Genesis of Chaxi Gold Deposit in Southwestern Hunan Province, Jiangnan Orogen (South China): Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Analytical Methods
3.1. Fluid Inclusions
3.2. H-O-S-Pb Isotope Analysis
3.3. EPMA
4. Results
4.1. Fluid Inclusions
4.1.1. Petrography and Fluid Inclusions
4.1.2. Microthermometric Data
4.1.3. Laser Raman Analysis
4.2. H-O-S-Pb Isotopes
4.3. EPMA Pyrite Compositions
5. Discussion
5.1. Evolution of Ore-Forming Fluids
5.2. Source of Ore-Forming Fluids and Materials
5.2.1. Ore Fluid Source
5.2.2. Ore-Material Source
5.3. Genesis of the Chaxi Gold Deposit
6. Conclusions
- (1)
- The Chaxi alteration and gold mineralization comprises three stages, i.e., quartz-pyrite, quartz-native gold-polymetallic sulfides, and quartz-carbonate-pyrite alteration.
- (2)
- Fluid inclusions Raman spectra and microthermometry reveal a medium-/low- temperature, low salinity CO2-H2O-NaCl fluid system. Fluid boiling may have triggered gold precipitation.
- (3)
- H-O-S-Pb isotope compositions coupled with EPMA results suggest that the Chaxi gold ore fluids were sourced from the magmatic fluid with meteoric water input, and the sulfur was from the Chang’an and Wuqiangxi formation (Banxi Group). The Chaxi gold metallogenic system is of hybrid origin and controlled by the WNW-trending shear fault.
- (4)
- The Chaxi gold ore resembles typical orogenic gold deposits, given magmatic sources, is best classified as a broad sense orogenic gold deposit.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.F.; Yi, X.K.; Zhu, H.P. Source of ore-forming fluids in Jinshan gold deposit of Dexing County: Constraints from microstructures and stable isotopes. Min. Depos. 2009, 28, 42–52, (In Chinese with English abstract). [Google Scholar]
- Goldfarb, R.J.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic Continental Growth and Gold Metallogeny of Asia. Gondwana Res. 2014, 25, 48–102. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q. Gold Mineralization in China: Metallogenic Provinces, Deposit Types and Tectonic Framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Shao, Y.-J.; Wang, W.-S.; Liu, Q.-Q.; Zhang, Y. Trace Element Analysis of Pyrite from the Zhengchong Gold Deposit, Northeast Hunan Province, China: Implications for the Ore-Forming Process. Minerals 2018, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.-C.; Zhang, L.; Li, R.-H.; Wen, T.; Xu, H.; Wang, J.-Y.; Li, Z.-Q.; Zhang, F.; Zhang, X.-J.; Guo, H. Process and Mechanism of Gold Mineralization at the Zhengchong Gold Deposit, Jiangnan Orogenic Belt: Evidence from the Arsenopyrite and Chlorite Mineral Thermometers. Minerals 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shao, Y.; Evans, N.J.; Li, H.; Zhou, H.; Huang, K.; Liu, Z.; Chen, Y.; Lai, C.; Liu, Q. Genesis of Zixi Gold Deposit in Xuefengshan, Jiangnan Orogen (South China): Age, Geology and Isotopic Constraints. Ore Geol. Rev. 2020, 117, 103301. [Google Scholar] [CrossRef]
- Li, H.M.; Zhang, Z.J.; Li, L.X.; Zhang, Z.C.; Chen, J.; Yao, T. Types and General Characteristics of the BIF-Related Iron Deposits in China. Ore Geol. Rev. 2014, 57, 264–287. [Google Scholar] [CrossRef]
- Yao, J.L.; Shu, L.S.; Santosh, M. Neoproterozoic Arc-Trench System and Breakup of the South China Craton: Constraints from N-MORB Type and Arc-Related Mafic Rocks, and Anorogenic Granite in the Jiangnan Orogenic Belt. Precambrian Res. 2014, 247, 187–207. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Chen, X.; Zhang, F.; Sun, X.M. Formation and Evolution of the Jiangnan Orogen. Bull. Mineral. Petrol. Geochem. 2017, 36, 714–735, (In Chinese with English abstract). [Google Scholar]
- Gu, X.X.; Zhang, Y.M.; Schulz, O.; Vavtar, F.; Liu, J.M.; Zheng, M.H.; Zheng, L. The Woxi W–Sb–Au Deposit in Hunan, South China: An Example of Late Proterozoic Sedimentary Exhalative (SEDEX) Mineralization. J. Asian Earth Sci. 2012, 57, 54–75. [Google Scholar] [CrossRef]
