Geochemical Characteristics of Tailings from Typical Metal Mining Areas in Tibet Autonomous Region
Abstract
:1. Introduction
2. Site Description
3. Materials and Methods
3.1. Tailings Sampling
3.2. Mineralogy
3.3. Geochemistry
4. Results and Discussions
4.1. Analysis of Mineral Composition Characteristics of Tailings
4.2. Characteristic Analysis of Element Content in Tailings
4.3. Characteristic Analysis of Trace Elements in Tailings
4.4. Characteristics Analysis of Radioactive Elements in Tailings
4.5. Analysis of Particle Size Characteristics of Tailings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, C.; Fourie, A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Pan, H.J.; Cheng, Z.Z.; Zhou, G.H. Geochemical and mineralogical characterization of tailings of the Dexing copper mine, Jiangxi Province, China. Geochem. Explor. En.v A 2017, 57, 349–356. [Google Scholar] [CrossRef]
- Sirkeci, A.A.; Gül, A.; Bulut, G. Recovery of Co, Ni, AND Cu from the tailings of divrigi iron ore concentrator. Min. Proc. Ext Met. Rev. 2006, 27, 131–141. [Google Scholar] [CrossRef]
- Tang, L.; Liu, X.; Wang, X.; Liu, S.; Deng, H. Statistical analysis of tailings ponds in China. J. Geochem. Explor. 2020, 216, 106579. [Google Scholar] [CrossRef]
- Li, G.Z. A Review of the Development of Mining Industry in Tibet after the Founding of New China. J. Henan Polytechnic University (Social Sciences), 2019. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-JZXS201902007.htm (accessed on 28 May 2022).
- Pan, H.; Zhou, G.; Cheng, Z. Advances in geochemical survey of mine tailings project in China. J. Geochem. Explor. 2014, 139, 193–200. (In Chinese) [Google Scholar] [CrossRef]
- Meng, Y.H.; Ni, W.; Zhang, Y.Y. Current state of ore tailings reusing and its future development in China. China Mine Eng. 2010, 39, 4–9. (In Chinese) [Google Scholar]
- Närhi, P.; Räisänen, M.L.; Sutinen, M.L.; Sutinen, R. Effect of tailings on wetland vegetation in Rautuvaara, a former iron-copper mining area in northern Finland. J. Geochem Explor. 2012, 116, 60–65. [Google Scholar] [CrossRef]
- Plante, B.; Bussière, B.; Benzaazoua, M. Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. J. Geochem. Explor. 2015, 114, 57–69. [Google Scholar] [CrossRef]
- Martinez-Martinez, S.; Acosta, J.A.; Carmona, D.M. Assessment of the lead and zinc contents in natural soils and tailing ponds from the Cartagena-La Union mining district, SE Spain. J. Geochem Explor. 2013, 124, 166–175. [Google Scholar] [CrossRef]
- Xie, L.F. The Preparation Technology on Polished Section and Thin Section of Sand Minerals. Yunnan Metall. 2015, 44, 76–77. (In Chinese) [Google Scholar]
- Parviainen, A. Tailings mineralogy and Geochemistry at the abandoned Haveri Au-Cu mine. Mine Water Environ. 2009, 28, 291–304. [Google Scholar] [CrossRef]
- Zheng, K.L.; Ye, J.Y.; Jiang, B.H. Selected Analytical Methods of 57 Elements for Multi-Purpose Geochemical Survey; Geological Publishing House: Beijing, China, 2005. [Google Scholar]
- Alakangas, L.; Bjoern, O. Formation and composition of cemented layers in low-sulphide mine tailings, Laver, northern Sweden. Environ. Geol. 2006, 50, 809–819. [Google Scholar] [CrossRef]
- Jackson, L.M.; Parbhakar, F. Mineralogical and geochemical characterization of the Old Tailings Dam, Australia: Evaluating the effectiveness of a water cover for longterm AMD control. Appl. Geochem. 2016, 68, 64–78. [Google Scholar] [CrossRef]
- Gao, S.; Kang, S.B. Sustainable applications for utilizing molybdenum tailings in concrete. J. Clean Prod. 2020, 266, 122020. [Google Scholar] [CrossRef]
