Sulfur Isotopic Composition of Gypsum from Paleocene, Northwest China: Implications for the Evolution of Eastern Paratethys Seawater
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
5. Discussion
5.1. Sulfur Isotopic Composition of Gypsum in the Yarkand Basin in the Paleocene
5.2. Sulfur Isotopic Fluctuation of Gypsum in the Yarkand Basin in the Paleocene
5.3. Depositional Environment and Sulfur Isotopic Composition on the Eastern Paratethys Seawater in the Paleocene
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holser, W.T.; Schidlowski, M.; Mackenzie, F.T.; Maynard, J.B. Geochemical cycles of carbon and sulfur. In Chemical Cycles in the Evolution of the Earth; Gregor, C.B., Garrels, R.M., Mackenzie, F.T., Maynard, J.B., Eds.; Wiley Press: New York, NY, USA, 1988; pp. 105–173. [Google Scholar]
- Berner, R.A.; Canfield, D.E. A new model for atmospheric oxygen over Phanerozic time. Am. J. Sci. 1989, 189, 333–361. [Google Scholar] [CrossRef] [PubMed]
- Strauss, H. The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeocl. 1997, 132, 97–118. [Google Scholar] [CrossRef]
- Petsch, S.T.; Berner, R.A. Coupling the geochemical cycles of C, P, Fe, and S: The effect on atmospheric O2 and the isotopic records of carbon and sulfur. Am. J. Sci. 1998, 298, 246–262. [Google Scholar] [CrossRef]
- Paytan, A.; Kastner, M.; Campbell, D.; Thiemens, M.H. Sulfur isotopic composition of Cenozoic seawater sulfate. Science 1998, 282, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Paytan, A.; Kastner, M.; Campbell, D.; Thiemens, M.H. Sea water sulfur isotope fluctuations in the Cretaceous. Science 2004, 304, 1663–1665. [Google Scholar] [CrossRef] [PubMed]
- Holser, W.T.; Kaplan, I.R. Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1966, 1, 93–135. [Google Scholar] [CrossRef]
- Holser, W.T. Catastrophic chemical events in history of ocean. Nature 1977, 267, 403–408. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Hurtgen, M.T.; Arthur, M.A.; Suits, N.S.; Kaufman, A.J. The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a snowball Earth? Earth Planet. Sci. Lett. 2002, 203, 413–429. [Google Scholar] [CrossRef]
- Wu, N.P.; Farquhar, J.; Strauss, H. δ34 S and Δ33 S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate. Earth Planet. Sci. Lett. 2014, 399, 44–51. [Google Scholar] [CrossRef]
- Johnson, D.L.; Grossman, E.L.; Webb, S.M.; Adkins, J.F. Brachiopod δ34 SCAS microanalyses indicate a dynamic, climate-influenced Permo-Carboniferous sulfur cycle. Earth Planet. Sci. Lett. 2020, 546, 116428. [Google Scholar] [CrossRef]
- Yuan, J.Q.; Huo, C.Y.; Cai, K.Q. The high mountain-deep basin saline environment-a new genetic model of salt deposits. Geol. Rev. 1983, 29, 159–165. [Google Scholar]
- Yuan, J.Q. Proceedings of Salt Mine Geology of Jianqi Yuan Professor; Xueyuan Pub House: Beijing, China, 1989; pp. 1–227. [Google Scholar]
