Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Sampling and Petrography
3.2. Analytical Methods
3.2.1. Zircon U-Pb Dating
3.2.2. Whole-Rock Major and Trace Element Analyses
3.2.3. Zircon In Situ Lu-Hf Isotopic Analyses
4. Results
4.1. Ages of Zircon U-Pb Dating
4.2. Major and Trace Element of Whole-Rock Geochemistry
4.3. Zircon Hf Isotopic Compositions
5. Discussion
5.1. Ages and Lu-Hf Isotopic Signatures
5.2. Evaluation of Alteration
5.3. Tectonic Setting
5.4. Petrogenesis
5.4.1. Petrogenesis of ZRR Dacite
5.4.2. Petrogenesis of GEY Rhyolite
5.4.3. Petrogenesis of DHB Basaltic Andesite
5.5. Geodynamic Model and Geological Implications
6. Conclusions
- ZRR dacite (239.3 ± 1.4 Ma) displays calc-alkaline I-type characteristics, and GEY rhyolite (237.8 ± 2.1 Ma) is similar to high-K calc-alkaline highly fractionated I-type volcanic rock. The petrogenesis shows that both rhyolite and dacite originated from the partial melting of the mafic lower crust of the Mesoproterozoic under relatively high temperature and low pressure. ZRR dacite and GEY rhyolite were derived from the same or similar parent magma, and they are volcanic rocks with different differentiation degrees formed in the same magmatic pulse activity.
- The DHB basaltic andesite shows a relatively younger age (234.3 ± 1.2 Ma). The petrogenesis shows that DHB basaltic andesite mainly originated from the partial melting of the lithospheric mantle modified by subducted slab-derived fluids; the magma was contaminated with a small amount of crustal source components and experienced fractional crystallization before it erupted onto the surface. Different from ZRR dacite and GEY rhyolite, DHB basaltic andesite is the product of another magmatic pulse activity. However, they all formed in the same environment of slab failure in the late stage of syn-collision, and they are different types of volcanic rocks from different sources under similar tectonic environments.
- The volcanic rocks of the Ela Mountain area in this contribution provide important evidence for magmatism in the slab failure stages. The results of this study confirm that the Paleo-Tethys Ocean in the East Kunlun Orogen had closed before 239.3 Ma, and that the formation of these volcanic rocks represents the beginning of the initial extension of the late stage of syn-collision.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamaunji, V.D.; Wang, L.X.; Ma, C.Q.; Liu, J.; Zhu, Y.X. Petrogenesis and tectonic implication of the Permian-Triassic syenogranites from the eastern segment of the East Kunlun Orogen, China. Lithos 2020, 402, 105932. [Google Scholar] [CrossRef]
- Luo, F.M.; Mo, X.X.; Yu, X.H.; Li, X.W.; Huang, X.F. Zircon U-Pb geochronology, petrogenesis and implication of the Late Permian granodiorite from the Wulonggou area in East Kunlun, Qinghai Province. Earth Sci. Front. 2015, 22, 14. [Google Scholar]
- Ren, H.D.; Wang, T.; Zhang, L.; Wang, X.X.; Huang, H.; Feng, C.Y.; Claudia, T.; Song, P. Ages, Sources and Tectonic Settings of the Triassic Igneous Rocks in the Easternmost Segment of the East Kunlun Orogen, central China. Acta Geol. Sin. Engl. Ed. 2016, 90, 641–668. [Google Scholar] [CrossRef]
- Chen, G.C.; Pei, X.Z.; Li, R.B.; Li, Z.C.; Pei, L.; Liu, C.J.; Chen, Y.X.; Li, X.B. Triassic magma mixing and mingling at the eastern section of Eastern Kunlun: A case study from Xiangjiananshan granitic batholith. Acta Petrol. Sin. 2018, 34, 2441–2480. [Google Scholar]
- Xiong, F.H.; Ma, C.Q.; Zhang, J.Y.; Liu, B.; Jiang, H.A. Reworking of old continental lithosphere: An important crustal evolution mechanism in orogenic belts, as evidenced by Triassic I-type granitoids in the East Kunlun orogen, Northern Tibetan Plateau. J. Geol. Soc. 2014, 171, 847–863. [Google Scholar] [CrossRef]
- Li, R.B.; Pei, X.Z.; Li, Z.C.; Pei, L.; Chen, G.C.; Chen, Y.X.; Liu, C.J.; Wang, S.M. Paleo-Tethys Ocean subduction in eastern section of East Kunlun Orogen: Evidence from the geochronology and geochemistry of the Wutuo pluton. Acta Petrol. Sin. 2018, 34, 3399–3421. [Google Scholar]
- Sun, F.Y.; Li, B.L.; Ding, Q.F.; Zhao, J.W.; Pan, T.; Yu, X.F.; Wang, L.; Chen, G.J.; Ding, Z.J. Research on the Key Problems of Ore Prospecting in the Eastern Kunlun Metallogenic Belt; Geological Survey Institute of Jilin University: Changchun, China, 2009. (In Chinese) [Google Scholar]
- Xia, R. Paleo-Tethys Orogenic Process and Gold Metallogenesis of the East Kunlun; China University of Geosciences: Beijing, China, 2017; pp. 1–215. [Google Scholar]
- Hu, Y.; Niu, Y.L.; Li, J.Y.; Ye, L.; Kong, J.J.; Chen, S.; Zhang, Y.; Zhang, G.R. Petrogenesis and tectonic significance of the late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 2016, 245, 205–222. [Google Scholar] [CrossRef]
- Ding, S.; Huang, H.; Niu, Y.L.; Zhao, Z.D.; Mo, X.X. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites. Acta Petrol. Sin. 2011, 27, 3603–3614. [Google Scholar]
