Chromian Spinels from Kazanian-Stage Placers in the Southern Pre-Urals, Bashkiria, Russia: Morphological and Chemical Features and Evidence for Provenance
Abstract
:1. Introduction
1.1. Crystallography of Chromian Spinel
1.2. Chemistry of Chromian Spinel as an Indicator of Magmatic Formations
2. Geological Background
3. Materials and Methods
4. Description of Placers
4.1. Sabantuy Paleoplacer
4.2. Kolkhoznyi Prud Paleoplacer
4.3. Verkhne-Yaushevo Paleoplacer
4.4. Sukhoy Izyak Paleoplacer
4.5. Bazilevo Paleoplacer
4.6. Novomikhaylovka Paleoplacer
4.7. Kiryushkino Paleoplacer
5. Discussion
5.1. Environment of Sedimentation
5.2. Relationship between Morphology and Chemical Composition of Chromian Spinels
5.3. Inclusions and Their Interpretation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charles, P.; Berman, H.; Frondel, C. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. Yale University: Volume I: Elements, Sulfides, Sulfosalts, Oxides, 7th ed.; revised and enlarged: 709 (chromite); John Wiley & Sons, Inc.: New York, NY, USA, 1944; pp. 1837–1892. [Google Scholar]
- Griggs, A.B. Chromite-Bearing Sands of the Southern Part of the Coast of Oregon; Bulletin 945-E; Geological Survey: Reston, VA, USA, 1945; pp. 113–150.
- Osborne, M.D.; Fleet, M.E.; Bancroft, G.M. Fe2+–Fe3+ ordering in chromite and Cr-bearing spinels. Contrib. Mineral. Petrol. 1981, 77, 251–255. [Google Scholar] [CrossRef]
- Gundewar, B.P.S.; Sinha, B.P. Monograph on Chromite; IBM Press: New Delhi, India, 2013; p. 162. [Google Scholar]
- Arai, S.; Akizawa, N. Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite: New behavior of Cr and chromite. Am. Miner. 2014, 99, 28–34. [Google Scholar] [CrossRef]
- Greenbaum, D. The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Econ. Geol. 1977, 72, 1175–1194. [Google Scholar] [CrossRef]
- Leblanc, M.; Ceuleneer, G. Chromite crystallisation in multicelular magma flow: Evidence from a chromitite dike in the Oman ophiolite. Lithos 1992, 27, 231–257. [Google Scholar] [CrossRef]
- Stowe, C.W. Compositions and tectonic settings of chromite deposits through time. Econ. Geol. 1994, 89, 528–546. [Google Scholar] [CrossRef]
- Chaschukhin, I.S.; Votyakov, S.L.; Shapova, Y.V. Crystallochemistry of Chromspinel and Oxythermobarometry of Ultramafites of Folded Belts; Institute of Geology and Geochemistry Ural Branch RAS: Yekaterinburg, Russia, 2007; p. 310. (In Russian) [Google Scholar]
- Hisada, K.; Arai, S. Detrital chrome spinels in the cretaceous sanchu sandstone, central Japan: Indicator of serpentinite protrusion into a fore-arc region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1993, 105, 95–109. [Google Scholar] [CrossRef]
- Lenaz, D.; Kamenetsky, V.S.; Crowford, A.J.; Princivalle, F. Melt inclusions in detrital spinel from the SE Alps (Italy–Slovenia): A new approach to provenance studies of sedimentary basins. Contrib. Mineral. Petrol. 2000, 139, 748–758. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromium spinel as a petrogenetic indicator. Part, I. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromium spinel as a petrogenetic indicator. Part II. Petrological applications. Can. J. Earth Sci. 1967, 4, 71–103. [Google Scholar] [CrossRef]
- Hill, R.J.; Roeder, P.L. The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J. Geol. 1974, 82, 709–729. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Murck, B.W.; Campbell, I.H. The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts. Geochim. Cosmochim. Acta 1986, 50, 1871–1887. [Google Scholar] [CrossRef]
