Genesis of Color Zonation and Chemical Composition of Penglai Sapphire in Hainan Province, China
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Results
4.1. Physical Characteristics of the Penglai Sapphires
4.2. UV–Vis Spectral Characteristics
4.3. FTIR Features
4.4. Chemical Composition of the Penglai Sapphires
5. Discussion
5.1. Color Genesis of Growth Bands
5.2. Compositional Characteristics of the Penglai Sapphire
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubinsky, E.V.; Stone-Sundberg, J.; Emmett, J.L. A quantitative description of the causes of color in corundum. Gems Gemol. 2020, 56, 2–28. [Google Scholar] [CrossRef]
- Xu, X.-S.; Chen, X.-M.; Griffin, W.L.; O′Reilly, S.Y.; Zhang, X.-S.; Chen, L.-H. Immiscible-melt inclusions in corundum megacrysts: Microanalyses and geological implications. Am. Miner. 2021, 106, 559–569. [Google Scholar] [CrossRef]
- Kullerud, K.; Nasipuri, P.; Ravna, E.J.K.; Selbekk, R.S. Formation of corundum megacrysts during H2O-saturated incongruent melting of feldspar: P–T pseudosection-based modelling from the Skattøra migmatite complex, North Norwegian Caledonides. Contrib. Miner. Pet. 2012, 164, 627–641. [Google Scholar] [CrossRef]
- Baldwin, L.; Tomaschek, F.; Ballhaus, C.; Gerdes, A.; Fonseca, R.; Wirth, R.; Geisler, T.; Nagel, T. Petrogenesis of alkaline basalt-hosted sapphire megacrysts. Petrological and geochemical investigations of in situ sapphire occurrences from the Siebengebirge Volcanic Field, Germany. Contrib. Miner. Pet. 2017, 172, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Kochelek, K.; McMillan, N.; McManus, C.; Daniel, D. Provenance determination of sapphires and rubies using laser-induced breakdown spectroscopy and multivariate analysis. Am. Miner. 2015, 100, 1921–1931. [Google Scholar] [CrossRef]
- Wang, H.; Yu, X.-Y.; Liu, F.; Alam, M.; Wu, G.-C. Color genesis and compositional characteristics of color-change sapphire from Fuping, China. Crystals 2022, 12, 463. [Google Scholar] [CrossRef]
- Abduriyim, A.; Kitawaki, H. Determination of the origin of blue sapphire using laser ablation inductively coupled plasma mass spectrosmetry (LA-ICP-MS). J. Gemmol. 2007, 30, 23–36. [Google Scholar] [CrossRef]
- Graham, I.T.; Harris, S.J.; Martin, L. Enigmatic alluvial sapphires from the Orosmayo Region, Jujuy Province, Northwest Argentina: Insights into their origin from in situ oxygen isotopes. Minerals 2019, 9, 390. [Google Scholar] [CrossRef] [Green Version]
- Krebs, M.Y.; Hardman, M.F.; Pearson, D.G.; Luo, Y.; Fagan, A.J.; Sarkar, C. An evaluation of the potential for determination of the geographic origin of ruby and sapphire using an expanded trace element suite plus sr-pb isotope compositions. Minerals 2020, 10, 447. [Google Scholar] [CrossRef]
- Furui, W. The sapphires of Penglai, Hainan Island, China. Gems Gemol. 1988, 24, 155–159. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Long, Z.-Y.; Zhang, Y.; Qin, L.-J.; Zhang, C.; Xie, Z.-R.; Wu, Y.-R.; Yan, Y.; Wu, M.-K.; Wan, J.-X. Overview of gemstone resources in China. Crystals 2021, 11, 1189. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Z.; Qin, S.; Pang, X. Sapphire and its forming-conditions in Penglai, Hainan Province. Acta Mineral. Sin. 1993, 13, 368–373. [Google Scholar]