- Fan, X.Z.; Sun, F.Y.; Xu, C.H.; Wu, D.Q.; Yu, L.; Wang, L.; Yan, C.; Bakht, S. Volcanic rocks of the Elashan Formation in the Dulan-Xiangride Basin, East Kunlun Orogenic Belt, NW China: Petrogenesis and implications for Late Triassic geodynamic evolution. Int. Geol. Rev. 2021, 64, 1270–1293. [Google Scholar]
- Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282, 33–44. [Google Scholar] [CrossRef]
- Kong, J.J.; Niu, Y.L.; Hu, Y.; Zhang, Y.; Shao, F.L. Petrogenesis of the Triassic granitoids from the East Kunlun Orogenic Belt, NW China: Implications for continental crust growth from syn-collisional to post-collisional setting. Lithos 2020, 364, 105513. [Google Scholar] [CrossRef]
- Xin, W.; Sun, F.Y.; Zhang, Y.T.; Fan, X.Z.; Wang, Y.C.; Li, L. Mafic-intermediate igneous rocks in the East Kunlun Orogenic Belt, northwestern China: Petrogenesis and implications for regional geodynamic evolution during the Triassic. Lithos 2019, 346, 105159. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Xia, R.; Shan, X.; Ma, Y.; Zhao, E.Q.; Guo, W. Geochronology and Geochemistry of Ore-Hosting Rhyolitic Tuff in the Kengdenongshe Polymetallic Deposit in the Eastern Segment of the East Kunlun Orogen. Minerals 2019, 9, 589. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, J.H.; Fu, L.B.; Huizenga, J.M.; Santosh, M.; Chen, J.J.; Wang, D.Z.; Li, A.B. Multi-stage crustal melting from Late Permian back-arc extension through Middle Triassic continental collision to Late Triassic post-collisional extension in the East Kunlun Orogen. Lithos 2020, 360, 105446. [Google Scholar] [CrossRef]
- Tian, N.; Sun, F.Y.; Pan, Z.C.; Li, L.; Gu, Y.; Wu, D.Q.; Deng, J.F.; Liu, Z.D.; Wang, L.; Zhang, Y.J. Triassic igneous activities in the east flank of the East Kunlun orogenic belt: The Daheba complex example. Int. Geol. Rev. 2021, 12, 1–28. [Google Scholar] [CrossRef]
- Tian, N.; Sun, F.Y.; Pan, Z.C.; Li, L.; Yan, J.M.; Wu, D.Q.; Gu, Y.; Deng, J.F.; Liu, Z.D.; Wang, L.; et al. Petrogenesis and tectonic setting of Mid-Triassic volcanic rocks in the East Kunlun orogenic belt, NW China: Insights from geochemistry, zircon U-Pb dating, and Hf isotopes. Geol. J. 2021, 56, 3257–3274. [Google Scholar] [CrossRef]
- Li, X.W.; Huang, X.F.; Luo, M.F.; Dong, G.C.; Mo, X.X. Petrogenesis and geodynamic implications of the Mid-Triassic lavas from East Kunlun, northern Tibetan Plateau. J. Asian Earth Sci. 2015, 105, 32–47. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, M.F.; Sun, M.; Zhao, Y.; Wilde, S.; Long, X.; Yan, D. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet. Sci. Lett. 2010, 290, 481–492. [Google Scholar]
- Qi, S.S.; Yu, W.J.; Zhang, X.B. 1:250,000 Geological Maps from the Comprehensive Geological Map of Xinghai County, Qinghai Province; Qinghai GeoLogicaL Survey Institute: Xining, China, 2011; p. 1. [Google Scholar]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204 Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 70. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Thornton, C.P.; Tuttle, O.F. Chemistry of igneous rocks—[Part] 1, Differentiation index. Am. J. Sci. 1960, 258, 664–684. [Google Scholar]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.; Yang, L.; Zhang, W.; Tong, X.; Lin, L.; Zong, K.Q.; Li, M.; et al. Improved In Situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar]
- Fisher, C.M.; Vervoort, J.D.; Hanchar, J.M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem. Geol. 2014, 363, 125–133. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z.C. Estimation of Isotopic Reference Values for Pure Materials and Geological Reference Materials. At. Spectrosc. 2020, 41, 93–102. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarede, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-Situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar]
- Ringwood, A.E. Composition and Petrology of the Earth’s Mantle; McGraw-Hill: London, UK; New York, NY, USA; Sydney, Australia, 1975; pp. 1–618. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar]
- Pan, Z.C.; Sun, F.Y.; Cong, Z.C.; Tian, N.; Xin, W.; Wang, L.; Zhang, Y.J.; Wu, D.Q. Petrogenesis and Tectonic Implications of the Triassic Granitoids in the Ela Mountain Area of the East Kunlun Orogenic Belt. Minerals 2022, 12, 880. [Google Scholar]
- Wu, D.Q.; Sun, F.Y.; Pan, Z.C.; Tian, N. Geochronology, geochemistry, and Hf isotopic compositions of Triassic igneous rocks in the easternmost segment of the East Kunlun Orogenic Belt, NW China: Implications for magmatism and tectonic evolution. Int. Geol. Rev. 2021, 63, 1011–1029. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Wang, L.X.; Ma, C.Q.; He, Z.X.; Deng, X.; Tian, Y. Petrogenesis and tectonic implication of the Late Triassic A1-type alkaline volcanics from the Xiangride area, eastern segment of the East Kunlun Orogen (China). Lithos 2022, 412, 106595. [Google Scholar]