- Rösner, T.; Schalkwyk, A.V. The environmental impact of gold mine tailings footprints in the Johannesburg region, South Africa. B Eng. Geol. Environ. 2000, 59, 137–148. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Fan, J.; Wei, S. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete. Constr. Build. Mater. 2014, 50, 540–548. [Google Scholar] [CrossRef]
- Chen, T.; Yan, Z.A.; Xu, D. Current situation and forecast of environmental risks of a typical lead-zinc sulfide tailings impoundment based on its geochemical characteristics. J. Environ. Sci. 2020, 93, 120–128. [Google Scholar] [CrossRef]
- Zeng, C.; Hu, H.; Feng, X. Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings. Chemosphere 2020, 249, 126227. [Google Scholar] [CrossRef]
- Ince, C. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus. J. Clean Prod. 2019, 238, 117871. [Google Scholar] [CrossRef]
- Kan, X.; Dong, Y.; Feng, L. Contamination and health risk assessment of heavy metals in China’s lead–zinc mine tailings: A meta–analysis. Chemosphere 2020, 267, 128909. [Google Scholar] [CrossRef]
- Fontes, W.C.; Franco, C.J.M.; Andrade, L.C.R. Assessment of the use potential of iron ore tailings in the manufacture of ceramic tiles: From tailings-dams to “brown porcelain”. Constr. Build. Mater. 2019, 206, 111–121. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M.; Fantke, P. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE 2017, 12, e0172517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Yu, F.; Sun, X. Long term effects of Lespedeza bicolor revegetation on soil bacterial communities in Dexing copper mine tailings in Jiangxi Province, China. Appl. Soil Ecol. 2018, 125, 192–201. [Google Scholar] [CrossRef]
Type | Address | Temperature | Humidity | Altitude | Longitude | Dimension |
---|---|---|---|---|---|---|
Iron ore tailings (1#) | Namu Village, Chundui Township, Linzhou County | 10 °C | 91% | 4400 | 91.05 | 30.01 |
Copper mine tailings (2#) | JiaMa township | 12 °C | 79% | 4010 | 91.39 | 29.42 |
Molybdenum tailings (4#) | Jigong Village, Qushui County | 17 °C | 55% | 3668 | 90.77 | 29.39 |
Gold mine tailings (5#) | Qushui Village, Pusong Township, Nimu County | 23 °C | 31% | 4081 | 90.13 | 29.50 |
Lead and zinc tailings (7#) | Dong Cun, Kazi Township, Linzhou County | 10 °C | 90% | 4330 | 90.91 | 29.86 |
Element | Detection Limit | Analytical Method | RSD % | Element | Detection Limit | Analytical Method | RSD % |
---|---|---|---|---|---|---|---|
Ag | 0.02 mg/kg | AES | 3.82 | K2O | 0.01% | XRF | 2.2 |
Al2O3 | 0.05% | XRF | 1.11 | MgO | 0.05% | XRF | 1.55 |
As | 0.5 mg/kg | HG-AFS | 2.68 | Mn | 10.0 mg/kg | XRF | 0.49 |
Au | 0.2 μg/kg | AR-GFAAS | 6.40 | Mo | 0.24 mg/kg | DF-ICP-MS | 4.76 |
B | 1.0 mg/kg | AES | 8.18 | Na2O | 0.02% | XRF | 5.65 |
Ba | 3.0 mg/kg | XRF | 4.30 | Ni | 2.0 mg/kg | DF-ICP-MS | 4.54 |
Bi | 0.04 mg/kg | DF-ICP-MS | 8.85 | P | 10.0 mg/kg | XRF | 1.21 |
C | 0.04% | VOL | 1.60 | Pb | 1.0 mg/kg | XRF | 0.62 |
CaO | 0.05% | XRF | 0.91 | S | 50.0 mg/kg | XRF | 1.21 |
Cd | 0.03 mg/kg | DF-ICP-MS | 5.58 | Sb | 0.04 mg/kg | DF-ICP-MS | 0.62 |
Co | 0.5 mg/kg | DF-ICP-MS | 4.41 | SiO2 | 0.05% | XRF | 4.03 |
Cr | 5.0 mg/kg | XRF | 1.77 | Ti | 10.0 mg/kg | XRF | 0.64 |
Cu | 0.5 mg/kg | DF-ICP-MS | 4.85 | Tl | 0.006 mg/kg | DF-ICP-MS | 2.23 |
F | 96.0 mg/kg | ISE | 6.12 | V | 4.0 mg/kg | XRF | 9.97 |
Fe2O3 | 0.01% | XRF | 0.65 | W | 0.3 mg/kg | DF-ICP-MS | 6.50 |
Hg | 0.5 μg/kg | HG-AFS | 2.18 | Zn | 3.0 mg/kg | XRF | 2.23 |