- Qian, Z.Q.; Qu, Y.H.; Liu, Q. Potassium Deposit; Geological Publishing House: Beijing, China, 1994; p. 11. [Google Scholar]
- Hay, R.L.; Kyser, T.K. Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene Lake in northern Tanzania. Geol. Soc. Am. Bull. 2001, 113, 1505–1521. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci. Rev. 2010, 98, 217–268. [Google Scholar] [CrossRef]
- Burtman, V.S. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir–Tien Shan transition zone for the retaceous and Palaeogene. Tectonophysics 2000, 319, 69–92. [Google Scholar] [CrossRef]
- Bosboom, R.E.; Dupont-Nivet, G.; Houben, A.J.P.; Brinkhuis, H.; Villa, G.; Mandic, O.; Stoica, M.; Achariasse, W.J.; Guo, Z.; Li, C. Late Eocene Sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeocl. 2011, 299, 385–398. [Google Scholar] [CrossRef]
- Bosboom, R.E.; Dupont-Nivet, G.; Grothe, A.; Brinkhuis, H.; Villa, G.; Mandic, O.; Stoica, M.; Huang, W.; Yang, W.; Guo, Z.; et al. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene. Basin Res. 2014, 26, 621–640. [Google Scholar] [CrossRef]
- Cao, Y.T.; Liu, C.L.; Jiao, P.C.; Zhang, H.; Wu, K.; Sun, H.W.; Lu, F.L.; Su, Y. Evaporite deposition and potassium enrichment prospect from Upper Cretaceous to Paleogene in Yarkand Basin, Xinjiang. Miner. Depos. 2016, 35, 300–314. [Google Scholar]
- Zhang, Y. Uplift of Tibet Plateau and formation and evolution of the southwestern inTarim Basin. Xinjiang Petrol. Geol. 1999, 20, 6–10. [Google Scholar]
- Zhang, D.; Hu, J.; Meng, Y.; Zheng, M.; Fu, M. Characteristics of Qimugen thrust nappe structure in the southwestern Tarim Basin Xinjiang, China, and its relationship with hydrocarbon. Geol. Bull. China 2007, 26, 266–274. [Google Scholar]
- Fang, A.; Ma, J.; Wang, S.; Zhao, Y.; Hu, J. Sedimentary tectonic evolution of the southwestern of Tarim Basin and west Kunlun orogen since Late Paleozoic. Acta Petrol. Sina 2009, 25, 3396–3406. [Google Scholar]
- Wang, Y.; Fu, D. The sedimentary-tectonic evolution of the southwest Tarim Basin from Cretaceous to Paleogene. Acta Geol. Sina 1996, 17, 32–40. [Google Scholar]
- Qu, G.; Li, Y.; Li, Y. Structural segmentation and its factor in the southwestern Tarim Basin. Sci. China Ser. D 2005, 35, 193–202. [Google Scholar]
- Ding, D.; Luo, Y. Collision structures in Pamir region and reformation of Tarim Basin. Oil Gas Geol. 2005, 26, 57–63, 77. [Google Scholar]
- Sun, L. Sedimentary facies and exploration of petroleum of the early Cretaceous in Kuqa depression and southwest depression in Tarim Basin. J. Palaeogeogr. 2004, 6, 252–260. [Google Scholar]
- Jia, J. Sedimentary characteristics and palaeogeography of the early Cretaceous in Tarim Basin. J. Palaeogeogr. 2009, 11, 167–176. [Google Scholar]