- Zhou, H.; Zhang, D.; Wei, J.; Wang, D.; Santosh, M.; Shi, W.; Chen, J.; Zhao, X. Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt, China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling. Gondwana Res. 2020, 84, 52–70. [Google Scholar] [CrossRef]
- Adam, M.M.A.; Lv, X.B.; Fathy, D.; Rahman, A.R.A.A.; Ali, A.A.; Mohammed, A.S.; Farahat, E.S.; Sami, M. Petrogenesis and tectonic implications of Tonian island arc volcanic rocks from the Gabgaba Terrane in the Arabian-Nubian Shield (NE Sudan). J. Asian Earth Sci. 2022, 223, 105006. [Google Scholar] [CrossRef]
- Large, R.R.; Gemmell, J.B.; Paulick, H.; Huston, D.L. The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ. Geol. 2001, 96, 957–971. [Google Scholar] [CrossRef]
- Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 2019, 348, 105179. [Google Scholar] [CrossRef]
- Li, R.B. Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen; Chang’an University: Xi’an, China, 2012; pp. 1–185. [Google Scholar]
- Chen, N.; Sun, M.; Wang, Q.; Zhao, G.; Chen, Q.; Shu, G. EMP chemical ages of monazites from Central Zone of the eastern Kunlun Orogen: Records of multi-tectonometamorphic events. Chin. Sci. Bull. 2007, 52, 2252–2263. [Google Scholar] [CrossRef]
- Liu, Y.J.; Genser, J.; Neubauer, F.; Jin, W.; Ge, X.H.; Handler, R.; Takasu, A. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics 2005, 398, 199–224. [Google Scholar] [CrossRef]
- Deng, W.B.; Pei, X.Z.; Liu, C.J.; Li, Z.C.; Li, R.B.; Chen, Y.X.; Chen, G.C.; Yang, S.; Chen, G.; Sang, J.Z.; et al. LA-ICP-MS zircon U-Pb dating of the Chahantaolegai syenogranites in Xiangride area of East Kunlun and its geological significance. Geol. Bull. China 2016, 35, 687–699. [Google Scholar]
- Collins, W.; Beams, S.; White, A.; Chappell, B. Nature and origin of A-type granites with particular reference to SE Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Whalen, J.; Currie, K.; Chappell, B. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Bi, J.H. Late Paleozoic Tectonic-Magmatic Evolution of the Eastern Jiamusi Massif. Ph.D. Thesis, Jilin University, Changchun, China, 2018; pp. 1–220. [Google Scholar]
- Macpherson, C.G.; Dreher, S.T.; Thirlwall, M.F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 2006, 243, 581–593. [Google Scholar] [CrossRef]
- Dungan, M.A.; Davidson, J. Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes. Geology 2004, 32, 773–776. [Google Scholar] [CrossRef]
- Smith, I.E.M.; Stewart, R.B.; Price, R.C. The petrology of a large intra-oceanic silicic eruption: The Sandy Bay Tephra, Kermadec Arc, Southwest Pacific. J. Volcanol. Geotherm. Res. 2003, 124, 173–194. [Google Scholar] [CrossRef]
- Rapp, R.P. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. J. Geophys. Res. Solid Earth 1995, 100, 15601–15610. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Königer, S.; Lorenz, V. Geochemistry, tectonomagmatic origin and chemical correlation of altered Carboniferous-Permian fallout ash tuffs in southwestern Germany. Geol. Mag. 2002, 139, 541–558. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The continental crust: Its composition and evolution. J. Geol. 1985, 94, 57–72. [Google Scholar]
- Chen, N.S.; Yan, L.X.; Zhang, K.X.; Wang, G.; Zhu, Y.H.; Hou, G.J.; Bai, Y.S. Lithological Characteristics of the Baishahe Formation to the South of Xiangride Town, Eastern Kunlun Mountains and Its Age Constrained from Zircon Pb–Pb Dating. Geol. Sci. Technol. Inf. 2006, 25, 1–7. [Google Scholar]
- Chen, W.X.; Fei, X.C.; Li, R.B.; Liu, Z.Q.; Li, Z.C.; Zhang, X.F.; Chen, G.C.; Liu, Z.G.; Ding, S.B.; Guo, D.F. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern & nbsp; Section of the East Kunlun Orogenic Belt. Geoscience 2011, 25, 510–521. [Google Scholar]
- Niu, Y.L.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet. Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef]
- Douce, P. Amphibolite to granulite transition in aluminous greywackes from the Sierra de Comechingones, Córdoba, Argentina. J. Metamorph. Geol. 1999, 17, 415–434. [Google Scholar] [CrossRef]
- Anderson, J.L.; Bender, E.E. Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos 1989, 23, 19–52. [Google Scholar] [CrossRef]
- Long, L.E.; Sial, A.N.; Nekvasil, H.; Borba, G.S. Origin of granite at Cabo de santo Agostinho, Northeast Brazil. Contrib. Mineral. Petrol. 1986, 92, 341–350. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Champion, D.C.; Chappell, B.W. Petrogenesis of felsic I-type granites: An example from northern Queensland. Trans. R. Soc. Edinb.-Earth Sci. 1992, 83, 115–126. [Google Scholar]
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Moyen, J.F. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 2009, 112, 556–574. [Google Scholar] [CrossRef]