- Qiu, Z.; Qin, S.; Pang, X. The genesis of corundum megacrysts related to alkali basalt in Haina. Acta Sci. Nat. Univ. Sunyatseni 1995, 34, 95–101. [Google Scholar]
- Zhang, Z.; He, Y.; Yue, K.; Liu, W. Character of girdle band and its comparision of sapphire from Changle, Shandong Province and Penglai, Hainan Province. Miner. Depos. 2002, 21, 938–940. [Google Scholar]
- Yang, Q.; Yang, Y.; Tian, Y.-H. A Study on photoluminescence spectroscopy of sapphire from Penglai, Hainan. Acta Mineral. Sin. 2009, 29, 447–451. [Google Scholar]
- Wang, X.; Li, Z.; Li, X.; Li, J.; Liu, Y.; Long, W.; Zhou, J.; Wang, F. Temperature, pressure, and composition of the mantle source region of late cenozoic basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones? J. Petrol. 2012, 53, 177–233. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Z.; Zhong, S. Characteristics of volcanic rocks and relationship with the sapphire deposit, Penglai, Hainan. Geol. Miner. Resour. South China 1997, 3, 39–45. [Google Scholar]
- Lan, T.; Dong, Y. Petrological and petrochemical characteristics of sapphire-bearing basalts in Penglai mining area, Hainan. J. Guilin Coll. Geol. 1991, 11, 28–37. [Google Scholar]
- Graham, I.; Sutherland, L.; Zaw, K.; Nechaev, V.; Khanchuk, A. Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields. Ore Geol. Rev. 2008, 34, 200–215. [Google Scholar] [CrossRef]
- Emmett, J.L.; Scarratt, K.; McClure, S.F.; Moses, T.; Douthit, T.R.; Hughes, R.; Novak, S.; Shigley, J.E.; Wang, W.; Bordelon, O. Beryllium diffusion of ruby and sapphire. Gems Gemol. 2003, 39, 84–135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.-Q.; Ma, Y. Main color-causing factors of sapphires in Shandong Province. Contrib. Geol. Miner. Resour. Res. 2008, 21, 115–119. [Google Scholar]
- Mattson, S.M.; Rossman, G.R. Fe2+-Ti4+ charge transfer in stoichiometric Fe2+, Ti4+-minerals. Phys. Chem. Miner. 1988, 16, 78–82. [Google Scholar] [CrossRef]
- Moon, A.R.; Phillips, M.R. Defect clustering and color in Fe, Ti: α-Al2O3. J. Am. Ceram. Soc. 1994, 77, 356–367. [Google Scholar] [CrossRef]
- Müller, R.; Günthard, H.H. Spectroscopic study of the reduction of nickel and cobalt ions in sapphire. J. Chem. Phys. 1966, 44, 365. [Google Scholar] [CrossRef]
- D′lppolito, V.; Andreozzi, G.; Hålenius, U.; Skogby, H.; Hametner, K.; Günther, D. Color mechanisms in spinel: Cobalt and iron interplay for the blue color. Phys. Chem. Miner. 2015, 42, 431–439. [Google Scholar] [CrossRef]
- Emmett, J.L.; Douthit, T.R. Heat treating the sapphires of Rock Creek, Montana. Gems Gemol. 1993, 29, 250–272. [Google Scholar] [CrossRef]
- Palke, A.C.; Breeding, C.M. The origin of needle-like rutile inclusions in natural gem corundum: A combined EPMA, LA-ICP-MS, and nanoSIMS investigation. Am. Miner. 2017, 102, 1451–1461. [Google Scholar] [CrossRef]
- Sudarat, S.; Supharart, S.; Wim, V.; Ungkhana, A.; Victoria, L.; Raynaud, F.; Charuwan, K.; Vararut, W. A study of sapphire from Chanthaburi, Thailand and its gemological characteristics. Gems Gemol. 2017, 53, 1–42. [Google Scholar]
- Sudarat, S.; Supharart, S.; Wim, V.; Ungkhana, A. An in-depth gemological study of blue sapphires from Pailin, Cambodia. Gems Gemol. 2017, 53, 1–45. [Google Scholar]
