Zircon U-Pb Dating and Metamorphism of Granitoid Gneisses and Supracrustal Rocks in Eastern Hebei, North China Craton
Abstract
:1. Introduction
2. Geological Setting
3. Petrography and Analytical Methods
3.1. Sampling Strategy
3.2. Petrography
3.3. Analytical Methods
4. Results
4.1. Whole-Rock Chemical Compositions
4.2. Zircon U–Pb Isotopes
4.2.1. Sample J1309 (Syenogranitic Pegmatite)
4.2.2. Sample J1320 (Tonalitic Gneiss)
4.2.3. Sample J1349 (Dioritic Gneiss)
4.2.4. Sample J1353 (Granodioritic Gneiss)
4.2.5. Sample J1513 (Pelitic Granulite)
4.2.6. Sample J15107 (Sillimanite-Bearing Pelitic Granulite)
4.3. Zircon REE Compositions
5. Discussion
5.1. Zircon U–Pb Ages and Two Phases of Granulite Facies Metamorphism
5.1.1. Zircon U–Pb Ages
5.1.2. Two Phases of Granulite Facies Metamorphism
5.2. Implications for the Tectonic Evolution
6. Conclusions
- The granitoid gneisses with dominant TTG compositions were emplaced from 2524 ± 7 to 2503 ± 12 Ma, and they have been subjected to Neoarchean granulite facies metamorphism during 2508 ± 10 to 2468 ± 33 Ma, coeval with the intrusion of pegmatite (2488 ± 5 Ma). The protoliths of the pelitic granulites were deposited in the Late Neoarchean era, followed by high-grade metamorphism from 2494 ± 7 to 2485 ± 10 Ma.
- Zircon ages of 2.45–2.01 Ga in TTG gneisses and supracrustal rocks are considered to be of no geological significance. The Paleoproterozoic zircon ages (1.9–1.8 Ga), indicating an overprinting metamorphic event, are usually neglected. Empirically, the zircon grains of 1.9–1.8 Ga were extremely small or too narrow to be recognized and/or analyzed in the Archean TTG gneisses and supracrustal rocks.
- Vertical tectonism was dominant in the Eastern Hebei terrane during the late Neoarchean era.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Condie, K.C. Archean greenstone belts. Earth-Sci. Rev. 1981, 18, 95–96. [Google Scholar]
- Stephen, M.; Fernando, A.; Hanna, J.E. Proterozoic crustal extension and the generation of dome-and-keel structure in an Archaean granite–greenstone terrane. Nature 1992, 357, 491–493. [Google Scholar]
- Moyen, J.F.; Stevens, G. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics. Am. Geophys. Union 2006, 164, 149–175. [Google Scholar]
- Timothy, M.K.; Brian, F.W.; Ali, P. Geological evidence for the operation of plate tectonics throughout the Archean: Records from Archean Plaeo-plate boundaries. J. Earth Sci. 2018, 29, 1291–1303. [Google Scholar]
- Collins, W.J.; Van Kranendonk, M.J.; Teyssier, C. Partial convective overturn of Archaean crust in the East Pilbara Craton, Western Australia; driving mechanisms and tectonic implications. J. Structural. Geol. 1998, 20, 1405–1424. [Google Scholar] [CrossRef]
- Lin, S.F.; Beakhouse, G.P. Synchronous vertical and horizontal tectonism at latestages of Archean cratonization and genesis of Hemlo gold deposit, Superiorcraton, Ontario, Canada. Geology 2013, 41, 359–362. [Google Scholar] [CrossRef]
- Zhao, G.C.; Zhai, M.G. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- Brown, M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the neoarchean. Geology 2006, 11, 961–964. [Google Scholar] [CrossRef]
- Brown, M.; Johnson, T. Metamorphism and the evolution of subduction on Earth. Am. Mineral. 2019, 104, 1065–1082. [Google Scholar] [CrossRef]
- Stern, R.J. When and how did Plate Tectonics Begin? Theoretical and Empirical Considerations. Chin. Sci. Bull. 2007, 52, 578–591. [Google Scholar] [CrossRef]
- Timothy, M.K. Plate tectonics in relation to mantle temperatures and metamorphic properties. Sci. China Earth Sci. 2020, 63, 634–642. [Google Scholar]
