Selective Separation of Fluorite from Scheelite Using N-Decanoylsarcosine Sodium as a Novel Collector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Flotation Tests
2.3. Surface Adsorption Detection
2.4. Zeta Potential Test
2.5. FTIR Measurements
2.6. DFT Calculations
3. Results
3.1. Flotation Results of Single Mineral, Binary Mixed Minerals, and Actual Ore
3.2. Surface Adsorption Test Results
3.3. Zeta Potential Test Results
3.4. FTIR Analysis Results
3.5. Calcultion Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Gao, Z.; Han, H.; Sun, W.; Gao, Y.; Ren, S. Impact of NaOL as an accelerator on the selective separation of scheelite from fluorite using a novel self-assembled Pb-BHA-NaOL collector system. Appl. Surf. Sci. 2020, 537, 147778. [Google Scholar] [CrossRef]
- Gao, Z.; Deng, J.; Sun, W.; Wang, J.; Liu, Y.; Xu, F.; Wang, Q. Selective Flotation of Scheelite from Calcite Using a Novel Reagent Scheme. Miner. Process. Extr. Metall. Rev. 2020, 43, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Zhou, Z.; Gao, Z.; Hu, Y.; Sun, W. 1-Hydroxyethylidene-1,1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: Depressing behavior and mechanism. Chem. Eng. Sci. 2020, 214, 115369. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, X.; Yue, T.; Sun, W. A novel GCMS method for the quantitative analysis of sodium oleate in froth flotation. Miner. Eng. 2021, 176, 107317. [Google Scholar] [CrossRef]
- Kupka, N.; Rudolph, M. Froth flotation of scheelite—A review. Int. J. Min. Sci. Technol. 2018, 28, 373–384. [Google Scholar] [CrossRef]
- Gao, Z.; Bai, D.; Sun, W.; Cao, X.; Hu, Y. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Miner. Eng. 2015, 72, 23–26. [Google Scholar] [CrossRef]
- Wang, R.; Wei, Z.; Han, H.; Sun, W.; Hu, Y.; Wang, J.; Wang, L.; Liu, H.; Yang, Y.; Zhang, C.; et al. Fluorite particles as a novel calcite recovery depressant in scheelite flotation using Pb-BHA complexes as collectors. Miner. Eng. 2018, 132, 84–91. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q.; Zhang, C.; Xu, F. The flotation separation of scheelite from calcite and fluorite using dextran sulfate sodium as depressant. Int. J. Miner. Process. 2017, 169, 53–59. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Ma, Z.; Liao, Y. Impact of calcium and gypsum on separation of scheelite from fluorite using sodium silicate as depressant. Sep. Purif. Technol. 2019, 215, 249–258. [Google Scholar] [CrossRef]
- Gao, Z.; Jiang, Z.; Sun, W.; Pooley, S.G.; Wang, J.; Liu, Y.; Xu, F.; Wang, Q.; Zeng, L.; Wu, Y. New role of the conventional foamer sodium N-lauroylsarcosinate as a selective collector for the separation of calcium minerals. J. Mol. Liq. 2020, 318, 114031. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Chen, R.; Wang, Y.; Deng, J.; Luo, X. Flotation Separation of Scheelite from Fluorite Using Sodium Polyacrylate as Inhibitor. Minerals 2017, 7, 102. [Google Scholar] [CrossRef]
- Chen, W.; Feng, Q.; Zhang, G.; Yang, Q.; Zhang, C. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner. Eng. 2017, 113, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Zhu, Y.; Han, Y. Flotation separation of scheelite from fluorite by using DTPA as a depressant. Miner. Eng. 2021, 175, 107311. [Google Scholar] [CrossRef]
- Alzobaidi, S.; Wu, P.; Da, C.; Zhang, X.; Hackbarth, J.; Angeles, T.; Rabat-Torki, N.J.; MacAuliffe, S.; Panja, S.; Johnston, K.P. Effect of surface chemistry of silica nanoparticles on contact angle of oil on calcite surfaces in concentrated brine with divalent ions. J. Colloid Interface Sci. 2020, 581, 656–668. [Google Scholar] [CrossRef]
- Bikkina, P.K. Contact angle measurements of CO2–water–quartz/calcite systems in the perspective of carbon sequestration. Int. J. Greenh. Gas Control 2011, 5, 1259–1271. [Google Scholar] [CrossRef]
- Zhao, J.; Yao, G.; Wen, D. Salinity-dependent alterations of static and dynamic contact angles in oil/brine/calcite systems: A molecular dynamics simulation study. Fuel 2020, 272, 117615. [Google Scholar] [CrossRef]