- Deng, T.; Xu, D.; Chi, G.; Wang, Z.; Jiao, Q.; Ning, J.; Dong, G.; Zou, F. Geology, Geochronology, Geochemistry and Ore Genesis of the Wangu Gold Deposit in Northeastern Hunan Province, Jiangnan Orogen, South China. Ore Geol. Rev. 2017, 88, 619–637. [Google Scholar] [CrossRef]
- Mao, J.W.; Li, H.Y. Research on genesis of the gold deposits in the Jiangnan terrain. Geochimica 1997, 26, 71–81, (In Chinese with English abstract). [Google Scholar]
- Peng, B.; Frei, R. Nd-Sr-Pb Isotopic Constraints on Metal and Fluid Sources in W-Sb-Au Mineralization at Woxi and Liaojiaping (Western Hunan, China). Miner. Depos. 2004, 39, 313–327. [Google Scholar] [CrossRef]
- Dong, G.J.; Xu, D.R.; Wang, L.; Chen, G.H.; He, Z.L.; Fu, G.G.; Wu, J.; Wang, Z.L. Determination of mineralizing age on gold ore deposits in the eastern Hunan province, south China and isotopic tracking on ore-forming fluids–re-discussion gold ore deposit type. Geotecton. Metallog. 2008, 32, 482–491, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, W.; Xie, G.-Q.; Zhang, Z.-Y.; Zhang, X.-K. Constraint on the genesis of Gutaishan gold deposit in central Hunan province: Evidence from fluid inclusion and C-H-O isotopes. Acta Petrol. Sin. 2016, 32, 3489–3506, (In Chinese with English abstract). [Google Scholar]
- Xu, D.; Deng, T.; Chi, G.; Wang, Z.; Zou, F.; Zhang, J.; Zou, S. Gold Mineralization in the Jiangnan Orogenic Belt of South China: Geological, Geochemical and Geochronological Characteristics, Ore Deposit-Type and Geodynamic Setting. Ore Geol. Rev. 2017, 88, 565–618. [Google Scholar] [CrossRef]
- Li, W.; Xie, G.-Q.; Mao, J.-W.; Zhang, Z.-Y.; Fu, B.; Lu, S. Muscovite 40Ar/39Ar and in Situ Sulfur Isotope Analyses of the Slate-Hosted Gutaishan Au–Sb Deposit, South China: Implications for Possible Late Triassic Magmatic-Hydrothermal Mineralization. Ore Geol. Rev. 2018, 101, 839–853. [Google Scholar] [CrossRef]
- Li, W.; Cook, N.J.; Xie, G.-Q.; Mao, J.-W.; Ciobanu, C.L.; Li, J.-W.; Zhang, Z.-Y. Textures and Trace Element Signatures of Pyrite and Arsenopyrite from the Gutaishan Au–Sb Deposit, South China. Miner. Depos. 2019, 54, 591–610. [Google Scholar] [CrossRef]
- Li, W.; Cook, N.J.; Xie, G.-Q.; Mao, J.-W.; Ciobanu, C.L.; Fu, B. Complementary Textural, Trace Element, and Isotopic Analyses of Sulfides Constrain Ore-Forming Processes for the Slate-Hosted Yuhengtang Au Deposit, South China. Econ. Geol. 2021, 116, 1825–1848. [Google Scholar] [CrossRef]
- Luo, X.L. Discussion on the material sources of gold deposits in precambrian strata in Hunan. J. Guilin Inst. Met. Geol. 1990, 10, 13–26, (In Chinese with English abstract). [Google Scholar]
- Niu, H.C.; Ma, D.S. Fluid inclusion studies of Jiangnan-type gold deposits in western Hunan Province. Acta Miner. Sin. 1991, 11, 386–394, (In Chinese with English abstract). [Google Scholar]
- Gu, X.X.; Liu, J.M.; Schulz, O.; Vavtar, F.; Zheng, M.H. Syngenetic origin of the Woxi W-Sb-Au deposit in Hunan: Evidence from trace elements and sulfur isotopes. Chin. J. Geol. 2004, 39, 424–439, 415, (In Chinese with English abstract). [Google Scholar]
- Dong, S.Y.; Gu, X.X.; Schulz, O.; Vavtar, F.; Liu, J.M.; Zheng, M.H.; Cheng, W.B. Fluid Inclusion Evidence for the Genesis of the Woxi W-Sb-Au Deposit, Hunan Province. Acta Geol. Sin. 2008, 82, 641–647, (In Chinese with English abstract). [Google Scholar]
- Cao, L.; Duan, Q.F.; Peng, S.G.; Zhou, Y. Characteristics and geological significance of stable isotopes in the Chanziping gold deposit of Xuefeng Mountains. South China Geol. 2015, 31, 167–175, (In Chinese with English abstract). [Google Scholar]
- Jingwen, M.; Yanbo, C.; Maohong, C.; Pirajno, F. Major Types and Time–Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar] [CrossRef]