- Zheng, Y.F.; Zhao, G.C. Two styles of plate tectonics in Earth’s history. Sci. Bull. 2020, 65, 329–334. [Google Scholar] [CrossRef]
- Lin, S.F.; Parks, J.; Heaman, L.M.; Simonetti, A.; Corkery, M.T. Diapirism and sagduction as a mechanism for deposition and burial of “Timiskaming-type” sedimentary sequences, Superior Province: Evidence from detrital zircon geochronology and implications for the Bordden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift. Precambrian Res. 2013, 238, 148–157. [Google Scholar]
- Van Kranendonk, M.J.; Collins, W.J.; Hickman, A.H.; Pawley, M.J. Critical tests of vertical vs. horizontal tectonic models for the Archean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res. 2004, 131, 173–211. [Google Scholar]
- Van Kranendonk, M.J.; Smithies, R.H.; Hickman, A.H.; Champion, D.C. Review: Secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 2007, 19, 1–38. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, J.; Zhao, G.C.; Yin, C.Q.; Chen, G.K.; Liu, J.; Liu, X.G.; Chen, W.L. Kinematics and structural evolution of the Anziling domeand-keel architecture in east China: Evidence of Neoarchean vertical tectonism in the North China Craton. GSA Bull. 2021, 134, 2115–2129. [Google Scholar] [CrossRef]
- Liu, D.Y.; Nutman, A.P.; Compston, W.; Wu, J.S.; Shen, Q.H. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino–Korean craton. Geology 1992, 20, 339–342. [Google Scholar] [CrossRef]
- Song, B.; Nutman, A.P.; Liu, D.Y.; Wu, J.S. 3800–2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res. 1996, 78, 79–94. [Google Scholar] [CrossRef]
- Wilde, S.A.; Valley, J.W.; Kita, N.T.; Cavosie, A.J.; Liu, D.Y. SHRIMP U–Pb and CAMECA 1280 oxygen isotope results from ancient detrital zircons in the Caozhuang quartzite, Eastern Hebei, North China Craton: Evidence for crustal reworking 3.8 Ga ago. Am. J. Sci. 2008, 308, 185–199. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Liu, X.M.; Li, T.S.; Xie, L.W.; Yang, Y.H. Hf isotopes of the 3.8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chin. Sci. Bull. 2005, 50, 2473–2480. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and theirboundaries in the North China Craton: Lithological, geochemical, structuraland P–T path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A.; Li, S.Z.; Wilde, S.A.; Sun, M.; Zhang, J.; He, Y.H.; Yin, C.Q. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res. 2012, 222, 55–76. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.C.; Cawood, P.A. Precambrian Geology of China. Precambrian Res. 2012, 222–223, 13–54. [Google Scholar] [CrossRef]
- Geng, Y.S.; Liu, F.L.; Yang, C.H. Magmatic event at the end of the Archean in Eastern Hebei Province and its geological implication. Acta Geol. Sin. 2006, 80, 819–833. [Google Scholar]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A.; Zhao, G.C. Petrogenesis and geodynamicsof Late Archean magmatism in eastern Hebei, eastern North China Craton:geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Res. 2008, 167, 125–149. [Google Scholar] [CrossRef]
- Nutman, A.P.; Maciejowski, R.; Wan, Y.S. Protoliths of enigmatic Archaean gneisses established from zircon inclusion studies: Case study of the Caozhuang quartzite, E., Hebei, China. Geosci. Front. 2014, 5, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Nutman, A.P.; Wan, Y.S.; Du, L.L.; Friend, C.R.L.; Dong, C.Y.; Xie, H.Q.; Wang, W.; Sun, H.Y.; Liu, D.Y. Multistage late Neoarchaean crustal evolution of the North China Craton, Eastern Hebei. Precambrian Res. 2011, 189, 43–65. [Google Scholar] [CrossRef]