- Sack, R.O.; Batiza, R. Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern Pacific. Am. Mineral. 1988, 73, 741–753. [Google Scholar]
- Sack, R.O.; Ghiorso, M.S. Chromian spinels as petrogenetic indicators: Thermodynamics and petrologic applications. Am. Mineral. 1991, 76, 827–847. [Google Scholar]
- Allan, J.F. Cr-spinel as a petrogenetic indicator: Deducing magma composition from spinel in highly altered basalts from the Japan Sea, Sites 794 and 797. In Proceedings of the Ocean Drilling Program, Scientific Results; Ocean Drilling Program: College Station, TX, USA, 1992; Volume 128, pp. 837–847. [Google Scholar]
- Afanas’ev, V.P.; Zinchuk, N.N.; Pokhilenko, N.P. Diamond Prospecting Mineralogy; Academician Publishing “Geo”: Novosibirsk, Russia, 2010; p. 650. ISBN 978-5-9747-0180-1. [Google Scholar]
- Rakhimov, I.R.; Pushkarev, E.V.; Gottman, I.A. Chromite paleoplacer in the Permian sediments at the east edge of the East European Platform: Composition and potential sources. Minerals 2021, 11, 691. [Google Scholar] [CrossRef]
- Shilo, N.A. Teaching on Placer Deposits; Dalnauka: Vladivostok, Russia, 2002; p. 576. ISBN 5-8044-0200-5. (In Russian) [Google Scholar]
- Nakagawa, M.; Osame, A.; Yamamoto, S.; Harada, T. Iridium-series PGE anomalies in placer chromite from the northern Kamuikotan ophiolitic complex. Shigen Chishitsu 1995, 45, 401–408. [Google Scholar] [CrossRef]
- Pownceby, M.; Bourne, P. Detrital chrome-spinel grains in heavy-mineral sand deposits from southeast Africa. Mineral. Mag. 2006, 70, 51–64. [Google Scholar] [CrossRef]
- Iyer, S.D.; Babu, E.V.S.S.K.; Mislankar, P.G.; Gujar, A.R.; Ambre, N.V.; Loveson, V.J. Occurrence and emplacement of chromite ores in Sindhudurg District, Maharashtra, India. Acta Geol. Sin. 2010, 84, 515–527. [Google Scholar] [CrossRef]
- Gujar, A.R.; Ambre, N.V.; Iyer, S.D.; Mislankar, P.G.; Loveson, V.J. Placer chromite along south Maharashtra, central west coast of India. Curr. Sci. 2010, 99, 492–499. [Google Scholar]
- Maurizot, P.; Mortimer, N. New Caledonia: Geology, Geodynamic Evolution and Mineral Resources; Geological Society, Memoirs: London, UK, 2020; Volume 51. [Google Scholar] [CrossRef]
- Lalomov, A.V.; Rakhimov, I.R.; Grigor’eva, A.V. Chromite placer occurrences of the Volga-Ural basin—Genesis, sources and industrial potential. Georesursy = Georesources 2021, 23, 143–148. [Google Scholar] [CrossRef]
- Abakumov, I.V. Revaluation of alluvial deposits residual reserves of boulder chrome ores of the Saranovsky ore field. News Ural. State Min. Univ. 2020, 2, 74–82. [Google Scholar] [CrossRef]
- Avdonin, V.V.; Starostin, V.I. Mineral Geology: Textbook for University Students; Publishing Center Akademiya: Moscow, Russia, 2010; 384p, ISBN 978-5-7695-5340-0. [Google Scholar]
- Hill, R.J.; Craig, J.R.; Gibbs, G.V. Systematics of the spinel structure type. Phys. Chem. Miner. 1979, 4, 317–339. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals; Mineralogical Society of Great Britain and Ireland: Middlesex, UK, 2013; p. 498. [Google Scholar] [CrossRef]
- Shepherd, P.H.M. Chromite Crystal Structure and Chemistry applied as an Exploration Tool Electronic. Master’s Thesis, Western Graduate and Postdoctoral Studies, London, ON, Canada, 2015; p. 2685. Available online: https://ir.lib.uwo.ca/etd/2685 (accessed on 25 May 2022).