- Xie, Y.H.; Gao, H.; Zhang, Z.; Yang, L.; Ke, X.X. Ore-forming Fluid Characteristics and Material Source of Gold Deposits in Tongdao County, Hunan Province:Evidence from Fluid Inclusions and H-O-S Isotopes. Gold Sci. Technol. 2021, 29, 74–89, (In Chinese with English abstract). [Google Scholar]
- Liu, Q.Y.; He, L.J.; Huang, F. Review of Mesozoic geodynamics research of South China. Prog. Geophys. 2013, 28, 633–647, (In Chinese with English abstract). [Google Scholar]
- Zeng, G.; Gong, Y.; Wang, Z.; Hu, X.; Xiong, S. Structures of the Zhazixi Sb–W Deposit, South China: Implications for Ore Genesis and Mineral Exploration. J. Geochem. Explor. 2017, 182, 10–21. [Google Scholar] [CrossRef]
- Wang, J.; Pan, G.T. Neoproterozoic South China palaeocontinents: An overview. Acta Sedimentol. Sin. 2009, 27, 818–825, (In Chinese with English Abstract). [Google Scholar]
- Bai, D.Y.; Zhong, X.; Jia, P.Y.; Xiong, X.; Huang, W.Y.; Jiang, W. Progresses in the deformations and tectonic evolutions of the Xuefeng Orogenic Belt and its adjacent areas. South China Geol. 2015, 31, 321–343, (In Chinese with English abstract). [Google Scholar]
- Li, Z.-X.; Li, X.-H. Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Zhu, K.-Y.; Li, Z.-X.; Xu, X.-S.; Wilde, S.A. A Mesozoic Andean-Type Orogenic Cycle in Southeastern China as Recorded by Granitoid Evolution. Am. J. Sci. 2014, 314, 187–234. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Ouyang, H.; Song, S.; Santosh, M.; Yuan, S.; Zhou, Z.; Zheng, W.; Liu, H.; Liu, P.; Cheng, Y.; et al. Geology and Metallogeny of Tungsten and Tin Deposits in China. Soc. Econ. Geol. Spec. Publ. 2019, 22, 411–482. [Google Scholar]
- Mao, J.; Wu, S.; Song, S.; Dai, P.; Xie, G.; Su, Q.; Liu, P.; Wang, X.; Yu, Z.; Chen, X.; et al. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Sci. Bull. 2020, 65, 3746–3762. [Google Scholar]
- Mao, J.; Zheng, W.; Xie, G.; Lehmann, B.; Goldfarb, R. Recognition of a Middle–Late Jurassic Arc-Related Porphyry Copper Belt along the Southeast China Coast: Geological Characteristics and Metallogenic Implications. Geology 2021, 49, 592–596. [Google Scholar] [CrossRef]
- Xu, D.R.; Gu, X.X.; Li, P.C.; Chen, G.H.; Xia, B. Mesoproterozoic–Neoproterozoic Transition: Geochemistry, Provenance and Tectonic Setting of Clastic Sedimentary Rocks on the SE Margin of the Yangtze Block, South China. J. Asian Earth Sci. 2007, 29, 637–650. [Google Scholar]
- Gao, L.Z.; Chen, J.; Ding, X.Z.; Liu, Y.R.; Zhang, C.H. Zircon SHRIMP U-Pb dating of the tuff bed of Lengjiaxi and Banxi groups, northeastern Hunan: Constraints on the Wuling Movement. Geol. Bull. China 2011, 30, 1001–1008, (In Chinese with English abstract). [Google Scholar]
- Liu, Q.; Shao, Y.; Chen, M.; Algeo, T.J.; Li, H.; Dick, J.M.; Wang, C.; Wang, W.-S.; Li, Z.; Liu, Z. Insights into the Genesis of Orogenic Gold Deposits from the Zhengchong Gold Field, Northeastern Hunan Province, China. Ore Geol. Rev. 2019, 105, 337–355. [Google Scholar] [CrossRef]
- Luo, W.; Dai, T.G.; You, X.J. Metallogentic regularities and predictions of Au deposit in th south west Hunan Province. Geol. Explor. 2007, 42–46. [Google Scholar]
- Zhang, L.G. Stable isotopic geology of W-Sb-Au ore deposits developed along the Xuefeng uplift in western Hunan. Geol. Explor. 1985, 21, 24–28. (In Chinese) [Google Scholar]