- Zhuang, H.; Guo, F.; Zhou, X. Evolution of sedimentary environment in late Cretaceous, Kunlun Mountain front, Tarim Basin. J. Xi’an Univ. Sci. Technol. 2013, 33, 39–45. [Google Scholar]
- Ma, H.; Yang, Z. Evolution of the Cenozoic in southwestern Tarim Basin. Xinjiang Geol. 2003, 21, 92–95. [Google Scholar]
- Shao, L.; He, Z.; Gu, J.; Luo, W.; Jia, J.; Liu, Y.; Zhang, L. Lithofacies Palaeogeography of the Paleogene in Tarim Basin. J. Palaeogeogr. 2006, 8, 353–364. [Google Scholar]
- Zhou, Z.; Zhao, Z.; Hu, Z. Every Epoch in Tarim Basin; Science Press: Beijing, China, 2001; pp. 1–359. [Google Scholar]
- Wang, F.; Song, Z.; Wu, S. Atlas on Paleogeography and Zoology of Xinjiang Uygur Autonomous Region; China Cartographic Publishing House: Beijing, China, 2006; p. 186. [Google Scholar]
- Guo, X.; Wang, D.; Ding, X.; Ye, L. Discovery of Dinoflagellates from the Tuyiluoke formation in Tarim Basin. Geol. Rev. 2008, 54, 814–820. [Google Scholar]
- Shi, J.A.; Chen, G.J.; Wang, Q.; Xue, L.H. Sequence Stratigraphy, Sedimentary and Diagenetic Evolution in the Western Tarim Basin; Science Press: Beijing, China, 2001. [Google Scholar]
- Xi, D.P.; Cao, W.X.; Cheng, Y.; Jiang, T.; Jia, J.Z.; Li, Y.H.; Wan, X.Q. Late cretaceous biostratigraphy and sea-level change in the southwest Tarim Basin. Palaeogeogr. Palaeocl. 2016, 441, 516–527. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Yong, T.S.; Jia, C.Z.; Zhang, Z.M. Stratum of Tarim Basin; Petroleum Industry Press: Beijing, China, 1997; pp. 1–207. [Google Scholar]
- Cao, Y.T.; Zeng, C.M.; Li, Q.; Zhu, L.c.; Fu, J.G.; Zhang, L.; Xiong, Z.L.; Zhang, H. Preliminary study on evolution of sedimentary environment in Early Paleocene in the Yarkand basin, Xinjiang. Acta Geol. Sina 2021, 96, 1369–1379. [Google Scholar]
- Cao, Y.T. Marine transgressive-regressive cycles and evolution on ancient saline lake in the northwestern Tarim Basin in the Paleocene, Xinjiang Province, China. Carbonates Evaporites 2022, 37, 21. [Google Scholar] [CrossRef]
- Thode, H.G.; Monster, J.; Dunford, H.B. Sulphur isotope geochemistry. Geochim. Cosmochim. 1965, 25, 159–174. [Google Scholar] [CrossRef]
- Гриненкo, В.А.; Гриненкo, Л.H. Sulfur Isotope Geochemistry; Zhao, R., Translator; Science Press: Beijing, China, 1980; pp. 1–242. [Google Scholar]
- Liu, C.; Cao, Y.; Yang, H.; Jiao, P.; Gu, Q. Discussion on Paleogene-Neogene environmental change of salt lakes in Kuqa foreland basin and its potash-forming effect. Acta Geol. Sina 2013, 34, 547–558. [Google Scholar]
- Zhang, H.; Liu, C.; Cao, Y.; Sun, H.; Wang, L. A Tentative Discussion on the Time and the Way of Marine Regression from Tarim Bay during the Cenozoic. Acta Geosci. Sina 2013, 34, 577–584. [Google Scholar]
- Paytan, A.; Yao, W.; Faul, K.L.; Gray, E.T. Sulfur isotope stratigraphy. In Geologic Time Scale; Elsevier B.V.: Amsterdam, The Netherlands, 2020; pp. 259–278. [Google Scholar]