- Uchida, H.; Lavina, B.; Downs, R.T.; Chesley, J. Single-crystal X-ray diffraction of spinels from the San Carlos Volcanic Field, Arizona: Spinel as a geothermometer. Am. Mineral. 2005, 90, 1900–1908. [Google Scholar] [CrossRef]
- Matsumoto, I.; Arai, S. Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun zone (SW Japan): Implications for mantle/melt reaction and chromitite formation processes. Mineral. Petrol. 2001, 73, 305–323. [Google Scholar] [CrossRef]
- Mendi, D.J.; González-Jiménez, J.M.; Proenza, J.A.; Urbani, F.; Gervilla, F. Petrogenesis of the chromitite body from the Cerro Colorado ophiolite, Paraguaná Peninsula, Venezuela. Boletín Soc. Geológica Mex. 2020, 72, A280719. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.Y.; Tan, W.; Yao, Z.-S. Origin of chromite nodules in podiform chromitite from the Kızıldağ ophiolite, southern Turkey. Ore Geol. Rev. 2021, 139, 104443. [Google Scholar] [CrossRef]
- Saveliev, D.E. Chromitites of the kraka ophiolite (south Urals, Russia): Geological, mineralogical and structural features. Mineral. Depos. 2021, 56, 1111–1132. [Google Scholar] [CrossRef]
- Afanas’ev, V.P.; Zinchuk, N.N.; Pokhilenko, N.P. Morphology and Morphogenesis of Indicator Minerals of Kimberlites; SO RAN, Fil. “Geo”: Novosibirsk, Russia, 2001; p. 276. (In Russian) [Google Scholar]
- Khmelkov, A.M. The Main Minerals of Kimberlites and Their Evolution in the Process of Halo Formation (Case Study of the Yakutia Diamondiferous Province); Publishing House АRТА: Novosibirsk, Russia, 2008; p. 252. ISBN 5-902700-11-6. (In Russian) [Google Scholar]
- Peskova, A.A. Chrome spinel from Lower Paleozoic deposits at the contact of douralides and Uralides. Vestn. IG Komi NC RAN 2013, 8, 7–9. (In Russian) [Google Scholar]
- Lee, D.; Maddren, J.; Griffin, B. The importance of chromite morphology in diamond exploration. Int. Kimberl. Conf. Ext. Abstr. 2003, 8, 133–134. [Google Scholar] [CrossRef]
- Bannister, V.; Roeder, P.L.; Poustovetov, A. Chromite in the Paricutin lava flows (1943–1952). J. Volcanol. Geotherm. Res. 1998, 87, 151–171. [Google Scholar] [CrossRef]
- Roeder, P.L.; Poustovetov, A.; Oskarsson, N. Growth forms and composition of chromian spinel in MORB magma: Diffusion controlled crystallization of chromian spinel. Can. Mineral. 2001, 39, 397–416. [Google Scholar] [CrossRef]
- Svetov, S.A.; Chazhengina, S.Y.; Singh, V.K.; Rybnikova, Z.P.; Mishra, S. Accessory zoned chromites from archean komatiites of the Karelian craton: Metamorphic fingerprints. Zap. RMO 2019, 148, 80–94. [Google Scholar] [CrossRef]
- Auge, T.; Genna, A.; Legendre, O.; Ivanov, K.S.; Volchenko, Y.A. Primary platinum mineralization in the Nizhny Tagil and Kachkanar ultramafic complexes, Urals, Russia: A genetic model for PGE concentration in chromite-rich zones. Econ. Geol. 2005, 100, 707–732. [Google Scholar] [CrossRef]
- Kisin, A.Y.; Murzin, V.V. Sources of Chrome Spinel in Unconsolidated Sediments of the Alabashka Area of the Murzinsky-Adui Granite-Gneiss Block (In Connection with Findings of Platinum Group Minerals). Book-Year-2013 2014, 161, 264–269. (In Russian) [Google Scholar]
- Mercier, J.C.; Nicolas, A. Textures and fabrics of upper mantle peridotites as illustrated by basalt xenoliths. J. Petrol. 1975, 16, 454–487. [Google Scholar] [CrossRef]
- Nielson-Pike, J.E.; Schwarzman, E.C. Classification of textures in ultramafic xenoliths. J. Geol. 1977, 85, 49–61. [Google Scholar] [CrossRef]
- Leblanc, M. Chromite Growth, Dissolution and Deformation from a Morphological View Point: SEM Investigations. Mineral. Dep. 1980, 15, 201–210. [Google Scholar] [CrossRef]