- Douce, A.E.P.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Menshagin, Y.V.; Watanabe, T.; Pisarevsky, S.A. Neoproterozoic mafic dike swarms of the Sharyzhalgai metamorphic massif, southern Siberian craton. Precambrian Res. 2003, 122, 359–376. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle. Precambrian Res. 2007, 152, 27–47. [Google Scholar] [CrossRef]
- Frey, F.A.; Green, D.H.; Roy, S.D. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. J. Petrol. 1978, 19, 463–513. [Google Scholar] [CrossRef]
- Wendlandt, R.F.; Altherr, R.; Nuemann, E.R.; Baldrige, W.S. Petology, geochemistry, isotopes. In Continental Rifts: Evolution, Structures, Tectonics; Olsen, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 47–60. [Google Scholar]
- Bea, F.; Arzamastsev, A.; Montero, P.; Arzamastseva, L. Anomalous alkaline rocks of Soustov, Kola: Evidence of mantle-derived metasomatic fluids affecting crustal materials. Contrib. Mineral. Petrol. 2001, 140, 554–566. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, J.F.; Jian, P.; Bao, Z.W.; Zhao, Z.H.; Li, C.F.; Xiong, X.L.; Ma, J.L. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. J. Petrol. 2006, 47, 119–144. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hergt, J.M.; Davidson, J.P. Hafnium isotope evidence for ‘Conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. 2001, 192, 331–346. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P. Source characteristics derived fromvery incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientifific Drilling Project. J. Geophys. Res. 1996, 101, 11831–11839. [Google Scholar] [CrossRef]
- Saunders, A.D.; Storey, M.; Kent, R.W.; Norry, M.J. Consequences of plume-lithosphere interactions. In Magmatism and the Cause of Continental Breakup; Storey, B.C., Alabaster, T., Pankhurst, R.J., Eds.; Geological Society of Special Publication: London, UK, 1992; Volume 68, pp. 41–60. [Google Scholar]
- Pearce, J.A. Geochemical fifingerprinting of oceanic basalts with applications to ophiolite classifification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Chen, X.D.; Li, B.; Sun, C.B.; Zhou, H.B. Protracted Storage for Calc-Alkaline Andesitic Magma in Magma Chambers: Perspective from the Nageng Andesite, East Kunlun Orogen, NW China. Minerals 2021, 11, 198. [Google Scholar] [CrossRef]
- Garzanti, E.; Radeff, G.; Malusà, M.G. Slab Breakoff: A Critical Appraisal of a Geological Theory as Applied in Space and Time. Earth Sci. Rev. 2018, 177, 303–319. [Google Scholar] [CrossRef]
Spot | Concentrations (ppm) | Isotopic Ratios | Isotopic Age (Ma) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Th | U | Th/U | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 208Pb/232Th | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 208Pb/232Th | 1σ | |
Sample ZRR02 (ZRR dacite) | |||||||||||||||||||
ZRR02-01 | 46.24 | 72.54 | 0.64 | 0.051763 | 0.001672 | 0.267452 | 0.008922 | 0.037748 | 0.000404 | 0.012538 | 0.000381 | 275.0 | 74.0 | 240.7 | 7.1 | 238.9 | 2.5 | 251.8 | 7.6 |
ZRR02-02 | 45.24 | 67.53 | 0.67 | 0.052381 | 0.002417 | 0.270028 | 0.012207 | 0.038013 | 0.000520 | 0.012145 | 0.000463 | 302.1 | 105.2 | 242.7 | 9.8 | 240.5 | 3.2 | 244.0 | 9.2 |
ZRR02-03 | 50.05 | 82.84 | 0.60 | 0.050397 | 0.001404 | 0.263664 | 0.007590 | 0.038115 | 0.000454 | 0.013374 | 0.000329 | 213.3 | 64.5 | 237.6 | 6.1 | 241.1 | 2.8 | 268.5 | 6.6 |
ZRR02-04 | 68.38 | 84.92 | 0.81 | 0.052788 | 0.001465 | 0.277319 | 0.007711 | 0.038422 | 0.000494 | 0.013433 | 0.000378 | 319.7 | 63.1 | 248.5 | 6.1 | 243.0 | 3.1 | 269.7 | 7.5 |
ZRR02-05 | 53.26 | 77.36 | 0.69 | 0.055484 | 0.003247 | 0.278797 | 0.014880 | 0.037186 | 0.000687 | 0.013454 | 0.000604 | 431.8 | 130.4 | 249.7 | 11.8 | 235.4 | 4.3 | 270.1 | 12.0 |
ZRR02-06 | 64.97 | 100.51 | 0.65 | 0.051490 | 0.001642 | 0.265363 | 0.008802 | 0.037465 | 0.000458 | 0.013437 | 0.000440 | 262.8 | 73.2 | 239.0 | 7.1 | 237.1 | 2.8 | 269.8 | 8.8 |
ZRR02-07 | 47.46 | 75.71 | 0.63 | 0.054554 | 0.002251 | 0.281460 | 0.011687 | 0.037699 | 0.000534 | 0.013064 | 0.000548 | 394.0 | 92.5 | 251.8 | 9.3 | 238.6 | 3.3 | 262.3 | 10.9 |
ZRR02-08 | 184.14 | 207.35 | 0.89 | 0.052059 | 0.002677 | 0.272321 | 0.012966 | 0.038176 | 0.000786 | 0.012495 | 0.000452 | 288.0 | 117.5 | 244.5 | 10.3 | 241.5 | 4.9 | 251.0 | 9.0 |
ZRR02-09 | 65.05 | 80.36 | 0.81 | 0.054454 | 0.002700 | 0.288899 | 0.016562 | 0.038081 | 0.000847 | 0.015241 | 0.000597 | 389.9 | 111.3 | 257.7 | 13.0 | 240.9 | 5.3 | 305.7 | 11.9 |
ZRR02-10 | 64.34 | 93.78 | 0.69 | 0.052781 | 0.001529 | 0.272995 | 0.008243 | 0.037761 | 0.000442 | 0.013028 | 0.000391 | 319.4 | 65.8 | 245.1 | 6.6 | 238.9 | 2.7 | 261.6 | 7.8 |
ZRR02-11 | 187.32 | 153.96 | 1.22 | 0.044482 | 0.001754 | 0.234361 | 0.009129 | 0.038558 | 0.000511 | 0.012543 | 0.000361 | 0.0 | 0.0 | 213.8 | 7.5 | 243.9 | 3.2 | 252.0 | 7.2 |