- Zhang, L.; Yang, L.-Q.; Groves, D.I.; Sun, S.-C.; Liu, Y.; Wang, J.-Y.; Li, R.-H.; Wu, S.-G.; Gao, L.; Guo, J.-L.; et al. An Overview of Timing and Structural Geometry of Gold, Gold-Antimony and Antimony Mineralization in the Jiangnan Orogen, Southern China. Ore Geol. Rev. 2019, 115, 103173. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, S.M.; Zhang, Z.M. Xuefeng Belt Au-Sb Resources Exploration Project Report; Changsha Natural Resources Comprehesive Survey Center: Changsha, China, 2021. [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Collins, P.L.F. Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Econ. Geol. 1979, 74, 1435–1444. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen Isotope Exchange between Quartz and Water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- McCuaig, T.C.; Kerrich, R. P—T—t—Deformation—Fluid Characteristics of Lode Gold Deposits: Evidence from Alteration Systematics. Ore Geol. Rev. 1998, 12, 381–453. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable Isotope Geochemistry of Ore Deposits. In Stable Isotopes in High Temperature Geological Processes, Reviews in Mineralogy; Valley, J.W., Taylore, H.P., O’Neil, J.R., Eds.; Walter de Gruyter: Berlin, Germany, 1999; Volume 16, pp. 491–561. [Google Scholar]
- Luo, X.L. On the genesis and metallogenic model of the Huangjidong gold deposit from Hunan. J. Guilin Coll. Geol. 1988, 8, 225–240, (In Chinese with English abstract). [Google Scholar]
- Zhang, J.R.; Luo, X.L. Metallogenetic epochs of endogenic gold deposits in south china. J. Guilin Coll. Geol. 1989, 9, 369–379, (In Chinese with English abstract). [Google Scholar]
- Liu, H.C.; Zhu, B.Q. Study on Depositional Timings of the Banxi and Lengjiaxi Groups in Western Hunan Province. Chin. Sci. Bull. 1994, 39, 148–150. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Liu, L.M.; Peng, S.L.; Wu, Y.Z. Genetic features forming vein-type gold deposits in northeastern Hunan. J. Cent. South Univ. Technol. 1999, 30, 4–7, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Luo, X.L. Geological characteristics of Precambrian antimony metallogeny in Hunan. J. Guilin Coll. Geol. 1994, 14, 335–349, (In Chinese with English abstract). [Google Scholar]
- Wei, D.F. Source of ore-forming materials in Chanziping gold deposit and the geologic study of its mechanism of formation. Hunan Geol. 1993, 12, 29–34, (In Chinese with English abstract). [Google Scholar]
- Luo, X.Q. Mineralization and prospecting guide of Chanziping gold deposit in Hunan. Hunan Geol. 1996, 15, 33–38, (In Chinese with English abstract). [Google Scholar]
- Zhou, D.Z.; Ye, D.Y.; Yu, D.L. A preliminary discussion on the genesis of the Mobin quartz vein-type gold deposit in Hunan Province. Miner. Depos. 1989, 8, 51–64, (In Chinese with English abstract). [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—the Model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Campbell, F.A.; Ethier, V.G. Nickel and Cobalt in Pyrrhotite and Pyrite from the Faro and Sullivan Orebodies. Can. Miner. 1984, 22, 503–506. [Google Scholar]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of Gold in Arsenian Pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Phillips, G.N.; Evans, K.A. Role of CO2 in the Formation of Gold Deposits. Nature 2004, 429, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Hedenquist, J.W.; Henley, R.W. The Importance of COs on Freezing Point Measurementsof Fluid Inclusions:Evidence from Active Geothermal Systemsand Implications for Epithermal Ore Deposition. Econ. Geol. 1985, 80, 1379–1406. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic Gold: Common or Evolving Fluid and Metal Sources through Time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Dugdale, A.L.; Hagemann, S.G. The Bronzewing Lode-Gold Deposit, Western Australia: P–T–X Evidence for Fluid Immiscibility Caused by Cyclic Decompression in Gold-Bearing Quartz-Veins. Chem. Geol. 2001, 173, 59–90. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Chen, Y.; Qin, Y.; Liu, C.; Zheng, Y.; Jansen, N.H. Geology and Fluid Evolution of the Wangfeng Orogenic-Type Gold Deposit, Western Tian Shan, China. Ore Geol. Rev. 2012, 49, 85–95. [Google Scholar] [CrossRef]