- Christiansen, F.G.; Olesen, N.O. Large skeletal chromites in the Vourinos ophiolite, Greece. Geol. Soc. Den. Bull. 1990, 38, 33–42. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Kerrich, R. Morphology and composition of chromite in komatiites from the Belingwe greenstone belt, Zimbabwe. Can. Mineral. 1992, 30, 303–317. [Google Scholar]
- Godel, B.; Barnes, S.J.; Gürer, D.; Austin, P.; Fiorentini, M.L. Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms. Contrib. Mineral. Petrol. 2013, 165, 173–189. [Google Scholar] [CrossRef]
- Vukmanovic, Z.; Barnes, S.J.; Reddy, S.M.; Godel, B.; Fiorentini, M. Morphology and microstructure of chromite crystals in chromitites from the Merensky Reef (Bushveld Complex, South Africa). Contrib. Mineral. Petrol. 2013, 165, 1031–1050. [Google Scholar] [CrossRef] [Green Version]
- Prichard, H.M.; Barnes, S.J.; Godel, B.; Reddy, S.M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C.R.; Fishera, P.C. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction. Lithos 2015, 218–219, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Scoon, R.N.; Costin, G. Chemistry, Morphology and Origin of Magmatic-Reaction Chromite Stringers Associated with Anorthosite in the Upper Critical Zone at Winnaarshoek, Eastern Limb of the Bushveld Complex. J. Petrol. 2018, 59, 1551–1578. [Google Scholar] [CrossRef] [Green Version]
- Yudovskaya, M.A.; Costin, G.; Shilovskikh, V.; Chaplygin, I.; McCreesh, M.; Kinnaird, J. Bushveld symplectic and sieve-textured chromite is a result of coupled dissolution-reprecipitation: A comparison with xenocrystic chromite reactions in arc basalt. Contrib. Mineral. Petrol. 2019, 174, 74. [Google Scholar] [CrossRef]
- Mokrushin, A.V.; Smol’kin, V.F. Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield). Minerals 2021, 11, 772. [Google Scholar] [CrossRef]
- Arai, S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Mag. 1992, 56, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J.; Roeder, P.I. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Arai, S.; Okamura, H.; Kadoshima, K.; Tanaka, C.; Suzuki, K.; Ishimaru, S. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Isl. Arc 2011, 20, 125–137. [Google Scholar] [CrossRef] [Green Version]
- Ishwar-Kumar, C.; Rajesh, V.; Windley, B.; Razakamanana, T.; Itaya, T.; Babu, E.; Sajeev, K. Chromite chemistry as an indicator of petrogenesis and tectonic setting of the Ranomena ultramafic complex in north-eastern Madagascar. Geol. Mag. 2018, 155, 109–118. [Google Scholar] [CrossRef]
- Saleh, G.M. The chromite deposits associated with ophiolite complexes, Southeastern Desert, Egypt: Petrological and geochemical characteristics and mineralization. Chin. J. Geochem. 2006, 25, 307–317. [Google Scholar] [CrossRef]
- Rollinson, H.; Adetunji, J. Chromite in the Mantle Section of the Oman Ophiolite: Implications for the Tectonic Evolution of the Oman Ophiolite. Acta Geol. Sin. Engl. Ed. 2015, 89, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Oberhänsli, R.; Wendt, A.S.; Goffé, B.; Michard, A. Detrital chromites in metasediments of the east-Arabian continental margin in the Saih Hatat area: Constraints for the palaeogeographic setting of the Hawasina and Semail basins (Oman mountains). Int. J. Earth Sci. 1999, 88, 13–25. [Google Scholar] [CrossRef]
- Bhatta, K.; Ghosh, B. Chromian spinel-rich black sands from eastern shoreline of Andaman island, India: Implication for source characteristics. J. Earth Syst. Sci. 2014, 123, 1387–1397. [Google Scholar] [CrossRef] [Green Version]