Type | Quartz | Andradite | Actinolite | Augite | Gypsum | Muscovite | Clinochlore | Microcline | Albite | Calcite | Pyrite | Kaolinite |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Iron ore tailings (1#) | 18% | 26% | 19% | 21% | 1% | 1% | 2% | 2% | 5% | 4% | - | - |
Copper mine tailings (2#) | 22% | 17% | 5% | 22% | - | 4% | 6% | 4% | 8% | 11% | - | - |
Molybdenum tailings (4#) | 86% | - | 1% | - | - | 2% | - | 5% | 3% | - | 1% | 1% |
Gold mine tailings (5#) | 67% | - | 3% | - | - | 12% | - | 7% | 10% | - | - | 2% |
Lead and zinc tailings (7#) | 32% | 3% | 13% | 30% | - | <1% | 6% | 1% | 2% | 14% | - | - |
Tailing Type | The Main Elements (wt%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | TiO2 | MgO | CaO | Na2O | K2O | P2O5 | MnO | S | |
Iron ore tailings (1#) | 33.07 | 5.07 | 29.74 | 0.29 | 2.83 | 24.70 | 0.44 | 0.57 | 0.11 | 0.79 | 0.94 |
Copper mine tailings (2#) | 41.97 | 9.28 | 19.13 | 0.52 | 2.05 | 23.45 | 0.74 | 1.34 | 0.16 | 0.41 | 0.17 |
Molybdenum tailings (4#) | 91.41 | 2.72 | 1.94 | 0.13 | 0.44 | 0.54 | 0.44 | 1.62 | 0.09 | 0.04 | 0.47 |
Gold mine tailings (5#) | 67.61 | 15.88 | 5.87 | 0.48 | 1.06 | 1.43 | 0.89 | 5.78 | 0.27 | 0.09 | 0.17 |
Lead–zinc mine tailings (7#) | 41.80 | 4.44 | 23.73 | 0.21 | 1.72 | 20.65 | 0.23 | 0.29 | 0.13 | 3.20 | 2.23 |
Tailing Type | Trace Elements (wt%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mn | Zn | As | Pb | Cu | Ni | P | Co | Mo | Y | Rb | |
Iron ore tailings (1#) | 0.611 | 0.407 | 0.010 | - | 0.078 | 0.438 | 0.047 | 0.014 | - | 0.005 | 0.006 |
Copper mine tailings (2#) | 0.317 | 0.028 | 0.005 | 0.015 | 0.246 | 0.162 | 0.068 | 0.011 | - | 0.003 | 0.005 |
Molybdenum tailings (4#) | 0.029 | 0.018 | - | 0.050 | 0.001 | 0.001 | 0.04 | - | 0.018 | - | 0.003 |
Gold mine tailings (5#) | 0.065 | 0.022 | - | 0.229 | 0.022 | - | 0.118 | 0.003 | - | 0.003 | 0.003 |
Lead–zinc mine tailings (7#) | 2.48 | 0.825 | 0.016 | 0.156 | 0.011 | 0.006 | 0.156 | 0.012 | - | 0.002 | 0.002 |
Tailing Type | Radioactive Element (Bq/Kg) | ||||
---|---|---|---|---|---|
Ra-226 Specific Activity | Th-232 Specific Activity | K-40 Specific Activity | Internal Exposure Index (IRa) | External Exposure Index (Ir) | |
Iron ore tailings (1#) | 30.18 | 21.58 | 86.95 | 0.2 | 0.2 |
Copper mine tailings (2#) | 34.42 | 27.26 | 89.65 | 0.2 | 0.2 |
Molybdenum tailings (4#) | 94.62 | 16.09 | 369.66 | 0.5 | 0.4 |
Gold mine tailings (5#) | 83.88 | 89.62 | 762.89 | 0.4 | 0.8 |
Lead–zinc mine tailings (7#) | 31.70 | 18.81 | 19.44 | 0.2 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, R.; Chen, G.; Huang, X.; Tian, F.; Ni, L.; Peng, L.; Liao, D.; Xi, B. Geochemical Characteristics of Tailings from Typical Metal Mining Areas in Tibet Autonomous Region. Minerals 2022, 12, 697. https://doi.org/10.3390/min12060697
Weng R, Chen G, Huang X, Tian F, Ni L, Peng L, Liao D, Xi B. Geochemical Characteristics of Tailings from Typical Metal Mining Areas in Tibet Autonomous Region. Minerals. 2022; 12(6):697. https://doi.org/10.3390/min12060697
Chicago/Turabian StyleWeng, Rengui, Guohong Chen, Xin Huang, Feng Tian, Liufang Ni, Lei Peng, Dongqi Liao, and Beidou Xi. 2022. "Geochemical Characteristics of Tailings from Typical Metal Mining Areas in Tibet Autonomous Region" Minerals 12, no. 6: 697. https://doi.org/10.3390/min12060697
APA StyleWeng, R., Chen, G., Huang, X., Tian, F., Ni, L., Peng, L., Liao, D., & Xi, B. (2022). Geochemical Characteristics of Tailings from Typical Metal Mining Areas in Tibet Autonomous Region. Minerals, 12(6), 697. https://doi.org/10.3390/min12060697