- Zhu, Y.-N.; Peng, J.-T. Infrared Microthermometric and Noble Gas Isotope Study of Fluid Inclusions in Ore Minerals at the Woxi Orogenic Au–Sb–W Deposit, Western Hunan, South China. Ore Geol. Rev. 2015, 65, 55–69. [Google Scholar] [CrossRef]
- Jia, Y.; Kerrich, R. Metamorphic Origin of Ore-Forming Fluids for Orogenic Gold-Bearing Quartz Vein Systems in the North American Cordillera: Constraints from a Reconnaissance Study of Δ15N, ΔD, and Δ18O. Econ. Geol. 2003, 109–123. [Google Scholar]
- Kerrich, R.; Goldfarb, R.; Groves, D.; Garwin, S.; Jia, Y. The Characteristics, Origins, and Geodynamic Settings of Supergiant Gold Metallogenic Provinces. Sci. China Ser. Earth Sci. 2000, 43, 1–68. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Bozkaya, G. Sulphur- and Lead-Isotope Geochemistry of the Arapuçandere Lead–Zinc–Copper Deposit, Biga Peninsula, Northwest Turkey. Int. Geol. Rev. 2011, 53, 116–129. [Google Scholar] [CrossRef]
- Ho, S.E.; McNaughton, N.J.; Groves, D.I. Criteria for Determining Initial Lead Isotopic Compositions of Pyrite in Archaean Lode-Gold Deposits: A Case Study at Victory, Kambalda, Western Australia. Chem. Geol. 1994, 111, 57–84. [Google Scholar] [CrossRef]
- Ding, Q.-F.; Wu, C.-Z.; Santosh, M.; Fu, Y.; Dong, L.-H.; Qu, X.; Gu, L.-X. H–O, S and Pb Isotope Geochemistry of the Awanda Gold Deposit in Southern Tianshan, Central Asian Orogenic Belt: Implications for Fluid Regime and Metallogeny. Ore Geol. Rev. 2014, 62, 40–53. [Google Scholar] [CrossRef]
- Doe, B.R.; Zartman, R.E. Plumbotectonics I, the Phanerozoic. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley: London, UK, 1979; Volume 37, pp. 22–70. [Google Scholar]
- Kamona, A.F.; Lévêque, J.; Friedrich, G.; Haack, U. Lead Isotopes of the Carbonate-Hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu Sulphide Deposits in Relation to Pan African Orogenesis in the Damaran-Lufilian Fold Belt of Central Africa. Miner. Depos. 1999, 34, 273–283. [Google Scholar] [CrossRef]
- Gu, X.; Schulz, O.; Vavtar, F.; Liu, J.; Zheng, M.; Fu, S. Rare Earth Element Geochemistry of the Woxi W–Sb–Au Deposit, Hunan Province, South China. Ore Geol. Rev. 2007, 31, 319–336. [Google Scholar] [CrossRef]
- Pirajno, F.; Bagas, L. Gold and Silver Metallogeny of the South China Fold Belt: A Consequence of Multiple Mineralizing Events? Ore Geol. Rev. 2002, 20, 109–126. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Thompson, J.F.H. Intrusion-Related Vein Gold Deposits: Types, Tectono-Magmatic Settings and Difficulties of Distinction from Orogenic Gold Deposits. Resour. Geol. 1998, 48, 237–250. [Google Scholar] [CrossRef]
- Zachariáš, J.; Morávek, P.; Gadas, P.; Pertoldová, J. The Mokrsko-West Gold Deposit, Bohemian Massif, Czech Republic: Mineralogy, Deposit Setting and Classification. Ore Geol. Rev. 2014, 58, 238–263. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Mao, J.-W.; Qiu, K.-F.; Goryachev, N. The Great Yanshanian Metallogenic Event of Eastern Asia: Consequences from One Hundred Million Years of Plate Margin Geodynamics. Gondwana Res. 2021, 100, 223–250. [Google Scholar] [CrossRef]
- Mao, J.; Liu, P.; Goldfarb, R.J.; Goryachev, N.A.; Pirajno, F.; Zheng, W.; Zhou, M.; Zhao, C.; Xie, G.; Yuan, S.; et al. Cretaceous Large-Scale Metal Accumulation Triggered by Post-Subductional Large-Scale Extension, East Asia. Ore Geol. Rev. 2021, 136, 104270. [Google Scholar] [CrossRef]
Stage | Fl Type | Tmice (°C) | Average (°C) | Thtot (°C) | Average (°C) | Salinity (wt.% NaClequiv) | Average (wt.% NaClequiv) | Density (g/cm3) | Average (g/cm3) | Pressure (MPa) | Average (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|
stage I | W | −13.8 to −1.6 | −8.4 | 139.6 to 267.1 | 189.7 | 2.7 to 17.6 | 11.8 | 0.81 to 1.04 | 0.95 | 0.46 to 4.86 | 2.02 |