- Harstad, T.S.; Mørk, M.B.E.; Slagstad, T. The importance of trace element analyses in detrital Cr-spinel provenance studies: An example from the Upper Triassic of the Barents Shelf Source. Basin Res. 2021, 33, 1017–1032. [Google Scholar] [CrossRef]
- Puchkov, V.N. Paleogeodynamics of the Southern and Middle Urals; Gilem: Ufa, Russia, 2000; p. 146. (In Russian) [Google Scholar]
- Brown, D.; Herrington, R.J.; Alvarez-Marron, J. Processes of arc–continent collision in the uralides. In Arc-Continent Collision Frontiers in Earth Sciences; Brown, D., Ryan, P.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 311–340. [Google Scholar]
- Puchkov, V.N. Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny); Design Poligraph Service: Ufa, Russia, 2010; p. 280. (In Russian) [Google Scholar]
- Saveliev, D.E.; Snachev, V.I.; Savelieva, E.N.; Bazhin, E.A. Geology, Petrogeochemistry and Chromite Content in Gabbro-Hyperbasite Massifs of the South Urals; Design Poligraph Service: Ufa, Russia, 2008; p. 320. ISBN 978-5-94423-163-5. (In Russian) [Google Scholar]
- Maslov, A.V.; Mizens, G.A.; Badida, L.V.; Krupenin, M.T.; Vovna, G.M.; Kiselev, V.I.; Ronkin, Y.L. Lithogeochemistry of Terrigenous Associations of the Southern Depressions of the Ural Foredeep; IGG UB RAS: Yekaterinburg, Russia, 2015; p. 308. (In Russian) [Google Scholar]
- Rakhimov, I.R.; Saveliev, D.E.; Kholodnov, V.V.; Zamyatin, D.A. The unique Sabantuy chromite paleoplacer in the sedimentary cover of the eastern European platform. Geol. Ore Depos. 2020, 62, 542–546. [Google Scholar] [CrossRef]
- Knyazev, Y.G.; Knyazeva, O.Y.; Snachev, V.I.; Zhdanov, A.V.; Karimov, T.R.; Aydarov, E.M.; Masagutov, R.K.; Arslanova, E.R. State Geological Map of the Russian Federation, 3rd ed.; Scale 1:1,000,000; Ural Series; N-40-Ufa; Explanatory Letter; VSEGEI: St. Petersburg, Russia, 2013; p. 512. (In Russian) [Google Scholar]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone, 2nd ed.; Springer: New York, NY, USA, 1987; p. 560. [Google Scholar]
- Popov, I.P. Report on the Results of Work on Verification of Recommendations for the Forecast of Kimberlite Fields in the Daldyn-Alakit Diamond-Bearing Area and Adjacent Areas in 1997–2001; AmGRE Funds: Aikhal, Russia, 2001. [Google Scholar]
- Pavlov, N.V.; Kravchenko, G.G.; Chuprynina, I.I. Chromites from the Kempirsai Pluton; Nauka: Moscow, Russia, 1968; p. 178. (In Russian) [Google Scholar]
- Gao, J.; Peng, L.-W.; Liu, C.-G. Ore Potential Analysis and Rapid Prospecting and Exploration Methods for Laterite Weathering Crust of Ultrabasic Rocks. Acta Geosci. Sin. 2013, z1, 229–234. [Google Scholar] [CrossRef]
- Agrell, S.O.; Peckett, A.; Boyd, F.R.; Haggerty, S.E.; Bunch, T.E.; Cameron, E.N.; Dence, M.R.; Douglas, J.A.V.; Plant, A.G.; Traill, R.J.; et al. Titanian chromite, aluminian chromite and chromian ulvöspinel from Apollo 11 rocks. Geochim. Cosmochim. Acta 1970, 1 (Suppl. S1), 81. [Google Scholar] [CrossRef]
- Rakhimov, I.R.; Michurin, S.V.; Sultanova, A.G.; Kiseleva, D.V.; Karamova, A.M. Mineralogy, geochemistry and formation of the Bazilevo copper occurrence (Southern Pre-Urals). Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2022, 333, 7–22, (In Russian with English abstract). [Google Scholar] [CrossRef]
- Botvinkina, L.N. Stratification of Sedimentary Rocks; AS USSR Press: Moscow, Russia, 1962; p. 542. (In Russian) [Google Scholar]
