar/39Ar Dating and Indosinian Mineralization in the Liushuping Au–Zn Deposit, West Qinling Orogen, China. Minerals 2022, 12, 666. https://doi.org/10.3390/min12060666
Yue S, Deng X, Yan X, Chen J. Sericite 40Ar/39Ar Dating and Indosinian Mineralization in the Liushuping Au–Zn Deposit, West Qinling Orogen, China. Minerals. 2022; 12(6):666. https://doi.org/10.3390/min12060666
Chicago/Turabian StyleYue, Suwei, Xiaohua Deng, Xiaoxu Yan, and Jianxiang Chen. 2022. "Sericite 40Ar/39Ar Dating and Indosinian Mineralization in the Liushuping Au–Zn Deposit, West Qinling Orogen, China" Minerals 12, no. 6: 666. https://doi.org/10.3390/min12060666
APA StyleYue, S., Deng, X., Yan, X., & Chen, J. (2022). Sericite 40Ar/39Ar Dating and Indosinian Mineralization in the Liushuping Au–Zn Deposit, West Qinling Orogen, China. Minerals, 12(6), 666. https://doi.org/10.3390/min12060666