- Lucas, A.; Hsu, T. Tourmaline and sapphire from Nigeria. Gems Gemol. 2017, 53, 134–135. [Google Scholar]
- Phlayrahan, A.; Monarumit, N.; Satitkune, S.; Wathanakul, P. Role of ti content on the occurrence of the 3309-cm-1 peak in FTIR absorption spectra of ruby samples. J. Appl. Spectrosc. 2018, 85, 385–390. [Google Scholar] [CrossRef]
- Hughes, E.B.; Perkins, R. Madagascar sapphire: Low-temperature heat treatment experiments. Gems Gemol. 2019, 55, 184–197. [Google Scholar] [CrossRef] [Green Version]
- Phlayrahan, A.; Monarumit, N.; Lhuaamporn, T.; Satitkune, S.; Wathanakul, P. Spectroscopic investigation of properties of blue sapphire samples depending on heating conditions. J. Appl. Spectrosc. 2019, 86, 810–816. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Zaw, K.; Meffre, S.; Giuliani, G.; Fallick, A.E.; Graham, I.T.; Webb, G.B. Gem-corundum megacrysts from east Australian basalt fields: Trace elements, oxygen isotopes and origins. Aust. J. Earth Sci. 2009, 56, 1003–1022. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, K.; Müller, A.; Hou, Z.; Zhu, Z.; Yu, H. Machine learning prediction of quartz forming-environments. J. Geophys. Res. Solid Earth 2021, 126, e21925. [Google Scholar] [CrossRef]
- Wu, M.; Samson, I.M.; Qiu, K.; Zhang, D. Concentration mechanisms of rare earth element-Nb-Zr-Be mineralization in the Baerzhe deposit, Northeast China: Insights from textural and chemical features of amphibole and rare metal minerals. Econ. Geol. 2021, 116, 651–679. [Google Scholar] [CrossRef]
- Guo, J.; Wang, F.; Yakoumelos, G. Sapphires from Changle in Shandong province, China. Gems Gemol. 1992, 28, 255–260. [Google Scholar] [CrossRef]
- Peucat, J.J.; Ruffault, P.; Fritsch, E.; Bouhnik-Le Coz, M.; Simonet, C.; Lasnier, B. Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires. Lithos 2007, 98, 261–274. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Zaw, K.C.; Meffre, S.C.; Yui, T.-F.D.; Thu, K.E. Advances in trace element “fingerprinting” of gem corundum, ruby and sapphire, Mogok area, Myanmar. Minerals 2014, 5, 61–79. [Google Scholar] [CrossRef] [Green Version]
- Uher, P.; Giuliani, G.; Szakall, S.; Fallick, A.E.; Strunga, V.; Vaculovic, T.; Ozdin, D.; Greganova, M. Sapphires related to alkali basalts from the Cerová Highlands, Western Carpathians (southern Slovakia): Composition and origin. Geol. Carpathica 2012, 63, 71–82. [Google Scholar] [CrossRef]
- Peter Möller, P.; Saupé, F. Lanthanides, Tantalum, and Niobium: Mineralogy, Geochemistry, Characteristics of Primary Ore Deposits, Prospecting, Processing, and Applications: Proceedings of a Workshop in Berlin, November 1986; Springer: Berlin/Heidelberg, Germany, 1989; p. 380. [Google Scholar]
- Aspen, P.; Upton, B.G.J.; Dickin, A.P. Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts; High-pressure syenitic debris from upper mantle sources. Eur. J. Mineral. 1990, 2, 503–517. [Google Scholar] [CrossRef]
- Yu, X.; Niu, X.; Zhao, L. Characterization and origin of zonal sapphire from Shandong Province, China. J. Met. 2015, 67, 391–397. [Google Scholar] [CrossRef]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic origin determination of ruby. Gems Gemol. 2019, 55, 536–579. [Google Scholar] [CrossRef]