- Zawala, J.; Drzymala, J.; Malysa, K. An investigation into the mechanism of the three-phase contact formation at fluorite surface by colliding bubble. Int. J. Miner. Process. 2008, 88, 72–79. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Hu, Y. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process. 2016, 154, 10–15. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Z.; Yang, Y.; Sun, W.; Pooley, S.; Cao, J.; Gao, Z. Bi-functional hydrogen and coordination bonding surfactant: A novel and promising collector for improving the separation of calcium minerals. J. Colloid Interface Sci. 2020, 585, 787–799. [Google Scholar] [CrossRef]
- Waller, E.H.; Dix, S.; Gutsche, J.; Widera, A.; von Freymann, G. Functional Metallic Microcomponents via Liquid-Phase Multiphoton Direct Laser Writing: A Review. Micromachines 2019, 10, 827. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Liu, L.; He, J.; Chen, Q.; Yu, L.-J.; Liu, P. Understanding Cement Hydration of Cemented Paste Backfill: DFT Study of Water Adsorption on Tricalcium Silicate (111) Surface. Minerals 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Lay, C.L.; Koh, C.S.L.; Lee, Y.H.; Phan-Quang, G.C.; Sim, H.Y.F.; Leong, S.X.; Han, X.; Phang, I.Y.; Ling, X.Y. Two-Photon-Assisted Polymerization and Reduction: Emerging Formulations and Applications. ACS Appl. Mater. Interfaces 2020, 12, 10061–10079. [Google Scholar] [CrossRef]
- Wei, Z.; Sun, W.; Hu, Y.; Han, H.; Sun, W.; Wang, R.; Zhu, Y.; Li, B.; Song, Z. Structures of Pb-BHA Complexes Adsorbed on Scheelite Surface. Front. Chem. 2019, 7, 645. [Google Scholar] [CrossRef]
- Yang, B.; Yin, W.; Zhu, Z.; Sun, H.; Sheng, Q.; Fu, Y.; Yao, J.; Zhao, K. Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite. Sep. Purif. Technol. 2020, 256, 117803. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Z.; Mulenga, H.; Sun, W.; Cao, J.; Gao, Z. Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite. Chem. Eng. Sci. 2020, 226, 115860. [Google Scholar] [CrossRef]
- Wu, J.; Ma, W.; Wang, X.; Jiao, F.; Qin, W. The effect of galvanic interaction between chalcopyrite and pyrite on the surface chemistry and collector adsorption: Flotation and DFT study. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125377. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. Payne, first principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.-Y.; Sun, W.; Hu, Y.-H.; Liu, X. Surface energies and appearances of commonly exposed surfaces of scheelite crystal. Trans. Nonferrous Met. Soc. China 2013, 23, 2147–2152. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, C.; Ma, L.; Fang, Q.; Chen, G. Insight into As2O3 adsorption characteristics by mineral oxide sorbents: Experimental and DFT study. Chem. Eng. J. 2020, 420, 127593. [Google Scholar] [CrossRef]
- He, J.; Zhang, H.; Yue, T.; Sun, W.; Hu, Y.; Zhang, C. Effects of Hydration on the Adsorption of Benzohydroxamic Acid on the Lead-Ion-Activated Cassiterite Surface: A DFT Study. Langmuir 2021, 37, 2205–2212. [Google Scholar] [CrossRef]
- Foroutan, A.; Abadi, M.A.Z.H.; Kianinia, Y.; Ghadiri, M. Critical importance of pH and collector type on the flotation of sphalerite and galena from a low-grade lead–zinc ore. Sci. Rep. 2021, 11, 1–11. [Google Scholar]
- Vieira, A.M.; Peres, A.E. The effect of amine type, pH, and size range in the flotation of quartz. Miner. Eng. 2007, 20, 1008–1013. [Google Scholar] [CrossRef]
- Hoseinian, F.S.; Rezai, B.; Kowsari, E.; Safari, M. Kinetic study of Ni(II) removal using ion flotation: Effect of chemical interactions. Miner. Eng. 2018, 119, 212–221. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Zanin, M.; Addai-Mensah, J.; Skinner, W. The upgrading of rare earth oxides from iron-oxide silicate rich tailings: Flotation performance using sodium oleate and hydroxamic acid as collectors. Adv. Powder Technol. 2018, 29, 3163–3172. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Addai-Mensah, J.; Skinner, W. A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors. Int. J. Miner. Process. 2017, 158, 55–62. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, W.; Chen, C.; Chai, L.; Jiao, F.; Jia, W. Flotation separation of fluorite from calcite using polyaspartate as depressant. Miner. Eng. 2018, 120, 80–86. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Yin, Z.; Wang, J.; Hu, Y. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 2017, 512, 39–46. [Google Scholar] [CrossRef]