- Reineck, H.E.; Singh, I.B. Depositional Sedimentary Environments; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1973; p. 442. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sedimentary structures and bedding. In Sand and Sandstone; Springer: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Kartashov, I.P. Geological features of alluvial placers. Econ. Geol. 1971, 66, 879–885. [Google Scholar] [CrossRef]
- Dill, H.G. Grain morphology of heavy minerals from marine and continental placer deposits, with special reference to Fe–Ti oxides. Sediment. Geol. 2007, 198, 1–27. [Google Scholar] [CrossRef]
- Roehler, H.W. Origin and Distribution of Six Heavy-Mineral Placer Deposits in Coastal-Marine Sandstones in the Upper Cretaceous McCourt Sandstone Tongue of the Rock Springs Formation, Southwest Wyoming, Bulletin 1867; U.S. Geological Survey: Reston, VA, USA, 1989; p. 42. [CrossRef] [Green Version]
- Kukharenko, A.L. Mineralogy of Placers; Gosgeoltekhizdat: Moscow, Russia, 1961; p. 318. (In Russian) [Google Scholar]
- Park, J.-W.; Park, G.; Heo, C.-H.; Kim, J. A Geochemical Indicator in Exploration for the Kalaymyo Chromitite Deposit, Myanmar. Econ. Environ. Geol. 2017, 50, 423–433. [Google Scholar] [CrossRef]
- Saccani, E.; Tassinari, R. The role of MORB and SSZ magma-types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry. Ofioliti 2015, 40, 37–56. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Surour, A.A. Fluid-related modifications of Cr-spinel and olivine from ophiolitic peridotites by contact metamorphism of granitic intrusions in the Ablah area, Saudi Arabia. J. Asian Earth Sci. 2016, 122, 58–79. [Google Scholar] [CrossRef]
- Song, X.-Y.; Wang, K.-Y.; Barnes, S.J.; Yi, J.-N.; Chen, L.-M.; Schoneveld, L.E. Petrogenetic insights from chromite in ultramafic cumulates of the Xiarihamu intrusion, northern Tibet Plateau, China. Am. Mineral. 2020, 105, 479–497. [Google Scholar] [CrossRef]
- Afanas’ev, V.P.; Agashev, A.M.; Pokhilenko, N.P. Dispersion halos of kimberlite indicator minerals in the Siberian Platform: History and formation conditions. Geol. Ore Depos. 2013, 55, 256–264. [Google Scholar] [CrossRef]
- Kuenen, P.H. Experimental abrasion 4: Eolian action. J. Geol. 1960, 68, 427–449. [Google Scholar] [CrossRef]
- Afanas’ev, V.P.; Zinchuk, N.N. Main lithodynamic types of dispersion haloes of index kimberlite minerals and environments of their formation. Geol. Ore Dep. 1999, 41, 252–258. [Google Scholar]
- Baumgartner, R.J.; Zaccarini, F.; Garuti, G.; Thalhammer, O.A.R. Mineralogical and geochemical investigation of layered chromitites from the Bracco–Gabbro complex, Ligurian ophiolite, Italy. Contrib. Mineral. Petrol. 2013, 165, 477–493. [Google Scholar] [CrossRef]
- Glukhov, Y.V.; Makeev, B.A.; Varlamov, D.A.; Shevchuk, S.S.; Isaenko, S.I. Chromian spinels with zinc-bearing epigene rims from Devonian conglobreccia horizons of Ichet’yu placer-like occurrence (Middle Timan). Lithosphere 2015, 2, 103–120. (In Russian) [Google Scholar]
- Lehmann, J. Diffusion between olivine and spinel: Application to geothermometry. Earth Planet. Sci. Lett. 1983, 64, 123–138. [Google Scholar] [CrossRef]
- Le Roex, A.P. Mid-ocean ridge basalt (MORB). In Geochemistry Encyclopedia of Earth Science; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Havancsák, I.; Koller, F.; Kodolányi, J.; Szabó, C.; Hoeck, V.; Onuzi, K. Chromite-hosted silicate melt inclusions from basalts in the Stravaj Complex, Southern Mirdita Ophiolite Belt (Albania). Turk. J. Earth Sci. 2012, 21, 79–96. [Google Scholar] [CrossRef]