ZRR02-12 | 60.13 | 72.08 | 0.83 | 0.055070 | 0.001833 | 0.284839 | 0.009653 | 0.037886 | 0.000571 | 0.013034 | 0.000618 | 415.1 | 74.4 | 254.5 | 7.6 | 239.7 | 3.5 | 261.7 | 12.3 |
ZRR02-13 | 40.08 | 64.81 | 0.62 | 0.052840 | 0.001665 | 0.272658 | 0.008283 | 0.037854 | 0.000418 | 0.012773 | 0.000411 | 321.9 | 71.6 | 244.8 | 6.6 | 239.5 | 2.6 | 256.5 | 8.2 |
ZRR02-14 | 76.75 | 90.19 | 0.85 | 0.053559 | 0.002218 | 0.274817 | 0.010908 | 0.037558 | 0.000533 | 0.013018 | 0.000487 | 352.5 | 93.5 | 246.5 | 8.7 | 237.7 | 3.3 | 261.4 | 9.7 |
ZRR02-15 | 33.32 | 58.88 | 0.57 | 0.050675 | 0.002244 | 0.269418 | 0.011357 | 0.039270 | 0.000753 | 0.013735 | 0.000541 | 226.1 | 102.3 | 242.2 | 9.1 | 248.3 | 4.7 | 275.7 | 10.8 |
ZRR02-16 | 162.34 | 136.72 | 1.19 | 0.051371 | 0.001214 | 0.264833 | 0.006500 | 0.037598 | 0.000422 | 0.013202 | 0.000329 | 257.5 | 54.3 | 238.6 | 5.2 | 237.9 | 2.6 | 265.1 | 6.6 |
ZRR02-17 | 50.21 | 70.77 | 0.71 | 0.054777 | 0.002169 | 0.280583 | 0.011643 | 0.037276 | 0.000675 | 0.012586 | 0.000602 | 403.1 | 88.7 | 251.1 | 9.2 | 235.9 | 4.2 | 252.8 | 12.0 |
ZRR02-18 | 44.67 | 67.52 | 0.66 | 0.050596 | 0.001501 | 0.266319 | 0.008546 | 0.038234 | 0.000455 | 0.012519 | 0.000376 | 222.5 | 68.6 | 239.7 | 6.9 | 241.9 | 2.8 | 251.5 | 7.5 |
ZRR02-19 | 83.33 | 84.57 | 0.99 | 0.049913 | 0.001562 | 0.260363 | 0.008575 | 0.037929 | 0.000458 | 0.012749 | 0.000312 | 191.0 | 72.8 | 235.0 | 6.9 | 240.0 | 2.8 | 256.1 | 6.2 |
ZRR02-20 | 62.03 | 105.69 | 0.59 | 0.053451 | 0.001564 | 0.275905 | 0.008687 | 0.037545 | 0.000453 | 0.012625 | 0.000401 | 348.0 | 66.2 | 247.4 | 6.9 | 237.6 | 2.8 | 253.6 | 8.0 |
Sample GEY01 (GEY rhyolite) | |||||||||||||||||||
GEY01-01 | 106.70 | 168.11 | 0.63 | 0.050023 | 0.002822 | 0.300641 | 0.016069 | 0.043867 | 0.000660 | 0.013956 | 0.000440 | 194.5 | 129.6 | 266.9 | 12.5 | 276.8 | 4.1 | 280.1 | 8.8 |
GEY01-02 | 391.26 | 370.16 | 1.06 | 0.051021 | 0.003310 | 0.336391 | 0.022389 | 0.047309 | 0.000516 | 0.016003 | 0.000678 | 242.7 | 150.0 | 294.4 | 17.0 | 298.0 | 3.2 | 320.9 | 13.5 |
GEY01-03 | 79.81 | 126.75 | 0.63 | 0.051937 | 0.002589 | 0.270201 | 0.013270 | 0.038164 | 0.000596 | 0.013080 | 0.000433 | 283.4 | 114.8 | 242.9 | 10.6 | 241.4 | 3.7 | 262.7 | 8.6 |
GEY01-04 | 157.94 | 192.68 | 0.82 | 0.055318 | 0.003675 | 0.310498 | 0.018930 | 0.041838 | 0.000557 | 0.015155 | 0.000356 | 433.4 | 117.6 | 274.6 | 14.7 | 264.2 | 3.4 | 304.0 | 7.1 |
GEY01-05 | 78.08 | 139.26 | 0.56 | 0.051797 | 0.002953 | 0.278980 | 0.015278 | 0.039741 | 0.000554 | 0.011764 | 0.000445 | 276.0 | 163.9 | 249.8 | 12.1 | 251.2 | 3.4 | 236.4 | 8.9 |
GEY01-06 | 745.68 | 530.48 | 1.41 | 0.050486 | 0.001509 | 0.262656 | 0.007491 | 0.037736 | 0.000388 | 0.011745 | 0.000199 | 216.7 | 68.5 | 236.8 | 6.0 | 238.8 | 2.4 | 236.0 | 4.0 |
GEY01-07 | 120.17 | 183.95 | 0.65 | 0.007001 | 0.004300 | 0.032393 | 0.021102 | 0.035957 | 0.000510 | 0.005880 | 0.000485 | error | error | 32.4 | 20.8 | 227.7 | 3.2 | 118.5 | 9.7 |
GEY01-08 | 216.50 | 278.68 | 0.78 | 0.060712 | 0.002699 | 0.339815 | 0.017233 | 0.039956 | 0.000623 | 0.014850 | 0.000565 | 627.8 | 95.2 | 297.0 | 13.1 | 252.6 | 3.9 | 297.9 | 11.2 |
GEY01-09 | 191.14 | 265.96 | 0.72 | 0.051374 | 0.002090 | 0.257764 | 0.010211 | 0.036290 | 0.000431 | 0.011210 | 0.000233 | 257.5 | 94.4 | 232.9 | 8.2 | 229.8 | 2.7 | 225.3 | 4.7 |
GEY01-10 | 193.17 | 324.75 | 0.59 | 0.051174 | 0.002581 | 0.270026 | 0.014528 | 0.037568 | 0.000494 | 0.011915 | 0.000441 | 255.6 | 116.7 | 242.7 | 11.6 | 237.7 | 3.1 | 239.4 | 8.8 |
GEY01-11 | 164.45 | 237.92 | 0.69 | 0.054463 | 0.002092 | 0.291229 | 0.011068 | 0.038719 | 0.000479 | 0.011036 | 0.000303 | 390.8 | 87.0 | 259.5 | 8.7 | 244.9 | 3.0 | 221.8 | 6.1 |
GEY01-12 | 258.73 | 352.73 | 0.73 | 0.052311 | 0.001859 | 0.276318 | 0.010003 | 0.038046 | 0.000500 | 0.012331 | 0.000262 | 298.2 | 86.1 | 247.7 | 8.0 | 240.7 | 3.1 | 247.7 | 5.2 |
GEY01-13 | 133.08 | 232.26 | 0.57 | 0.055041 | 0.002155 | 0.294841 | 0.011508 | 0.038783 | 0.000529 | 0.012277 | 0.000349 | 413.0 | 87.0 | 262.4 | 9.0 | 245.3 | 3.3 | 246.6 | 7.0 |
GEY01-14 | 104.56 | 319.05 | 0.33 | 0.056035 | 0.002240 | 0.285499 | 0.010884 | 0.036896 | 0.000428 | 0.011030 | 0.000384 | 453.8 | 88.9 | 255.0 | 8.6 | 233.6 | 2.7 | 221.7 | 7.7 |
GEY01-15 | 284.29 | 337.15 | 0.84 | 0.055688 | 0.002193 | 0.285406 | 0.011034 | 0.037002 | 0.000435 | 0.011516 | 0.000248 | 438.9 | 87.0 | 254.9 | 8.7 | 234.2 | 2.7 | 231.4 | 5.0 |
GEY01-16 | 372.78 | 370.69 | 1.01 | 0.049425 | 0.008407 | 0.289086 | 0.048393 | 0.038054 | 0.000495 | 0.011543 | 0.000924 | 168.6 | 355.5 | 257.8 | 38.1 | 240.8 | 3.1 | 232.0 | 18.5 |
GEY01-17 | 117.99 | 209.66 | 0.56 | 0.052117 | 0.002161 | 0.273978 | 0.011202 | 0.038067 | 0.000496 | 0.011672 | 0.000315 | 300.1 | 94.4 | 245.9 | 8.9 | 240.8 | 3.1 | 234.6 | 6.3 |