- Guo, R.R.; Liu, S.W.; Santosh, M.; Li, Q.G.; Bai, X.; Wang, W. Geochemistry, zirconU–Pb geochronology and Lu–Hf isotopes of metavolcanics from eastern Hebei reveal Neoarchean subduction tectonics in the North China Craton. Gondwana Res. 2013, 24, 664–686. [Google Scholar] [CrossRef]
- Bai, X.; Liu, S.W.; Guo, R.R.; Zhang, L.F.; Wang, W. Zircon U–Pb–Hf isotopes and geochemistry of Neoarchean dioritic–trondhjemitic gneisses, Eastern Hebei, North China Craton: Constraints on Petrogenesis and tectonic implications. Precambrian Res. 2014, 251, 1–20. [Google Scholar] [CrossRef]
- Kwan, L.C.J.; Zhao, G.C.; Yin, C.Q.; Geng, H.Y. Metamorphic P–T path of mafic granulites from Eastern Hebei: Implications for the Neoarchean tectonics of the Eastern Block, North China Craton. Gondwana Res. 2016, 37, 20–38. [Google Scholar] [CrossRef]
- Duan, Z.Z.; Wei, C.J.; Qian, J.H. Metamorphic P-T paths and Zircon U–Pb age data for the Paleoproterozoic metabasic dykes of high-pressure granulite facies from Eastern Hebei, North China Craton. Precambrian Res. 2015, 271, 295–310. [Google Scholar] [CrossRef]
- Duan, Z.Z.; Wei, C.J.; Li, Z. Metamorphic P–T paths and zircon u–pb ages of Paleoproterozoic metabasic dykes in eastern Hebei and northern Liaoning: Implications for the tectonic evolution of the North China Craton. Precambrian Res. 2019, 326, 124–141. [Google Scholar] [CrossRef]
- Duan, Z.Z.; Wei, C.J.; Rehman, H.U. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei, North China Craton: Insights into the regional Archean P–T–t history. Precambrian Res. 2017, 292, 240–257. [Google Scholar] [CrossRef]
- Yang, C.; Wei, C.J. Ultrahigh temperature (UHT) mafic granulites in the East Hebei, North China Craton: Constraints from a comparison between temperatures derived from REE-based thermometers and major element-based thermometers. Gondwana Res. 2017, 46, 156–169. [Google Scholar] [CrossRef]
- Yang, C.; Wei, C.J. Two phases of granulite facies metamorphism during Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: Records from mafic granulites. Precambrian Res. 2017, 301, 46–64. [Google Scholar] [CrossRef]
- Liu, T.; Wei, C.J. Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from the western margin of Qian’an gneiss dome, eastern Hebei Province, North China Craton: Insights into the Archean tectonic regime. Precambrian Res. 2019, 318, 170–187. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Lu, L.Z. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Inter. Geol. Rev. 1998, 40, 706–721. [Google Scholar] [CrossRef]
- Lu, J.S.; Zhai, M.G.; Lu, L.S.; Zhao, L. P-T-t evolution of Neoarchaean to Paleoproterozoic pelitic granulites from the Jidong terrane, eastern North China Craton. Precambrian Res. 2017, 290, 1–15. [Google Scholar] [CrossRef]
- Wei, C.J. Neoarchean granulite facies metamorphism and its tectonic implications from the East Hebei terrane. Acta Petrol. Sin. 2018, 34, 35–52. [Google Scholar]
- Zhai, M.G.; Santosh, M. The early Precambrian odyssey of North China Craton. A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Kusky, T.M. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res. 2011, 20, 26–35. [Google Scholar] [CrossRef]
- Kusky, T.; Li, J.; Santosh, M. The Paleoproterozoic North Hebei Orogen: North China craton’s collisional suture with the Columbia supercontinent. Gondwana Res. 2007, 12, 4–28. [Google Scholar] [CrossRef]
- Liu, S.W.; Wang, W.; Bai, X.; Guo, R.R.; Fu, J.H.; Guo, B.R.; Hu, F.Y.; Wang, M.J. Lithological assemblages of Archean meta-igneous rocks in Eastern Hebei-Western Liaoning Provinces of North China Craton, and their geodynamic implications. Earth Sci. 2018, 43, 44–56. [Google Scholar] [CrossRef]