- Le Maitre, R.W. A Classification of Igneous Rocks and Glossary of Terms. Blackwell: Oxford, UK, 1989; p. 193. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Godard, M.; Bosch, D.; Einaudi, F. A MORB source for low-Ti magmatism in the Semail ophiolite. Chem. Geol. 2006, 234, 58–78. [Google Scholar] [CrossRef]
Name of Section | Number of Grains Studied | Morphogroup | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
Content, % | Content, % | Content, % | Content, % | Content, % | Content, % | ||
Sabantuy | 78 | 23 | 39 | 19 | 19 | 0 | 0 |
Kolkhoznyi Prud | 82 | 4 | 5 | 18 | 35 | 20 | 18 |
Verkhne-Yaushevo | 51 | 0 | 4 | 18 | 22 | 20 | 37 |
Sukhoy Izyak | 36 | 0 | 3 | 19 | 42 | 19 | 17 |
Bazilevo | 37 | 0 | 8 | 8 | 32 | 16 | 35 |
Novomikhaylovka | 58 | 5 | 28 | 22 | 25 | 12 | 9 |
Kiryushkino | 98 | 3 | 16 | 25 | 39 | 12 | 5 |
Placer | Morphogroup | MgO | Al2O3 | SiO2 | TiO2 | Cr2O3 | FeO | ZnO | Total | Number of Analyses |
---|---|---|---|---|---|---|---|---|---|---|
Sabantuy | I | 9.81 | 13.12 | 0.14 | 0.49 | 48.77 | 26.26 | 0.05 | 98.64 | 15 |
s.d. | 3.82 | 7.87 | 0.07 | 0.43 | 8.29 | 7.77 | 0.10 | |||
II | 9.13 | 11.19 | 0.10 | 0.18 | 56.45 | 22.36 | 0.07 | 99.47 | 27 | |
s.d. | 2.72 | 4.56 | 0.10 | 0.15 | 5.27 | 4.27 | 0.19 | |||
III | 10.35 | 14.56 | 0.08 | 0.10 | 52.02 | 22.09 | 0.13 | 99.32 | 14 | |
s.d. | 2.20 | 5.47 | 0.10 | 0.13 | 5.08 | 4.13 | 0.17 | |||
IV | 9.89 | 13.43 | 0.11 | 0.13 | 53.96 | 21.78 | 0.13 | 99.43 | 15 | |
s.d. | 2.58 | 5.22 | 0.08 | 0.13 | 5.36 | 4.17 | 0.19 | |||
Kolkhoznyi Prud | I | 12.33 | 15.09 | 0.18 | 0.52 | 51.86 | 19.84 | 0.06 | 99.88 | 5 |
s.d. | 3.90 | 6.41 | 0.11 | 0.80 | 10.23 | 5.89 | 0.13 | |||
II | 13.42 | 5.57 | 0.15 | 0.19 | 57.16 | 21.97 | 0.49 | 98.94 | 5 | |
s.d. | 2.88 | 5.21 | 0.22 | 0.12 | 4.70 | 9.53 | 0.67 | |||
III | 9.65 | 13.63 | 0.16 | 0.24 | 49.56 | 26.05 | 0.06 | 99.35 | 10 | |
s.d. | 3.12 | 6.15 | 0.23 | 0.21 | 7.15 | 8.96 | 0.14 | |||
IV | 8.80 | 13.74 | 0.22 | 0.21 | 48.83 | 27.90 | 0.16 | 99.86 | 32 | |
s.d. | 3.55 | 9.41 | 0.73 | 0.21 | 11.72 | 13.68 | 0.17 | |||
V | 10.65 | 17.27 | 0.03 | 0.08 | 50.93 | 21.20 | 0.12 | 100.28 | 14 | |
s.d. | 2.81 | 7.23 | 0.11 | 0.18 | 8.16 | 7.71 | 0.17 | |||
VI | 8.53 | 15.91 | 0.15 | 0.08 | 41.69 | 32.17 | 0.29 | 98.81 | 19 | |
Verkhne- Yaushevo | s.d. | 4.60 | 13.48 | 0.18 | 0.16 | 16.27 | 23.13 | 0.23 | ||
II | 9.99 | 8.67 | 0.12 | 0.16 | 60.10 | 20.97 | 0.00 | 100.01 | 3 | |
s.d. | 0.70 | 2.90 | 0.11 | 0.14 | 6.95 | 4.61 | 0.00 | |||
III | 11.99 | 16.21 | 0.16 | 0.32 | 54.60 | 16.36 | 0.04 | 99.68 | 6 | |
s.d. | 1.30 | 10.04 | 0.13 | 0.37 | 14.86 | 4.68 | 0.09 | |||
IV | 7.55 | 13.98 | 1.01 | 0.37 | 36.13 | 40.12 | 0.11 | 99.28 | 7 | |
s.d. | 4.28 | 8.18 | 2.38 | 0.40 | 12.41 | 21.40 | 0.20 | |||
V | 13.50 | 26.66 | 0.11 | 0.12 | 41.79 | 17.78 | 0.00 | 99.97 | 6 | |
s.d. | 2.79 | 15.11 | 0.13 | 0.10 | 15.35 | 3.03 | 0.00 | |||
VI | 10.39 | 21.55 | 0.08 | 0.16 | 42.88 | 24.53 | 0.04 | 99.65 | 6 | |
s.d. | 3.61 | 8.71 | 0.14 | 0.13 | 7.88 | 8.45 | 0.10 | |||
Sukhoy Izyak | II | 13.69 | 36.10 | 0.26 | 0.03 | 35.05 | 15.55 | 0.18 | 100.86 | 4 |
s.d. | 0.22 | 3.59 | 0.52 | 0.06 | 2.86 | 2.16 | 0.21 | |||
III | 10.47 | 18.34 | 0.37 | 0.14 | 48.29 | 21.97 | 0.12 | 99.69 | 11 | |
s.d. | 3.01 | 6.32 | 1.23 | 0.47 | 7.96 | 13.28 | 0.21 | |||
IV | 7.31 | 13.21 | 1.14 | 0.19 | 52.68 | 24.77 | 0.13 | 99.42 | 39 | |
s.d. | 4.03 | 8.65 | 1.77 | 0.25 | 12.94 | 12.97 | 0.17 | |||
V | 11.31 | 18.64 | 0.25 | 0.12 | 50.73 | 18.27 | 0.09 | 99.41 | 19 | |
s.d. | 3.46 | 6.90 | 0.57 | 0.32 | 8.29 | 5.42 | 0.16 | |||
VI | 7.50 | 14.51 | 1.42 | 0.13 | 48.66 | 26.11 | 0.03 | 98.37 | 8 | |
s.d. | 3.51 | 6.11 | 2.63 | 0.21 | 7.05 | 10.53 | 0.09 | |||