GEY01-18 | 316.47 | 309.72 | 1.02 | 0.053073 | 0.003305 | 0.271126 | 0.016472 | 0.037444 | 0.000455 | 0.011895 | 0.000273 | 331.5 | 147.2 | 243.6 | 13.2 | 237.0 | 2.8 | 239.0 | 5.4 |
GEY01-19 | 264.85 | 240.87 | 1.10 | 0.053044 | 0.002554 | 0.275259 | 0.012937 | 0.037552 | 0.000483 | 0.011534 | 0.000257 | 331.5 | 109.2 | 246.9 | 10.3 | 237.6 | 3.0 | 231.8 | 5.1 |
GEY01-20 | 277.16 | 312.00 | 0.89 | 0.049291 | 0.001844 | 0.259197 | 0.009686 | 0.037892 | 0.000475 | 0.011625 | 0.000293 | 161.2 | 91.7 | 234.0 | 7.8 | 239.8 | 3.0 | 233.6 | 5.8 |
GEY01-21 | 352.64 | 348.40 | 1.01 | 0.054947 | 0.001863 | 0.307946 | 0.010896 | 0.040421 | 0.000596 | 0.011852 | 0.000294 | 409.3 | 75.9 | 272.6 | 8.5 | 255.4 | 3.7 | 238.1 | 5.9 |
GEY01-22 | 162.21 | 232.53 | 0.70 | 0.051583 | 0.002190 | 0.267705 | 0.011323 | 0.037521 | 0.000469 | 0.011607 | 0.000318 | 333.4 | 98.1 | 240.9 | 9.1 | 237.4 | 2.9 | 233.3 | 6.4 |
GEY01-23 | 42.24 | 104.74 | 0.40 | 0.000000 | 0.000000 | 0.228228 | 0.148493 | 0.037587 | 0.001364 | 0.013152 | 0.006260 | error | error | 208.7 | 122.8 | 237.9 | 8.5 | 264.1 | 124.9 |
GEY01-24 | 177.45 | 205.44 | 0.86 | 0.049691 | 0.002485 | 0.254337 | 0.012044 | 0.037524 | 0.000524 | 0.012021 | 0.000320 | 189.0 | 119.4 | 230.1 | 9.8 | 237.5 | 3.3 | 241.5 | 6.4 |
GEY01-25 | 157.06 | 261.01 | 0.60 | 0.050852 | 0.001997 | 0.260635 | 0.010018 | 0.037186 | 0.000399 | 0.011177 | 0.000252 | 235.3 | 90.7 | 235.2 | 8.1 | 235.4 | 2.5 | 224.7 | 5.0 |
GEY01-26 | 508.85 | 526.58 | 0.97 | 0.023495 | 0.002337 | 0.096351 | 0.009153 | 0.027763 | 0.000581 | 0.007692 | 0.000295 | error | error | 93.4 | 8.5 | 176.5 | 3.6 | 154.9 | 5.9 |
Sample DHB03 (DHB basaltic andesite) | |||||||||||||||||||
DHB03-1 | 222.47 | 354.79 | 0.63 | 0.052415 | 0.002020 | 0.266703 | 0.009844 | 0.036918 | 0.000615 | 0.012163 | 0.000412 | 303.6 | 87.8 | 240.1 | 7.9 | 233.7 | 3.8 | 244.4 | 8.2 |
DHB03-2 | 1042.23 | 1209.03 | 0.86 | 0.051993 | 0.000708 | 0.264798 | 0.003877 | 0.036911 | 0.000335 | 0.011603 | 0.000154 | 285.1 | 31.1 | 238.5 | 3.1 | 233.7 | 2.1 | 233.2 | 3.1 |
DHB03-3 | 189.49 | 310.74 | 0.61 | 0.056256 | 0.001419 | 0.288229 | 0.006379 | 0.037361 | 0.000639 | 0.012413 | 0.000379 | 462.5 | 55.9 | 257.2 | 5.0 | 236.5 | 4.0 | 249.3 | 7.6 |
DHB03-4 | 198.73 | 305.86 | 0.65 | 0.055878 | 0.001072 | 0.283644 | 0.005446 | 0.036858 | 0.000353 | 0.011618 | 0.000211 | 447.5 | 42.6 | 253.5 | 4.3 | 233.3 | 2.2 | 233.5 | 4.2 |
DHB03-5 | 345.56 | 401.85 | 0.86 | 0.053467 | 0.001088 | 0.273499 | 0.005996 | 0.037155 | 0.000508 | 0.011725 | 0.000293 | 348.7 | 46.0 | 245.5 | 4.8 | 235.2 | 3.2 | 235.6 | 5.9 |
DHB03-6 | 211.85 | 314.31 | 0.67 | 0.053330 | 0.001165 | 0.270012 | 0.005867 | 0.036737 | 0.000310 | 0.011810 | 0.000224 | 342.8 | 49.4 | 242.7 | 4.7 | 232.6 | 1.9 | 237.3 | 4.5 |
DHB03-7 | 300.56 | 351.05 | 0.86 | 0.053571 | 0.001442 | 0.274206 | 0.007766 | 0.037124 | 0.000386 | 0.011645 | 0.000295 | 353.1 | 60.8 | 246.1 | 6.2 | 235.0 | 2.4 | 234.0 | 5.9 |
DHB03-8 | 286.29 | 366.07 | 0.78 | 0.051954 | 0.000686 | 0.265343 | 0.004771 | 0.037049 | 0.000405 | 0.011872 | 0.000172 | 283.4 | 30.2 | 239.0 | 3.8 | 234.5 | 2.5 | 238.6 | 3.4 |
DHB03-9 | 262.20 | 348.73 | 0.75 | 0.055594 | 0.001464 | 0.285722 | 0.007949 | 0.037245 | 0.000527 | 0.011699 | 0.000365 | 436.2 | 58.7 | 255.2 | 6.3 | 235.7 | 3.3 | 235.1 | 7.3 |
DHB03-10 | 146.12 | 214.65 | 0.68 | 0.052136 | 0.001424 | 0.266417 | 0.007980 | 0.037025 | 0.000408 | 0.011900 | 0.000307 | 291.4 | 62.4 | 239.8 | 6.4 | 234.4 | 2.5 | 239.1 | 6.1 |
DHB03-11 | 201.11 | 314.92 | 0.64 | 0.057688 | 0.001598 | 0.260297 | 0.007673 | 0.032710 | 0.000424 | 0.011107 | 0.000209 | 517.9 | 60.8 | 234.9 | 6.2 | 207.5 | 2.6 | 223.3 | 4.2 |
DHB03-12 | 203.37 | 321.69 | 0.63 | 0.052923 | 0.000852 | 0.270606 | 0.004420 | 0.037199 | 0.000399 | 0.011646 | 0.000211 | 325.5 | 36.5 | 243.2 | 3.5 | 235.4 | 2.5 | 234.0 | 4.2 |
DHB03-13 | 97.87 | 235.71 | 0.42 | 0.051937 | 0.002473 | 0.261140 | 0.011473 | 0.036906 | 0.000961 | 0.011901 | 0.000588 | 282.6 | 108.9 | 235.6 | 9.2 | 233.6 | 6.0 | 239.1 | 11.7 |
DHB03-14 | 253.77 | 331.74 | 0.76 | 0.052148 | 0.000719 | 0.263746 | 0.004329 | 0.036853 | 0.000424 | 0.011774 | 0.000142 | 291.9 | 31.5 | 237.7 | 3.5 | 233.3 | 2.6 | 236.6 | 2.8 |
DHB03-15 | 196.17 | 286.41 | 0.68 | 0.051853 | 0.001058 | 0.263490 | 0.005298 | 0.036980 | 0.000407 | 0.011980 | 0.000278 | 278.9 | 46.7 | 237.5 | 4.3 | 234.1 | 2.5 | 240.7 | 5.5 |
DHB03-16 | 107.90 | 210.24 | 0.51 | 0.052242 | 0.001483 | 0.270708 | 0.007438 | 0.037567 | 0.000476 | 0.012888 | 0.000458 | 296.0 | 64.8 | 243.3 | 5.9 | 237.7 | 3.0 | 258.8 | 9.1 |
DHB03-17 | 206.45 | 300.41 | 0.69 | 0.053378 | 0.000863 | 0.271125 | 0.004900 | 0.036928 | 0.000392 | 0.011909 | 0.000209 | 344.9 | 36.6 | 243.6 | 3.9 | 233.8 | 2.4 | 239.3 | 4.2 |
DHB03-18 | 155.64 | 233.47 | 0.67 | 0.053254 | 0.000906 | 0.271863 | 0.005704 | 0.036957 | 0.000392 | 0.011638 | 0.000202 | 339.6 | 38.5 | 244.2 | 4.6 | 233.9 | 2.4 | 233.9 | 4.0 |