Sample | DIR | Color | Spot | Fe | Ga | Ti | Cr | Mg | V | Fe/Ti | Ga/Mg | Fe/Mg | Cr/Ga |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sap-1 | A ↓ B | Deep blue core | 1 | 8068.86 | 420.16 | 94.38 | 18.41 | 15.20 | 3.18 | 85.49 | 27.64 | 530.89 | 0.04 |
2 | 7518.39 | 398.21 | 87.26 | 13.27 | 15.75 | 2.02 | 86.16 | 25.29 | 477.44 | 0.03 | |||
3 | 7229.51 | 376.26 | 100.59 | 10.87 | 27.73 | 2.30 | 71.87 | 13.57 | 260.70 | 0.03 | |||
4 | 6695.00 | 376.23 | 108.77 | 14.52 | 18.28 | 2.73 | 61.55 | 20.58 | 366.25 | 0.04 | |||
5 | 6537.82 | 368.64 | 101.88 | 13.43 | 10.86 | 2.16 | 64.17 | 33.95 | 602.02 | 0.04 | |||
6 | 6989.96 | 374.24 | 94.43 | 11.72 | 2.38 | 2.43 | 74.02 | 157.24 | 2936.96 | 0.03 | |||
Yellowish-brown rim | 7 | 4969.15 | 258.19 | 448.57 | 13.81 | 5.19 | 1.40 | 11.08 | 49.75 | 957.50 | 0.05 | ||
8 | 5148.08 | 261.72 | 392.91 | 20.32 | 0.83 | 0.18 | 13.10 | 315.21 | 6200.29 | 0.08 | |||
9 | 5245.51 | 280.18 | 610.06 | 19.17 | 15.70 | 0.97 | 8.60 | 17.84 | 334.08 | 0.07 | |||
10 | 5064.39 | 285.03 | 560.89 | 19.38 | 9.64 | 0.91 | 9.03 | 29.56 | 525.14 | 0.07 | |||
11 | 5234.76 | 257.98 | 496.44 | 9.34 | 0.13 | 0.68 | 10.54 | 2013.56 | 40857.76 | 0.04 | |||
12 | 5283.87 | 256.99 | 512.21 | 21.93 | 12.06 | 2.08 | 10.32 | 21.31 | 438.08 | 0.09 | |||
13 | 5027.11 | 265.94 | 432.08 | 16.83 | 11.49 | 1.05 | 11.63 | 23.14 | 437.42 | 0.06 | |||
14 | 4472.11 | 274.31 | 489.71 | 11.48 | 4.57 | 1.33 | 9.13 | 60.01 | 978.30 | 0.04 | |||
15 | 4224.53 | 240.60 | 295.83 | 11.42 | 7.86 | 0.86 | 14.28 | 30.62 | 537.61 | 0.05 | |||
16 | 4168.04 | 236.78 | 258.41 | 4.93 | 18.82 | 1.66 | 16.13 | 12.58 | 221.43 | 0.02 | |||
17 | 3996.28 | 252.99 | 228.92 | 8.27 | 8.16 | 1.33 | 17.46 | 30.99 | 489.47 | 0.03 | |||
18 | 3746.31 | 226.14 | 279.66 | 3.72 | 1.06 | 1.38 | 13.40 | 214.08 | 3546.54 | 0.02 | |||
19 | 3856.99 | 235.29 | 335.19 | 5.36 | 8.47 | 1.70 | 11.51 | 27.77 | 455.27 | 0.02 | |||
20 | 3191.89 | 190.49 | 250.90 | 8.34 | 2.50 | 1.64 | 12.72 | 76.07 | 1274.64 | 0.04 | |||
21 | 3226.51 | 190.51 | 216.04 | 9.64 | 3.04 | 1.26 | 14.94 | 62.71 | 1062.10 | 0.05 | |||
22 | 2906.85 | 186.44 | 97.95 | 10.64 | 3.39 | 0.94 | 29.68 | 54.99 | 857.29 | 0.06 | |||
C ↓ D | Deep blue core | 1 | 6759.82 | 377.67 | 104.69 | 6.45 | 13.29 | 2.38 | 64.57 | 28.42 | 508.64 | 0.02 | |
2 | 7841.34 | 370.30 | 95.64 | 10.57 | 27.02 | 1.49 | 81.99 | 13.70 | 290.21 | 0.03 | |||
3 | 7868.48 | 384.03 | 94.50 | 11.91 | 14.38 | 3.27 | 83.26 | 26.71 | 547.18 | 0.03 | |||
4 | 8697.46 | 410.72 | 105.94 | 14.04 | 23.13 | 2.81 | 82.10 | 17.76 | 376.03 | 0.03 | |||
5 | 5091.60 | 285.47 | 272.51 | 16.89 | 8.77 | 1.43 | 8.68 | 32.55 | 580.57 | 0.06 | |||
6 | 6111.20 | 351.52 | 269.77 | 21.96 | 12.65 | 1.74 | 22.65 | 27.79 | 483.10 | 0.06 | |||
Yellowish-brown rim | 7 | 5488.46 | 399.60 | 296.23 | 13.47 | 6.73 | 2.18 | 18.53 | 59.34 | 815.09 | 0.03 | ||
8 | 5195.35 | 318.03 | 292.73 | 9.88 | 4.79 | 1.49 | 17.75 | 66.42 | 1084.98 | 0.03 | |||
9 | 4366.93 | 263.47 | 236.19 | 8.35 | 2.32 | 1.82 | 18.49 | 113.54 | 1881.92 | 0.03 | |||
10 | 4275.72 | 295.43 | 173.37 | 14.73 | 0.68 | 1.85 | 24.66 | 433.11 | 6268.30 | 0.05 | |||