stage II | C | −16.6 to −2.1 | −11.7 | 151.0 to 387.2 | 229.1 | 3.6 to 19.9 | 15.0 | 0.85 to 1.06 | 0.99 | 0.42 to 11.75 | 2.16 |
W | −14.9 to −1.6 | −6.3 | 137.5 to 327.0 | 188.8 | 2.7 to 18.5 | 9.2 | 0.81 to 1.05 | 0.95 | 0.44 to 4.38 | 1.27 | |
stage III | W | −18.6 to −1.8 | −7.2 | 139.7 to 330.5 | 188.5 | 3.1 to 21.4 | 10.3 | 0.80 to 1.07 | 0.95 | 0.44 to 5.40 | 1.43 |
Sample | Mineral | Stage | Occurrence | δDV-SMOW‰ | δ18OV-SMOW‰ | Temperature | δ18OH2O |
---|---|---|---|---|---|---|---|
CX2003-1-3 | quartz | II | shallow vein, strike WNW, bearing galena and chalcopyrite | −49.8 | 16.96 | 187.8 | 4.45 |
CX2006 | quartz | II | steep vein, strike WNW, thickness of 20 cm | −56.6 | 17.02 | 187.8 | 4.52 |
CX2010 | quartz | III | steep vein, strike ENE, thickness of 0.3–1.5 cm, rich in gold, galena and irregular fine-grained pyrite | −61.5 | 15.50 | 187.8 | 2.99 |
CX2015 | quartz | II | shallow vein, strike WNW, thickness of 8–12 cm, bearing cubic pyrites | −62.3 | 16.96 | 187.8 | 4.45 |
CX2016 | quartz | II | steep vein, strike WNW, thickness of 8–12 cm, bearing cubic pyrites | −62.9 | 15.36 | 187.8 | 2.85 |
CX2022 | quartz | II | shallow vein, strike WNW | −54.0 | 17.11 | 203.5 | 5.63 |
CX2026-1-2 | quartz | I | steep vein, strike ENE, thickness of 8–12 cm | −53.1 | 16.72 | 186.8 | 4.14 |
CX-6 | quartz | II | shallow vein, strike WNW | −53.75 | 15.44 | 180.4 | 2.40 |
CX-17 | quartz | I | steep vein, strike ENE, bearing irregular shape fine-grained pyrites | −61.45 | 15.62 | 187.8 | 3.11 |
CX-18 | quartz | II | shallow vein, strike WNW | −71.73 | 16.44 | 169.3 | 2.58 |
Sample | Mineral | Stage | Occurrence | δ34SV-CDT‰ |
---|---|---|---|---|
CX2008-1 | pyrite | III | steep quartz veins, strike ENE, thickness of 0.3–1.5 cm, rich in visible gold, galena and irregular shape fine-grained pyrite | 18.55 |
CX2008-2 | pyrite | 17.50 | ||
CX2009-1 | pyrite | III | steep quartz veins, strike ENE, thickness of 0.3–1.5 cm, rich in visible gold, galena and irregular shape fine-grained pyrite | 19.33 |
CX2009-2 | pyrite | 18.61 | ||
CX2010-1 | pyrite | III | steep quartz vein, strike ENE, thickness of 0.3–1.5 cm, rich in visible gold, galena and irregular shape fine-grained pyrite | 17.74 |
CX2010-2 | pyrite | 17.12 | ||
CX2011-1 | pyrite | I | cubic pyrites in meta-greywacke | 15.11 |
CX2011-2 | pyrite | 16.38 | ||
CX2016-1 | pyrite | I | cubic pyrites in meta-greywacke | 18.59 |
CX2016-2 | pyrite | 15.95 | ||
CX2022-1 | galena | II | Sulfides-gold-bearing WNW-striking quartz veins | 6.26 |
CX2022-2 | galena | 6.67 | ||
CX-17-1 | chalcopyrite | II | Sulfides-electrum-bearing WNW-striking quartz veins | 9.78 |
CX-17-2 | chalcopyrite | 11.77 | ||
CX2004 | meta-graywacke | 18.20 | ||
CX2005 | carbonaceous slate | 21.66 | ||
CX2009 | cinerous sandy slate | 20.95 | ||
CX2011-1 | meta-graywacke | 16.31 | ||
CX2011-2 | meta-graywacke | 16.42 | ||
CX2025 | NNE-trending fault gouge | width ~15–25 cm | −5.35 | |
CX2027 | WNW-trending fault gouge | 239°∠61°, purple, width ~20 cm, with sliding surface scratches | - |
Sample | Samples | 206Pb/204Pb | Error (%) 1 | 207Pb/204Pb | Error (%) | 208Pb/204Pb | Error (%) |
---|---|---|---|---|---|---|---|
CX2008 | pyrite | 17.0945 | 0.0004 | 15.4788 | 0.0003 | 37.3803 | 0.0007 |
CX2009 | pyrite | 17.2281 | 0.0010 | 15.5067 | 0.0010 | 37.5185 | 0.0035 |
CX2010 | pyrite | 16.8000 | 0.0006 | 15.4510 | 0.0007 | 37.0544 | 0.0018 |
CX2011 | pyrite | 16.9557 | 0.0007 | 15.4804 | 0.0006 | 37.3011 | 0.0016 |
CX2016 | pyrite | 17.0367 | 0.0013 | 15.4517 | 0.0015 | 37.3474 | 0.0048 |
CX2022 | galena | 16.7215 | 0.0067 | 15.4413 | 0.0074 | 36.9731 | 0.0180 |
CX-17 | chalcopyrite | 16.9734 | 0.0003 | 15.5141 | 0.0002 | 37.3919 | 0.0005 |
CX2004-1 | meta-graywacke | 17.8583 | 0.0004 | 15.5333 | 0.0006 | 37.9972 | 0.0045 |
CX2004-2 | meta-graywacke | 17.8308 | 0.0011 | 15.5188 | 0.0005 | 38.0150 | 0.0171 |