DHB03-19 | 155.42 | 256.22 | 0.61 | 0.054118 | 0.001084 | 0.275849 | 0.005211 | 0.037086 | 0.000390 | 0.012269 | 0.000224 | 376.0 | 45.1 | 247.4 | 4.1 | 234.7 | 2.4 | 246.5 | 4.5 |
DHB03-20 | 266.49 | 318.78 | 0.84 | 0.052705 | 0.001100 | 0.269240 | 0.006726 | 0.037012 | 0.000570 | 0.012290 | 0.000211 | 316.1 | 47.5 | 242.1 | 5.4 | 234.3 | 3.5 | 246.9 | 4.2 |
Rock Type | ZRR Dacite (ZRR02) | GEY Rhyolite (GEY01) | DHB Basaltic Andesite (DHB03) | ||||||
---|---|---|---|---|---|---|---|---|---|
Sample | ZRR02-1 | ZRR02-2 | ZRR02-3 | GEY01-1 | GEY01-2 | GEY01-3 | DHB03-1 | DHB03-2 | DHB03-3 |
SiO2 | 69.62 | 69.78 | 68.96 | 75.55 | 75.46 | 75.48 | 55.10 | 54.79 | 55.15 |
TiO2 | 0.45 | 0.46 | 0.48 | 0.19 | 0.19 | 0.18 | 0.97 | 0.94 | 0.95 |
Al2O3 | 14.89 | 14.65 | 14.69 | 12.37 | 12.54 | 12.29 | 17.22 | 17.23 | 17.33 |
Fe2O3T | 3.04 | 3.21 | 3.42 | 1.58 | 1.31 | 1.79 | 8.21 | 8.51 | 8.00 |
FeO | 2.17 | 2.31 | 2.27 | 1.31 | 1.12 | 1.43 | 5.96 | 6.15 | 5.60 |
MnO | 0.12 | 0.13 | 0.14 | 0.10 | 0.09 | 0.09 | 0.17 | 0.17 | 0.15 |
MgO | 1.01 | 0.98 | 0.96 | 0.20 | 0.13 | 0.15 | 4.22 | 4.30 | 4.12 |
CaO | 1.57 | 1.67 | 2.17 | 0.83 | 0.73 | 0.78 | 7.53 | 7.45 | 7.41 |
Na2O | 4.45 | 4.65 | 4.67 | 3.92 | 4.14 | 3.54 | 3.15 | 3.67 | 3.27 |
K2O | 2.84 | 2.73 | 2.59 | 4.06 | 3.84 | 4.25 | 1.90 | 1.70 | 1.77 |
P2O5 | 0.11 | 0.11 | 0.13 | 0.03 | 0.03 | 0.04 | 0.19 | 0.19 | 0.19 |
LOI | 1.28 | 1.11 | 1.16 | 0.86 | 0.96 | 1.00 | 1.13 | 1.00 | 1.02 |
Total | 99.37 | 99.48 | 99.35 | 99.67 | 99.42 | 99.60 | 99.80 | 99.96 | 99.34 |
Mg# | 39.56 | 37.59 | 35.67 | 19.82 | 16.53 | 14.24 | 50.43 | 50.03 | 50.53 |
Li | 17.80 | 17.27 | 15.87 | 10.41 | 9.62 | 13.50 | 22.49 | 22.95 | 23.54 |
Be | 1.64 | 1.65 | 1.62 | 1.46 | 1.47 | 1.44 | 1.38 | 1.38 | 1.49 |
Sc | 8.45 | 8.26 | 8.93 | 5.39 | 5.49 | 5.50 | 24.93 | 24.45 | 25.63 |
Cr | 33.61 | 7.54 | 24.08 | 19.40 | 33.84 | 24.29 | 50.10 | 41.59 | 29.88 |
Co | 3.42 | 4.94 | 4.96 | 2.06 | 1.83 | 2.19 | 21.44 | 22.06 | 22.31 |
V | 40.30 | 40.43 | 41.00 | 7.37 | 6.77 | 7.82 | 202.36 | 201.58 | 197.27 |
Tl | 0.81 | 0.69 | 0.65 | 0.52 | 0.49 | 0.51 | 0.64 | 0.62 | 0.64 |
Cu | 8.34 | 7.53 | 8.67 | 8.71 | 8.17 | 9.08 | 9.96 | 9.20 | 13.22 |
Cs | 6.55 | 4.76 | 6.06 | 2.47 | 2.51 | 2.65 | 12.02 | 11.40 | 10.83 |
Zn | 53.01 | 57.41 | 72.13 | 32.74 | 25.33 | 38.99 | 115.43 | 125.89 | 123.64 |
Ni | 6.73 | 11.77 | 7.40 | 9.32 | 7.82 | 5.55 | 11.16 | 9.76 | 10.28 |
Ga | 17.19 | 17.16 | 17.77 | 15.73 | 15.59 | 15.46 | 20.93 | 21.53 | 22.24 |
Rb | 100.31 | 93.41 | 93.66 | 103.93 | 101.11 | 108.96 | 92.37 | 89.03 | 90.99 |
Sr | 222.28 | 249.84 | 259.78 | 60.10 | 60.84 | 55.29 | 503.85 | 477.66 | 544.36 |
Y | 21.49 | 21.84 | 22.94 | 24.60 | 27.04 | 25.43 | 23.39 | 23.12 | 24.93 |
Nb | 9.89 | 9.68 | 9.66 | 12.61 | 13.85 | 13.67 | 8.79 | 8.83 | 9.45 |
Ta | 0.62 | 0.61 | 0.63 | 0.99 | 1.02 | 1.01 | 0.52 | 0.51 | 0.54 |
Ba | 827.33 | 846.17 | 758.69 | 664.91 | 618.94 | 685.52 | 646.70 | 488.47 | 624.16 |
Zr | 213.93 | 229.12 | 209.68 | 164.11 | 174.01 | 164.41 | 166.43 | 166.16 | 176.46 |
Hf | 5.07 | 5.35 | 4.94 | 4.43 | 5.12 | 4.77 | 4.06 | 4.06 | 4.18 |
Pb | 15.75 | 15.13 | 13.89 | 11.97 | 10.74 | 13.35 | 19.89 | 19.35 | 20.60 |
Th | 9.53 | 9.33 | 9.52 | 14.05 | 15.49 | 15.10 | 8.23 | 8.21 | 8.50 |
U | 2.11 | 2.10 | 2.45 | 1.49 | 1.42 | 1.75 | 1.39 | 1.32 | 1.38 |
La | 26.60 | 28.80 | 26.56 | 40.95 | 51.24 | 41.94 | 22.09 | 21.58 | 25.76 |
Ce | 56.52 | 58.79 | 56.90 | 77.67 | 102.13 | 78.97 | 54.69 | 52.12 | 61.76 |
Pr | 5.69 | 5.86 | 5.67 | 7.56 | 9.99 | 7.80 | 6.45 | 6.24 | 6.87 |
Nd | 23.41 | 24.45 | 23.80 | 27.20 | 36.31 | 29.21 | 26.90 | 26.43 | 29.59 |
Sm | 4.34 | 4.30 | 4.37 | 4.82 | 6.10 | 5.20 | 5.51 | 5.39 | 5.80 |
Eu | 1.24 | 1.19 | 1.14 | 0.67 | 0.72 | 0.68 | 1.29 | 1.24 | 1.33 |
Gd | 4.15 | 4.17 | 4.11 | 5.05 | 6.26 | 5.40 | 4.87 | 4.62 | 5.25 |
Tb | 0.64 | 0.63 | 0.64 | 0.68 | 0.90 | 0.73 | 0.79 | 0.76 | 0.83 |
Dy | 3.60 | 3.61 | 3.74 | 3.64 | 4.64 | 4.09 | 4.41 | 4.33 | 4.74 |
Ho | 0.72 | 0.72 | 0.75 | 0.73 | 0.81 | 0.76 | 0.88 | 0.88 | 0.91 |
Er | 2.20 | 2.23 | 2.25 | 2.21 | 2.45 | 2.29 | 2.48 | 2.43 | 2.58 |
Tm | 0.37 | 0.37 | 0.37 | 0.35 | 0.37 | 0.36 | 0.38 | 0.37 | 0.40 |
Yb | 2.41 | 2.42 | 2.46 | 2.28 | 2.38 | 2.34 | 2.31 | 2.27 | 2.46 |
Lu | 0.38 | 0.40 | 0.38 | 0.38 | 0.40 | 0.39 | 0.37 | 0.37 | 0.39 |
(La/Yb)N | 7.93 | 8.54 | 7.74 | 12.88 | 15.45 | 12.87 | 6.85 | 6.82 | 7.51 |
ΣREE | 132.27 | 137.94 | 133.15 | 174.20 | 224.70 | 180.16 | 133.41 | 129.02 | 148.67 |
Eu/Eu* | 0.88 | 0.85 | 0.81 | 0.41 | 0.35 | 0.39 | 0.74 | 0.74 | 0.72 |
DI | 83.00 | 82.96 | 81.06 | 92.51 | 93.35 | 92.12 | 44.28 | 45.08 | 45.25 |
TZr | 812.38 | 813.05 | 792.82 | 791.53 | 799.91 | 795.68 | 773.42 | 663.13 | 675.11 |
Spot | t (Ma) | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf (0) | εHf (t) | 2s | TDM1(Hf) | TDM2(Hf) | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample ZRR02 (ZRR dacite) | |||||||||||||