- Liu, C.L.; Jiao, P.C.; Cao, Y.T.; Chen, Y.Z. Report on Large-Scale Minerogenetic Conditions and Prediction Technique of Potash in Tarim Basin; Institute of Mineral Resources, Chinese Academy of Geological Sciences: Beijing, China, 2010; pp. 1–471. [Google Scholar]
- Zeng, C.M.; Liu, C.L.; Zhang, L.; Cao, Y.T. Report on Sedimentary Evolution and Controlling Factors of Evaporite in Kashgar Sag and Its Surrounding Areas in Meso-Cenozoic; Institute of Mineral Resources, Chinese Academy of Geological Sciences: Beijing, China, 2015; pp. 1–163. [Google Scholar]
- Cao, Y.T.; Zeng, C.M.; Zhang, L.; Zhu, L.C. A rapid marine regression in the southwestern Tarim Basin in the latest Cretaceous: Comparison of two different evaporitic sequences in the Yarkand Basin, Xinjiang Province, China. Acta Geol. Sin.-Engl. 2021, 95, 1714–1724. [Google Scholar] [CrossRef]
- Van Driessche, A.E.; Canals, A.; Ossorio, M.; Reyes, R.C.; García-Ruiz, J.M. Unraveling the sulfate sources of (giant) gypsum crystals using gypsum isotope fractionation factors. J. Geol. 2016, 124, 235–245. [Google Scholar] [CrossRef]
- Boschetti, T.; Cortecchi, G.; Toscani, L.; Iacumin, P. Sulfur and oxygen isotope compositions of Upper Triassic sulfates from Northerm Apennines (Italy): Palaeogeographic and hidrogeochemical implications. Geol. Acta 2011, 9, 129–147. [Google Scholar]
- Boschetti, T.; Toscani, L.; Shouakar-Stash, O.; Iacumin, P.; Venturelli, G.; Mucchino, C.; Frape, S.K. Salt waters of the Northern Apennine Foredeep Basin (Italy): Origin and evolution. Aquat. Geochem. 2011, 17, 71–108. [Google Scholar] [CrossRef]
- Thode, H.G.; Monster, J. Sulfur-isotope geochemistry of petroleum, evaporites, and ancient seas. In Fluids in Subsurface Environments; Young, A., Galley, J.E., Eds.; AAPG Memoir: Tulsa, OK, USA, 1965; Volume 4, pp. 367–377. [Google Scholar]
- Yong, T.S. Lithofacies and paleogeography of the late Cretaceous-Paleogene of the Tarim platform. Exp. Explor. Petrol. Geol. 1984, 6, 9–17. [Google Scholar]
- Yong, T.S.; Shan, J.B. The development and formation in the Tarim Basin in Cretaceous-Paleogene ages. Acta Sedimentol. Sin. 1896, 4, 67–75. [Google Scholar]
- Yao, W.Q.; Wortmann, U.G.; Paytan, A. Sulfur isotopes-use for stratigraphy during times of rapid perturbations. Stratigr. Timescales 2019, 4, 1–33. [Google Scholar]
Samples | δ34 S (‰, CDT) | Samples | δ34 S (‰, CDT) | Samples | δ34 S (‰, CDT) | Samples | δ34 S (‰, CDT) |
---|---|---|---|---|---|---|---|
AET-G15 | 17.5 | DSK-G26 | 17.1 | DSK-G11 | 18.1 | Wb1–6191 | 17.8 |
AET-G14 | 20.6 | DSK-G25 | 18.4 | DSK-G10 | 19.5 | Wb1–6195 | 18.2 |
AET-G13 | 18.2 | DSK-G24 | 18.0 | DSK-G9 | 18.4 | Wb1–6196 | 19.1 |
AET-G12 | 18.7 | DSK-G23 | 19.3 | DSK-G8 | 16.7 | Minc1–3685 | 17.0 |