CX2005 | carbonaceous slate | 18.4466 | 0.0013 | 15.5879 | 0.0009 | 37.8994 | 0.0063 |
CX2009 | cinerous sandy slate | 17.6200 | 0.0008 | 15.5185 | 0.0007 | 37.9147 | 0.0066 |
CX2011 | meta-graywacke | 17.7639 | 0.0066 | 15.5300 | 0.0048 | 38.3225 | 0.0133 |
CX2025 | NNE-trending fault gouge | 16.9831 | 0.0014 | 15.3877 | 0.0015 | 36.0358 | 0.0144 |
CX2027 | WNW-trending fault gouge | 17.0582 | 0.0006 | 15.4712 | 0.0006 | 37.3625 | 0.0008 |
Spot No. | Stage | As | Se | Au | S | Pb | Ag | Te | Fe | Co | Ni | Cu | Zn | Mo | Sb | Bi | Mn | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Py CX2010 | ||||||||||||||||||
1 | Syn-ore | 0.14 | - | - | 52.98 | - | - | - | 44.89 | 0.06 | - | - | 0.03 | 0.36 | - | - | - | 98.47 |
2 | 0.16 | - | 0.02 | 52.65 | - | - | 0.02 | 45.68 | 0.04 | 0.02 | - | - | 0.46 | - | - | - | 99.04 | |
3 | 0.18 | 0.01 | - | 53.61 | - | - | 0.02 | 46.31 | 0.06 | 0.01 | - | 0.04 | 0.43 | - | - | - | 100.68 | |
4 | 0.15 | - | 0.02 | 54.32 | - | - | - | 46.58 | 0.05 | - | 0.07 | - | 0.41 | 0.02 | - | 0.01 | 101.64 | |
5 | 0.18 | - | 0.01 | 54.82 | - | 0.02 | - | 47.04 | 0.04 | 0.08 | - | 0.08 | 0.40 | - | - | - | 102.67 | |
6 | 0.19 | - | - | 54.32 | - | - | 0.00 | 46.81 | 0.05 | 0.03 | 0.01 | 0.01 | 0.39 | - | - | 0.02 | 101.85 | |
8 | 0.16 | - | 0.01 | 52.71 | - | - | - | 45.05 | 0.04 | - | 0.04 | 0.05 | 0.31 | 0.01 | - | - | 98.37 | |
11 | 0.14 | - | - | 52.05 | - | - | - | 45.47 | 0.04 | - | 0.05 | 0.06 | 0.35 | - | - | 0.01 | 98.17 | |
13 | 0.17 | 0.02 | 0.01 | 52.49 | - | - | 0.01 | 45.49 | 0.03 | 0.01 | - | - | 0.46 | - | - | - | 98.68 | |
14 | 0.16 | - | - | 51.05 | - | - | - | 46.18 | 0.06 | 0.01 | - | - | 0.58 | - | - | - | 98.14 | |
Py CX21-11 | ||||||||||||||||||
1 | 0.23 | 0.02 | 0.06 | 51.43 | - | 0.02 | - | 45.81 | 0.06 | 0.03 | - | 0.09 | 0.34 | - | - | - | 98.09 | |
2 | 1.80 | - | 0.02 | 50.55 | - | 0.01 | 0.02 | 45.10 | 0.05 | - | - | - | 0.39 | - | - | 0.01 | 97.93 | |
3 | 0.20 | - | - | 52.05 | - | 0.05 | 0.01 | 45.90 | 0.06 | 0.02 | 0.01 | - | 0.43 | 0.02 | - | - | 98.73 | |
5 | 0.23 | 0.02 | - | 52.39 | - | - | - | 45.46 | 0.07 | 0.05 | 0.03 | 0.05 | 0.43 | 0.02 | - | - | 98.75 | |
7 | 0.19 | 0.01 | 0.02 | 52.28 | - | 0.00 | - | 47.01 | 0.10 | 0.05 | 0.01 | 0.10 | 0.41 | 0.01 | - | - | 100.18 | |
8 | 0.25 | - | 0.05 | 53.20 | - | 0.03 | - | 46.95 | 0.14 | 0.06 | 0.01 | - | 0.42 | 0.02 | - | - | 101.11 | |
25 | 0.31 | - | - | 53.25 | - | - | 0.02 | 47.30 | 0.04 | - | 0.07 | 0.08 | 0.41 | 0.01 | - | - | 101.49 | |
26 | 0.13 | - | - | 53.47 | - | - | - | 47.35 | 0.06 | - | 0.05 | 0.03 | 0.44 | - | - | - | 101.52 | |
27 | 0.22 | - | - | 52.35 | - | 0.02 | - | 47.88 | 0.08 | - | - | - | 0.41 | 0.02 | - | 0.01 | 100.97 | |
17 | 0.20 | 0.01 | - | 54.22 | - | 0.02 | - | 46.78 | 0.07 | 0.08 | - | - | 0.44 | 0.01 | - | - | 101.83 | |
18 | 0.17 | - | 0.01 | 53.66 | - | 0.02 | 0.02 | 46.64 | 0.03 | 0.03 | - | - | 0.44 | 0.02 | - | - | 101.03 | |
Py CX21-16 | ||||||||||||||||||
1 | 0.21 | - | - | 52.33 | - | 0.03 | - | 47.04 | 0.04 | 0.03 | 0.01 | - | 0.35 | - | - | - | 100.04 | |
2 | 0.18 | - | - | 52.39 | - | 0.01 | - | 46.84 | 0.06 | 0.06 | - | 0.06 | 0.34 | - | - | - | 99.95 | |
3 | 0.19 | - | 0.01 | 51.95 | - | - | 0.01 | 46.18 | 0.10 | 0.09 | 0.06 | 0.07 | 0.42 | 0.02 | - | 0.25 | 99.32 | |
5 | 0.19 | - | - | 52.03 | - | 0.01 | 0.02 | 47.19 | 0.08 | 0.01 | - | - | 0.37 | - | - | - | 99.89 | |
6 | 0.25 | - | - | 52.76 | - | 0.00 | - | 47.09 | 0.05 | 0.08 | - | 0.01 | 0.40 | - | - | - | 100.64 | |
7 | 0.26 | 0.03 | 0.01 | 47.87 | 6.54 | - | - | 42.91 | 0.16 | 0.10 | 0.05 | 0.07 | 0.18 | 0.01 | - | - | 98.19 | |
9 | Syn-ore | 0.23 | - | 0.02 | 53.26 | - | 0.02 | - | 47.88 | 0.03 | 0.03 | - | 0.04 | 0.37 | - | - | - | 101.89 |