Bazilevo | II | 14.20 | 25.90 | 0.00 | 0.21 | 41.48 | 18.29 | 0.04 | 100.11 | 13 |
s.d. | 4.31 | 13.87 | n.d. | 0.15 | 13.16 | 5.77 | 0.09 | |||
III | 5.85 | 4.20 | 3.27 | 0.00 | 28.53 | 56.51 | 0.40 | 98.77 | 2 | |
s.d. | 1.49 | 2.91 | 4.63 | n.d. | 11.76 | 1.55 | 0.07 | 2 | ||
IV | 7.00 | 8.90 | 0.33 | 0.11 | 47.83 | 35.59 | 0.15 | 99.91 | 25 | |
s.d. | 4.06 | 7.72 | 0.87 | 0.19 | 14.38 | 20.93 | 0.24 | |||
V | 10.16 | 18.24 | 0.39 | 0.08 | 41.50 | 29.86 | 0.06 | 100.29 | 10 | |
s.d. | 4.77 | 13.41 | 0.96 | 0.12 | 14.28 | 23.52 | 0.12 | |||
VI | 8.26 | 14.96 | 0.58 | 0.10 | 35.99 | 40.05 | 0.21 | 100.15 | 9 | |
s.d. | 5.62 | 14.39 | 1.29 | 0.22 | 14.69 | 25.88 | 0.32 | |||
Novo- mikhaylovka | I | 8.74 | 11.19 | 0.00 | 0.27 | 57.91 | 21.89 | 0.00 | 100.00 | 1 |
s.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |||
II | 8.75 | 12.72 | 0.05 | 0.27 | 52.94 | 25.35 | 0.09 | 100.16 | 22 | |
s.d. | 2.47 | 4.90 | 0.21 | 0.30 | 6.48 | 3.91 | 0.16 | |||
III | 10.75 | 14.72 | 0.01 | 0.24 | 52.36 | 22.14 | 0.11 | 100.33 | 21 | |
s.d. | 2.82 | 8.14 | 0.03 | 0.24 | 9.36 | 4.76 | 0.24 | |||
IV | 10.23 | 16.68 | 0.14 | 0.13 | 48.23 | 24.48 | 0.11 | 100.00 | 18 | |
s.d. | 3.23 | 9.36 | 0.58 | 0.16 | 9.87 | 11.66 | 0.16 | |||
V | 11.30 | 17.80 | 0.00 | 0.07 | 50.96 | 20.06 | 0.09 | 100.28 | 10 | |
s.d. | 2.95 | 9.94 | n.d. | 0.11 | 9.41 | 3.39 | 0.14 | |||
VI | 8.56 | 13.95 | 0.03 | 0.03 | 47.45 | 30.32 | 0.13 | 100.45 | 7 | |
s.d. | 4.05 | 8.44 | 0.08 | 0.07 | 13.88 | 22.09 | 0.16 | |||
Kiryushkino | I | 9.10 | 7.98 | 0.00 | 0.00 | 64.80 | 19.86 | 0.41 | 102.15 | 1 |
s.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |||
II | 8.89 | 12.69 | 0.04 | 0.14 | 54.29 | 23.91 | 0.14 | 100.11 | 18 | |
s.d. | 2.02 | 4.46 | 0.10 | 0.15 | 4.70 | 4.65 | 0.15 | |||
III | 7.93 | 11.17 | 0.12 | 0.10 | 54.78 | 25.49 | 0.15 | 99.73 | 18 | |
s.d. | 3.29 | 5.56 | 0.27 | 0.16 | 8.32 | 8.26 | 0.30 | |||
IV | 9.10 | 13.92 | 0.13 | 0.15 | 52.03 | 24.68 | 0.11 | 100.12 | 36 | |
s.d. | 2.35 | 5.66 | 0.48 | 0.13 | 7.96 | 9.22 | 0.17 | |||
V | 11.96 | 16.52 | 0.00 | 0.12 | 53.73 | 18.28 | 0.04 | 100.65 | 12 | |
s.d. | 2.57 | 8.32 | 0.00 | 0.13 | 8.09 | 3.81 | 0.10 | |||
VI | 8.84 | 8.65 | 0.09 | 0.00 | 54.26 | 28.82 | 0.00 | 100.65 | 4 | |
s.d. | 4.77 | 5.45 | 0.18 | 0.00 | 12.86 | 20.08 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhimov, I.R.; Saveliev, D.E.; Rassomakhin, M.A.; Samigullin, A.A. Chromian Spinels from Kazanian-Stage Placers in the Southern Pre-Urals, Bashkiria, Russia: Morphological and Chemical Features and Evidence for Provenance. Minerals 2022, 12, 849. https://doi.org/10.3390/min12070849
Rakhimov IR, Saveliev DE, Rassomakhin MA, Samigullin AA. Chromian Spinels from Kazanian-Stage Placers in the Southern Pre-Urals, Bashkiria, Russia: Morphological and Chemical Features and Evidence for Provenance. Minerals. 2022; 12(7):849. https://doi.org/10.3390/min12070849
Chicago/Turabian StyleRakhimov, Ildar R., Dmitri E. Saveliev, Mikhail A. Rassomakhin, and Aidar A. Samigullin. 2022. "Chromian Spinels from Kazanian-Stage Placers in the Southern Pre-Urals, Bashkiria, Russia: Morphological and Chemical Features and Evidence for Provenance" Minerals 12, no. 7: 849. https://doi.org/10.3390/min12070849
APA StyleRakhimov, I. R., Saveliev, D. E., Rassomakhin, M. A., & Samigullin, A. A. (2022). Chromian Spinels from Kazanian-Stage Placers in the Southern Pre-Urals, Bashkiria, Russia: Morphological and Chemical Features and Evidence for Provenance. Minerals, 12(7), 849. https://doi.org/10.3390/min12070849