AET-G11 | 19.6 | DSK-G22 | 19.2 | DSK-G7 | 16.4 | Minc1–3686 | 17.2 |
AET-G10 | 19.7 | DSK-G21 | 20.6 | DSK-G6 | 17.6 | Minc1–3687 | 17.2 |
AET-G9 | 20.5 | DSK-G20 | 18.9 | DSK-G5 | 16.7 | Minc1–3688 | 17.1 |
AET-G8 | 17.6 | DSK-G19 | 18.2 | DSK-G4 | 15.1 | Minc1–3689 | 17.2 |
AET-G7 | 18.8 | DSK-G18 | 18.6 | DSK-G3 | 12.2 | Mac1–2051 | 16.6 |
AET-G6 | 17.4 | DSK-G17 | 15.0 | DSK-G2 | 16.7 | Mac1–2052 | 16.6 |
AET-G5 | 20.3 | DSK-G16 | 16.6 | DSK-G1 | 15.9 | Mac1–2053 | 16.9 |
AET-G4 | 17.8 | DSK-G15 | 18.1 | Wx1–3560 | 17.6 | Tc2–4441 | 17.7 |
AET-G3 | 17.1 | DSK-G14 | 19.0 | Wx1–3583 | 17.9 | Tc2–4474 | 16.8 |
AET-G2 | 18.9 | DSK-G13 | 19.7 | Wx1–3588 | 17.7 | Tc2–4478 | 17.7 |
AET-G1 | 16.6 | DSK-G12 | 19.8 | Wx1–3640 | 18.1 |
Samples | δ34 S (‰, VCDT) | Samples | δ34 S (‰, VCDT) | Samples | δ34 S (‰, VCDT) |
---|---|---|---|---|---|
KLY-G38 | 13.8 | KLY-G25 | 17.7 | KLY-G12 | 18.8 |
KLY-G37 | 15.8 | KLY-G24 | 17.9 | KLY-G11 | 18.7 |
KLY-G36 | 13.9 | KLY-G23 | 17.2 | KLY-G10 | 18.6 |
KLY-G35 | 14.0 | KLY-G22 | 17.5 | KLY-G9 | 18.7 |
KLY-G34 | 16.5 | KLY-G21 | 17.3 | KLY-G8 | 18.5 |
KLY-G33 | 17.0 | KLY-G20 | 17.5 | KLY-G7 | 18.5 |
KLY-G32 | 17.4 | KLY-G19 | 17.1 | KLY-G6 | 18.3 |
KLY-G31 | 17.8 | KLY-G18 | 18.5 | KLY-G5 | 17.6 |
KLY-G30 | 17.5 | KLY-G17 | 18.6 | KLY-G4 | 17.2 |
KLY-G29 | 18.0 | KLY-G16 | 18.6 | KLY-G3 | 17.8 |
KLY-G28 | 18.6 | KLY-G15 | 19.0 | KLY-G2 | 16.8 |
KLY-G27 | 18.4 | KLY-G14 | 18.4 | KLY-G1 | 16.2 |
KLY-G26 | 18.3 | KLY-G13 | 18.9 |
Boreholes | Thickness (m) | Boreholes | Thickness (m) | Boreholes | Thickness (m) |
---|---|---|---|---|---|
Wx1 | 164 | P1 | 6 | Md1 | 17 |
Wb1 | 253 | Ps2 | 28 | H2 | 37 |
Ak1 | 58 | Ks101 | 108 | H3 | 52 |
Ak2 | 80 | Kd1 | 54 | Sh2 | 48 |
Ys1 | 101 | Kd101 | 74 | Ln1 | 26 |
S1 | 10 | Minc1 | 29 | Tc2 | 131 |
T1 | 40 | Mac1 | 62 | Q6 | 110 |
DSK | 96 | AET | 231 | KLY | 28.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cao, Y. Sulfur Isotopic Composition of Gypsum from Paleocene, Northwest China: Implications for the Evolution of Eastern Paratethys Seawater. Minerals 2022, 12, 1031. https://doi.org/10.3390/min12081031
Wang J, Cao Y. Sulfur Isotopic Composition of Gypsum from Paleocene, Northwest China: Implications for the Evolution of Eastern Paratethys Seawater. Minerals. 2022; 12(8):1031. https://doi.org/10.3390/min12081031
Chicago/Turabian StyleWang, Jun, and Yangtong Cao. 2022. "Sulfur Isotopic Composition of Gypsum from Paleocene, Northwest China: Implications for the Evolution of Eastern Paratethys Seawater" Minerals 12, no. 8: 1031. https://doi.org/10.3390/min12081031
APA StyleWang, J., & Cao, Y. (2022). Sulfur Isotopic Composition of Gypsum from Paleocene, Northwest China: Implications for the Evolution of Eastern Paratethys Seawater. Minerals, 12(8), 1031. https://doi.org/10.3390/min12081031