10 | 0.35 | 0.02 | 0.01 | 53.69 | - | 0.01 | - | 48.27 | 0.09 | - | - | 0.01 | 0.42 | - | - | - | 102.88 | |
11 | 0.35 | - | 0.03 | 51.45 | - | 0.01 | 0.01 | 46.63 | 0.08 | - | - | - | 0.37 | 0.04 | - | 0.01 | 98.99 | |
12 | 0.51 | 0.02 | 0.04 | 51.60 | - | 0.01 | 0.01 | 46.93 | 0.06 | 0.04 | - | - | 0.44 | - | - | - | 99.65 | |
13 | 0.52 | - | - | 51.90 | - | 0.02 | - | 46.35 | 0.09 | 0.02 | - | - | 0.47 | - | - | 0.01 | 99.37 | |
Py CX21-17 | ||||||||||||||||||
2 | 0.26 | - | 0.01 | 52.28 | - | - | - | 47.21 | 0.17 | 0.06 | 0.06 | 0.03 | 0.36 | 0.01 | - | 0.01 | 100.46 | |
6 | 0.52 | - | - | 52.08 | - | 0.02 | - | 47.11 | 0.20 | 0.04 | 0.07 | 0.03 | 0.33 | 0.01 | - | 0.01 | 100.41 | |
10 | 0.39 | - | 0.03 | 51.32 | - | 0.01 | - | 47.84 | 0.16 | 0.07 | - | - | 0.36 | 0.05 | - | - | 100.22 | |
11 | 0.16 | 0.02 | - | 53.28 | - | 0.04 | - | 47.43 | 0.06 | - | - | - | 0.59 | - | - | - | 101.58 | |
14 | 0.21 | - | - | 52.71 | - | 0.01 | - | 46.77 | 0.06 | - | - | - | 0.62 | - | - | - | 100.38 | |
17 | 0.21 | 0.01 | - | 52.85 | - | - | - | 46.93 | 0.05 | - | - | - | 0.61 | - | - | - | 100.66 | |
18 | 0.20 | - | - | 53.01 | - | 0.04 | - | 46.90 | 0.05 | 0.04 | - | 0.10 | 0.52 | - | - | - | 100.86 | |
20 | 0.31 | - | 0.06 | 51.33 | - | 0.01 | - | 46.88 | 0.06 | - | - | 0.01 | 0.68 | - | - | - | 99.34 | |
21 | 0.31 | - | - | 51.87 | - | 0.03 | - | 46.91 | 0.02 | 0.04 | - | - | 0.61 | - | - | - | 99.80 | |
Py BKS-2 | ||||||||||||||||||
2 | Pre-ore | 0.16 | 0.01 | 0.02 | 52.42 | - | - | - | 46.60 | 0.05 | 0.01 | - | 0.02 | 0.37 | 0.01 | - | - | 99.66 |
3 | 0.14 | - | - | 52.53 | - | - | - | 47.07 | 0.06 | 0.05 | 0.02 | - | 0.35 | 0.01 | - | - | 100.24 | |
4 | 0.18 | - | 0.01 | 52.68 | - | - | - | 46.88 | 0.07 | 0.01 | 0.01 | - | 0.42 | - | - | - | 100.27 | |
5 | 0.12 | - | 0.03 | 52.40 | - | 0.01 | - | 46.39 | 0.35 | 0.04 | - | - | 0.35 | 0.02 | - | - | 99.71 | |
7 | 0.15 | 0.02 | - | 52.74 | - | - | - | 45.80 | 0.05 | 0.03 | - | 0.05 | 0.60 | - | - | - | 99.50 | |
8 | 0.21 | - | - | 52.90 | - | - | - | 45.83 | 0.06 | 0.05 | - | 0.02 | 0.57 | - | - | - | 99.79 | |
80 | 0.15 | - | - | 51.43 | - | 0.02 | - | 46.88 | 0.07 | - | 0.02 | 0.02 | 0.41 | - | - | 0.01 | 99.02 | |
81 | 0.18 | - | - | 51.48 | - | 0.02 | - | 46.24 | 0.05 | 0.01 | - | - | 0.43 | - | - | 0.01 | 98.42 | |
82 | 0.20 | - | 0.03 | 52.12 | - | - | - | 47.53 | 0.31 | - | 0.06 | 0.03 | 0.44 | - | - | - | 100.71 | |
83 | 0.18 | - | 0.07 | 53.28 | - | 0.01 | - | 46.93 | 0.07 | 0.01 | - | - | 0.37 | - | - | - | 100.92 | |
85 | 0.14 | - | - | 51.27 | - | 0.02 | 0.02 | 46.79 | 0.07 | 0.12 | 0.09 | 0.02 | 0.39 | - | - | - | 98.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-M.; Zhou, Y.-X.; Li, B.; Wu, J.-H.; Zhao, H.-T.; Zhang, Z.-M.; Zeng, H. Genesis of Chaxi Gold Deposit in Southwestern Hunan Province, Jiangnan Orogen (South China): Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Minerals 2022, 12, 867. https://doi.org/10.3390/min12070867
Chen S-M, Zhou Y-X, Li B, Wu J-H, Zhao H-T, Zhang Z-M, Zeng H. Genesis of Chaxi Gold Deposit in Southwestern Hunan Province, Jiangnan Orogen (South China): Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Minerals. 2022; 12(7):867. https://doi.org/10.3390/min12070867
Chicago/Turabian StyleChen, Shu-Min, Yu-Xuan Zhou, Bin Li, Jin-Hong Wu, Hong-Tao Zhao, Zhi-Ming Zhang, and Hao Zeng. 2022. "Genesis of Chaxi Gold Deposit in Southwestern Hunan Province, Jiangnan Orogen (South China): Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations" Minerals 12, no. 7: 867. https://doi.org/10.3390/min12070867
APA StyleChen, S.-M., Zhou, Y.-X., Li, B., Wu, J.-H., Zhao, H.-T., Zhang, Z.-M., & Zeng, H. (2022). Genesis of Chaxi Gold Deposit in Southwestern Hunan Province, Jiangnan Orogen (South China): Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Minerals, 12(7), 867. https://doi.org/10.3390/min12070867