- Bai, X.; Liu, S.; Guo, R.; Wang, W. A Neoarchean arc–back-arc system in Eastern Hebei, North China Craton: Constraints from zircon U-Pb–Hf isotopes and geochemistry of dioritic–tonalitic–trondhjemitic–granodioritic (DTTG) gneisses and felsic paragneisses. Precambrian Res. 2016, 273, 90–111. [Google Scholar] [CrossRef]
- Liou, P.; Guo, J.H.; Huang, G.Y.; Fan, W.B. 2.9 Ga Magmatism in Eastern Hebei, North China Craton. Precambrian Res. 2019, 326, 6–23. [Google Scholar] [CrossRef]
- Zhang, L.C.; Zhai, M.G.; Zhang, X.J.; Xiang, P.; Dai, Y.P.; Wang, C.L.; Pirajno, F. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U–Pb dating. Precambrian Res. 2012, 222–223, 325–338. [Google Scholar] [CrossRef]
- Sun, H.Y.; Xie, H.Q.; Liu, S.J.; Dong, C.Y.; Liu, D.Y.; Wan, Y.S. Archean magmatism and metamorphism in the Huangbaiyu-Yangyashan area, eastern Hebei Province: Evidence from SHRIMP zircon U-Pb dating. Geol. Bull. China 2016, 35, 27–42. [Google Scholar]
- Sun, H.Y.; Dong, C.Y.; Xie, H.Q.; Wang, W.; Ma, M.Z.; Liu, D.Y.; Nutman, A.; Wan, Y.S. The formation age of the Neoarchean Zhuzhangzi and Dantazi Groups in Qinglong area. Eastern Hebei Province: Evidence from SHRIMP U-Pb zircon dating. Geol. Rev. 2010, 56, 888–898. [Google Scholar]
- Lü, B.; Zhai, M.G.; Li, T.S.; Peng, P. Zircon U–Pb ages and geochemistry of the Qinglong volcano–sedimentary rock series in Eastern Hebei: Implication for 2500 Ma intra–continental rifting in the North China. Precambrian Res. 2012, 208–211, 145–160. [Google Scholar]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Andreas Kronz, Y.M. Further characterization of the 91500 zircon crystal. Geostand. Geoanalytical Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Van Achterbergh, E.; Ryan, C.G.; Jackson, S.E.; Griffin, W.L. Data reduction software for LA-ICP-MS. Laser-Ablation-ICPMS in the earth sciences—principles and applications. Miner. Assoc. Can. 2001, 29, 239–243. [Google Scholar]
- Ludwig, K.R. ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 74. [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Barker, F. Trondhjemite: Definition, Environment and Hypotheses of Origin. In Trondhjemites, Dacites and Related Rocks; Elsevier: Amsterdam, The Netherlands, 1979; pp. 1–12. [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Miner. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Grant, M.L.; Wilde, S.A.; Wu, F.; Yang, J. The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chem. Geol. 2009, 261, 155–171. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet andthe link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanicbasalts: Implications for mantle composition and processes. Geol. Soc. London Sp. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Wan, Y.S.; Liu, D.Y.; Dong, C.Y.; Liu, S.J.; Wang, S.J.; Yang, E.X. U-Th-Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong. Geosci. Front. 2011, 2, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wei, C.J.; Zhang, S.W.; Yang, C.; Duan, Z.Z. Neoarchean granitoid gneiss in Eastern Hebei, North China Craton: Revisited. Precambrian Res. 2019, 324, 62–85. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T.J.B. On thermobarometry. J. Metamorph. Geol. 2008, 26, 155–179. [Google Scholar] [CrossRef]
- Pattison, D.R.M.; Chacko, T.; Farquhar, J.; Mcfarlane, C.R.M. Temperatures of granulite facies metamorphism: Constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J. Pet. 2003, 44, 867–900. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Sun, C.G.; Yao, L.J. A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim. Cosmochim. Acta 2013, 102, 246–260. [Google Scholar] [CrossRef]