11 | 4436.24 | 253.52 | 271.67 | 7.10 | 5.46 | 0.96 | 16.33 | 46.47 | 813.08 | 0.03 | |||
12 | 3745.72 | 231.91 | 232.43 | 6.81 | 1.71 | 1.25 | 16.12 | 135.38 | 2186.62 | 0.03 | |||
13 | 3412.76 | 215.86 | 293.19 | 11.66 | 9.59 | 0.97 | 11.64 | 22.50 | 355.72 | 0.05 |
Color Mechanism | Elements | Sap-1 (Deep-Blue Core) | Sap-1 (Yellowish-Brown Rim) | Thailand | Cambodia | Nigeria |
---|---|---|---|---|---|---|
Crystal field theory | Fe3+ | - | - | 388 | 388 | 388 |
Fe3+-Fe3+ | 380, 453 | 376, 448 | 377, 450, 535 | 330, 377, 450 | 377, 450 | |
Electronic transfer | Fe2+-Ti4+ | 576 | - | 580 | 580 | 500-600 |
Cr3+ | 658 | 658 | - | - | - | |
Fe2+-Fe3+ | - | - | 840–880 | 866 | 900 | |
References | This study | This study | [28] | [29] | [30] |
Deposits | Fe | Mg | Ga | Ti | V | Cr | Ga/Mg | Ti/Mg | Fe/Mg | Fe/Ti | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | ±1σ | avg | ±1σ | avg | ±1σ | avg | ±1σ | avg | ±1σ | avg | ±1σ | avg | |||||
Pailin (Cambodia) [38] | 2311 | 258 | 5 | 5 | 143 | 12 | 205 | 158 | 8 | 2 | b.d.l. | 52 | 42 | 474 | 11 | ||
Houai Sai (N Laos) [38] | 3720 | 1608 | 6 | 4 | 191 | 73 | 89 | 108 | 2 | 1 | b.d.l. | 48 | 15 | 618 | 42 | ||
Sam Sai | Blue | 11,098 | 882 | 5 | 2 | 189 | 8 | 172 | 62 | 6 | 1 | b.d.l. | 42 | 38 | 2463 | 65 | |
(S Laos) [38] | Blue green | 8711 | 263 | 4 | 1 | 184 | 9 | 106 | 25 | 5 | 0.3 | b.d.l. | 45 | 26 | 2126 | 82 | |
Chantaburi (Thailand) [38] | 6125 | 2978 | 18 | 20 | 186 | 29 | 279 | 190 | 11 | 6 | 16 | 51 | 26 | 16 | 345 | 22 | |
Bo Phloi (Thailand) [38] | 2187 | 660 | 15 | 12 | 139 | 28 | 126 | 64 | 6 | 6 | b.d.l. | 15 | 8 | 145 | 17 | ||
Jos Plateau (Nigeria) [38] | 8661 | 724 | 9 | 4 | 173 | 32 | 176 | 86 | 19 | 9 | b.d.l. | 18 | 19 | 918 | 49 | ||
Analafady (N Madagascar) [38] | 7192 | 923 | 8 | 5 | 174 | 20 | 154 | 91 | 4 | 2 | b.d.l. | 22 | 19 | 902 | 47 | ||
Lake Turkana (Kenya) [38] | 8504 | 1480 | 10 | 8 | 140 | 34 | 134 | 172 | 6 | 3 | b.d.l. | 26 | 14 | 878 | 63 | ||
Hainan-Fudjian-Shandong (China) [38] | 8399 | 690 | 9 | 4 | 275 | 36 | 95 | 65 | 2 | 1 | b.d.l | 31 | 11 | 936 | 88 | ||
Shandong Changle (China) [43] | 16,335.3 | 2375 | 81.9 | 43.3 | 272.7 | 19.9 | 441 | 260 | 16.9 | 3.8 | 93.2 | 54.2 | 4.1 | 6.2 | 250.8 | 50.1 | |
This paper | 6087 | 1852 | 21 | 29 | 306 | 53 | 270 | 380 | 2 | 1 | 11 | 5 | 14 | 21 | 285 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.-Y.; Yu, X.-Y.; Liu, F. Genesis of Color Zonation and Chemical Composition of Penglai Sapphire in Hainan Province, China. Minerals 2022, 12, 832. https://doi.org/10.3390/min12070832
Wang G-Y, Yu X-Y, Liu F. Genesis of Color Zonation and Chemical Composition of Penglai Sapphire in Hainan Province, China. Minerals. 2022; 12(7):832. https://doi.org/10.3390/min12070832
Chicago/Turabian StyleWang, Guang-Ya, Xiao-Yan Yu, and Fei Liu. 2022. "Genesis of Color Zonation and Chemical Composition of Penglai Sapphire in Hainan Province, China" Minerals 12, no. 7: 832. https://doi.org/10.3390/min12070832
APA StyleWang, G.-Y., Yu, X.-Y., & Liu, F. (2022). Genesis of Color Zonation and Chemical Composition of Penglai Sapphire in Hainan Province, China. Minerals, 12(7), 832. https://doi.org/10.3390/min12070832