- Jong, K.; Paek, I.; Kim, Y.; Li, I.; Jang, D. Flotation mechanism of a novel synthesized collector from Evodiaefructus onto fluorite surfaces. Miner. Eng. 2019, 146, 106017. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, Y.; Qu, Q.; Zhang, J.; Mu, Y. Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant. Miner. Eng. 2019, 134, 134–141. [Google Scholar] [CrossRef]
- Rubio, L.; Alonso, C.; Rodríguez, G.; Cócera, M.; López-Iglesias, C.; Coderch, L.; De la Maza, A.; Parra, J.; López, O. Bicellar systems as new delivery strategy for topical application of flufenamic acid. Int. J. Pharm. 2013, 444, 60–69. [Google Scholar] [CrossRef]
- Pujari, S.P.; van Andel, E.; Yaffe, O.; Cahen, D.; Weidner, T.; van Rijn, C.; Zuilhof, H. Mono-Fluorinated Alkyne-Derived SAMs on Oxide-Free Si(111) Surfaces: Preparation, Characterization and Tuning of the Si Workfunction. Langmuir 2013, 29, 570–580. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, Z.; Khoso, S.A.; Gao, J.; Sun, W.; Pu, W.; Hu, Y. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite. Appl. Surf. Sci. 2017, 435, 752–758. [Google Scholar] [CrossRef]
- Müller, M.; Wirth, L.; Urban, B. Determination of the Carboxyl Dissociation Degree and pK a Value of Mono and Polyacid Solutions by FTIR Titration. Macromol. Chem. Phys. 2021, 222, 2000334. [Google Scholar] [CrossRef]
- Tran, T.L.N.; Miranda, A.F.; Mouradov, A.; Adhikari, B. Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods 2020, 9, 779. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, J.; Wu, S.; Sun, W.; Feng, Z.; Gao, Z. Synthesis of selective heteroatomic collectors for the improved separation of sulfide minerals. Sep. Purif. Technol. 2022, 287, 120563. [Google Scholar] [CrossRef]
- Miller, J.; Fa, K.; Calara, J.; Paruchuri, V. The surface charge of fluorite in the absence of surface carbonation. Colloids Surf. A Physicochem. Eng. Asp. 2004, 238, 91–97. [Google Scholar] [CrossRef]
Grade of CaF2 (%) | Grade of WO3 (%) | Recovery of CaF2 (%) | Recovery of WO3 (%) | |
---|---|---|---|---|
NaOL | 44.02 | 0.53 | 63.80 | 47.93 |
SDAA | 39.62 | 0.33 | 54.02 | 28.12 |
Raw ore | 18.72 | 0.30 | / | / |
Fluorite (111) + SDAA | Scheelite (112) + SDAA | ||||||
---|---|---|---|---|---|---|---|
Atom | State | Charge/e | Δ/e | Atom | State | Charge/e | Δ/e |
O1 | Before | −0.57 | −0.15 | O1 | Before | −0.57 | −0.12 |
After | −0.72 | After | −0.69 | ||||
O2 | Before | −0.59 | −0.06 | O2 | Before | −0.59 | −0.03 |
After | −0.65 | After | −0.62 | ||||
Ca | Before | 0.77 | +0.56 | Ca | Before | 1.44 | +0.01 |
After | 1.33 | After | 1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Z.; Tao, L.; Wang, J.; Jiang, Z.; Peng, T.; Sun, W.; Gao, Z. Selective Separation of Fluorite from Scheelite Using N-Decanoylsarcosine Sodium as a Novel Collector. Minerals 2022, 12, 855. https://doi.org/10.3390/min12070855
Miao Z, Tao L, Wang J, Jiang Z, Peng T, Sun W, Gao Z. Selective Separation of Fluorite from Scheelite Using N-Decanoylsarcosine Sodium as a Novel Collector. Minerals. 2022; 12(7):855. https://doi.org/10.3390/min12070855
Chicago/Turabian StyleMiao, Zekun, Liming Tao, Jianjun Wang, Zheyi Jiang, Tao Peng, Wei Sun, and Zhiyong Gao. 2022. "Selective Separation of Fluorite from Scheelite Using N-Decanoylsarcosine Sodium as a Novel Collector" Minerals 12, no. 7: 855. https://doi.org/10.3390/min12070855
APA StyleMiao, Z., Tao, L., Wang, J., Jiang, Z., Peng, T., Sun, W., & Gao, Z. (2022). Selective Separation of Fluorite from Scheelite Using N-Decanoylsarcosine Sodium as a Novel Collector. Minerals, 12(7), 855. https://doi.org/10.3390/min12070855