- Sun, C.G.; Liang, Y. A REE-in-garnet–clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chem. Geol. 2015, 393–394, 79–92. [Google Scholar] [CrossRef]
- Rushmer, T. Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contrib. Miner. Petrol. 1991, 107, 41–59. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Stevens, G.; Clemens, J.D.; Droop, G.T.R. Melt production during granulite facies anatexis: Experimental data from “primitive” metasedimentary protoliths. Contrib. Mineral. Petrol. 1997, 128, 352–370. [Google Scholar] [CrossRef]
ICP-OES Whole Rock Compositions (wt.%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Number | SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | A/CNK | Mg# |
syenogranite | |||||||||||||
J1309 | 74.83 | 0.02 | 13.81 | 0.22 | 0.00 | 0.03 | 0.59 | 2.88 | 6.59 | 0.04 | 0.38 | 1.07 | 0.21 |
orthogneisses | |||||||||||||
J1320 | 71.45 | 0.04 | 16.62 | 0.73 | 0.01 | 0.35 | 3.75 | 4.57 | 1.06 | 0.11 | 0.55 | 1.07 | 0.49 |
J1343 | 70.47 | 0.49 | 16.89 | 1.44 | 0.01 | 0.34 | 1.27 | 5.23 | 2.03 | 0.11 | 1.14 | 1.29 | 0.32 |
J1346 | 60.43 | 0.54 | 17.04 | 6.35 | 0.09 | 3.31 | 5.87 | 4.34 | 0.66 | 0.07 | 0.96 | 0.92 | 0.51 |
J1325 | 68.47 | 0.31 | 14.94 | 2.71 | 0.03 | 1.11 | 1.93 | 3.72 | 4.61 | 0.11 | 1.47 | 1.02 | 0.45 |
J1345 | 63.81 | 0.43 | 17.08 | 4.55 | 0.07 | 1.98 | 4.18 | 4.32 | 1.07 | 0.10 | 1.66 | 1.08 | 0.47 |
J1322 | 59.98 | 0.44 | 15.95 | 6.26 | 0.09 | 3.36 | 6.08 | 3.98 | 1.13 | 0.25 | 1.61 | 0.85 | 0.52 |
J1353A | 67.42 | 0.33 | 14.72 | 3.95 | 0.04 | 2.11 | 2.45 | 3.03 | 4.59 | 0.11 | 0.58 | 1.02 | 0.52 |
J1353B | 57.43 | 0.75 | 15.49 | 9.90 | 0.09 | 5.29 | 3.66 | 3.63 | 2.74 | 0.24 | 0.18 | 0.99 | 0.52 |
J1355 | 59.36 | 0.20 | 7.71 | 24.69 | 0.08 | 1.69 | 1.78 | 1.05 | 2.18 | 0.19 | 0.30 | 1.05 | 0.12 |
J1349 | 50.91 | 0.72 | 17.88 | 9.11 | 0.12 | 5.03 | 7.37 | 4.36 | 1.79 | 0.37 | 1.60 | 0.79 | 0.52 |
mafic granulites | |||||||||||||
J1348A | 56.36 | 0.71 | 16.32 | 9.18 | 0.10 | 3.93 | 6.92 | 3.99 | 0.85 | 0.13 | 0.74 | 0.81 | 0.46 |
J1348B | 49.53 | 1.65 | 12.87 | 16.71 | 0.28 | 5.05 | 9.86 | 2.45 | 0.55 | 0.15 | 0.66 | 0.57 | 0.38 |
Pelitic granulites | |||||||||||||
J1513 | 66.29 | 0.72 | 15.53 | 4.80 | 0.04 | 2.08 | 2.69 | 3.71 | 2.62 | 0.08 | 0.75 | 1.12 | 0.46 |
J15107 | 63.15 | 0.74 | 15.42 | 10.71 | 0.08 | 3.76 | 1.99 | 1.86 | 1.94 | 0.12 | 0.50 | 1.75 | 0.41 |
J1450 | 62.08 | 0.65 | 16.10 | 8.85 | 0.11 | 3.86 | 3.47 | 2.94 | 0.89 | 0.13 | 0.32 | 1.33 | 0.47 |
J1452 | 64.12 | 0.89 | 16.36 | 5.94 | 0.08 | 3.07 | 2.89 | 3.81 | 1.67 | 0.09 | 0.79 | 1.23 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.; Wei, C.; Li, Z.; Zhang, C. Zircon U-Pb Dating and Metamorphism of Granitoid Gneisses and Supracrustal Rocks in Eastern Hebei, North China Craton. Minerals 2022, 12, 863. https://doi.org/10.3390/min12070863
Duan Z, Wei C, Li Z, Zhang C. Zircon U-Pb Dating and Metamorphism of Granitoid Gneisses and Supracrustal Rocks in Eastern Hebei, North China Craton. Minerals. 2022; 12(7):863. https://doi.org/10.3390/min12070863
Chicago/Turabian StyleDuan, Zhanzhan, Chunjing Wei, Zhuang Li, and Cong Zhang. 2022. "Zircon U-Pb Dating and Metamorphism of Granitoid Gneisses and Supracrustal Rocks in Eastern Hebei, North China Craton" Minerals 12, no. 7: 863. https://doi.org/10.3390/min12070863
APA StyleDuan, Z., Wei, C., Li, Z., & Zhang, C. (2022). Zircon U-Pb Dating and Metamorphism of Granitoid Gneisses and Supracrustal Rocks in Eastern Hebei, North China Craton. Minerals, 12(7), 863. https://doi.org/10.3390/min12070863