ZRR02-01 | 239 | 0.061305 | 0.000482 | 0.001836 | 0.000029 | 0.282505 | 0.000026 | −9.4 | −4.5 | 0.9 | 1081 | 1552 | −0.94 |
ZRR02-03 | 239 | 0.032514 | 0.000372 | 0.000998 | 0.000006 | 0.282532 | 0.000024 | −8.5 | −3.4 | 0.9 | 1018 | 1483 | −0.97 |
ZRR02-04 | 239 | 0.032350 | 0.000580 | 0.001012 | 0.000014 | 0.282530 | 0.000023 | −8.6 | −3.5 | 0.8 | 1022 | 1488 | −0.97 |
ZRR02-10 | 239 | 0.064314 | 0.003553 | 0.001852 | 0.000110 | 0.282451 | 0.000027 | −11.4 | −6.4 | 0.9 | 1158 | 1673 | −0.94 |
ZRR02-12 | 239 | 0.065863 | 0.000314 | 0.001922 | 0.000017 | 0.282497 | 0.000026 | −9.7 | −4.8 | 0.9 | 1095 | 1571 | −0.94 |
ZRR02-13 | 239 | 0.082448 | 0.004055 | 0.002459 | 0.000135 | 0.282461 | 0.000027 | −11.0 | −6.1 | 0.9 | 1163 | 1657 | −0.93 |
ZRR02-14 | 239 | 0.030388 | 0.000369 | 0.000947 | 0.000006 | 0.282549 | 0.000025 | −7.9 | −2.8 | 0.9 | 994 | 1445 | −0.97 |
ZRR02-16 | 239 | 0.058647 | 0.000247 | 0.001840 | 0.000014 | 0.282477 | 0.000026 | −10.4 | −5.5 | 0.9 | 1121 | 1615 | −0.94 |
ZRR02-17 | 239 | 0.035209 | 0.000452 | 0.001099 | 0.000010 | 0.282537 | 0.000025 | −8.3 | −3.2 | 0.9 | 1014 | 1473 | −0.97 |
ZRR02-20 | 239 | 0.036414 | 0.000961 | 0.001138 | 0.000025 | 0.282523 | 0.000023 | −8.8 | −3.7 | 0.8 | 1035 | 1504 | −0.97 |
Sample GEY01 (GEY rhyolite) | |||||||||||||
GEY01-03 | 238 | 0.046516 | 0.000747 | 0.001531 | 0.000024 | 0.282626 | 0.000026 | −5.2 | −0.2 | 0.9 | 899 | 1278 | −0.95 |
GEY01-06 | 238 | 0.096719 | 0.002102 | 0.002957 | 0.000039 | 0.282585 | 0.000027 | −6.6 | −1.9 | 1.0 | 996 | 1385 | −0.91 |
GEY01-10 | 238 | 0.069589 | 0.002482 | 0.001869 | 0.000046 | 0.282545 | 0.000026 | −8.0 | −3.1 | 0.9 | 1024 | 1464 | −0.94 |
GEY01-11 | 238 | 0.056170 | 0.002020 | 0.001734 | 0.000053 | 0.282588 | 0.000025 | −6.5 | −1.6 | 0.9 | 958 | 1365 | −0.95 |
GEY01-12 | 238 | 0.082525 | 0.001596 | 0.002588 | 0.000051 | 0.282563 | 0.000024 | −7.4 | −2.6 | 0.8 | 1018 | 1430 | −0.92 |
GEY01-17 | 238 | 0.049022 | 0.000673 | 0.001495 | 0.000018 | 0.282596 | 0.000027 | −6.2 | −1.2 | 0.9 | 941 | 1345 | −0.95 |
GEY01-18 | 238 | 0.140906 | 0.008520 | 0.003856 | 0.000179 | 0.282518 | 0.000029 | −9.0 | −4.4 | 1.0 | 1124 | 1544 | −0.88 |
GEY01-19 | 238 | 0.074541 | 0.000785 | 0.002337 | 0.000030 | 0.282545 | 0.000028 | −8.0 | −3.2 | 1.0 | 1037 | 1467 | −0.93 |
GEY01-22 | 238 | 0.076030 | 0.001882 | 0.002321 | 0.000044 | 0.282568 | 0.000027 | −7.2 | −2.4 | 1.0 | 1003 | 1417 | −0.93 |
GEY01-24 | 238 | 0.053773 | 0.004187 | 0.001692 | 0.000115 | 0.282606 | 0.000027 | −5.9 | −0.9 | 1.0 | 931 | 1323 | −0.95 |
Sample DHB03 (DHB basaltic andesite) | |||||||||||||
DHB03-01 | 234 | 0.027401 | 0.000343 | 0.001054 | 0.000012 | 0.282649 | 0.000019 | −4.4 | 0.6 | 0.7 | 855 | 1224 | −0.97 |
DHB03-02 | 234 | 0.043435 | 0.000840 | 0.001723 | 0.000028 | 0.282653 | 0.000019 | −4.2 | 0.7 | 0.7 | 865 | 1222 | −0.95 |
DHB03-05 | 234 | 0.035694 | 0.000111 | 0.001431 | 0.000006 | 0.282592 | 0.000015 | −6.4 | −1.4 | 0.5 | 945 | 1355 | −0.96 |
DHB03-06 | 234 | 0.019981 | 0.000445 | 0.000781 | 0.000016 | 0.282627 | 0.000017 | −5.1 | −0.1 | 0.6 | 879 | 1270 | −0.98 |
DHB03-07 | 234 | 0.030128 | 0.000354 | 0.001164 | 0.000010 | 0.282597 | 0.000017 | −6.2 | −1.2 | 0.6 | 931 | 1342 | −0.96 |
DHB03-08 | 234 | 0.047382 | 0.000444 | 0.001765 | 0.000011 | 0.282662 | 0.000014 | −3.9 | 1.0 | 0.5 | 853 | 1201 | −0.95 |
DHB03-09 | 234 | 0.029952 | 0.000898 | 0.001179 | 0.000037 | 0.282606 | 0.000017 | −5.9 | −0.9 | 0.6 | 918 | 1321 | −0.96 |
DHB03-10 | 234 | 0.024395 | 0.000731 | 0.000995 | 0.000029 | 0.282596 | 0.000019 | −6.2 | −1.2 | 0.7 | 928 | 1342 | −0.97 |
DHB03-12 | 234 | 0.027978 | 0.000581 | 0.001069 | 0.000021 | 0.282561 | 0.000016 | −7.5 | −2.5 | 0.6 | 979 | 1421 | −0.97 |
DHB03-16 | 234 | 0.027711 | 0.000673 | 0.001054 | 0.000024 | 0.282642 | 0.000018 | −4.6 | 0.4 | 0.6 | 864 | 1239 | −0.97 |
DHB03-17 | 234 | 0.034361 | 0.000763 | 0.001306 | 0.000025 | 0.282599 | 0.000016 | −6.1 | −1.2 | 0.6 | 931 | 1338 | −0.96 |
DHB03-18 | 234 | 0.019379 | 0.000173 | 0.000801 | 0.000004 | 0.282610 | 0.000018 | −5.7 | −0.7 | 0.6 | 903 | 1308 | −0.98 |
DHB03-20 | 234 | 0.033419 | 0.000118 | 0.001258 | 0.000004 | 0.282618 | 0.000018 | −5.4 | −0.5 | 0.6 | 904 | 1295 | −0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Sun, F.; Cong, Z. Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Minerals 2022, 12, 1085. https://doi.org/10.3390/min12091085
Pan Z, Sun F, Cong Z. Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Minerals. 2022; 12(9):1085. https://doi.org/10.3390/min12091085
Chicago/Turabian StylePan, Zhongcui, Fengyue Sun, and Zhichao Cong. 2022. "Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions" Minerals 12, no. 9: 1085. https://doi.org/10.3390/min12091085
APA StylePan, Z., Sun, F., & Cong, Z. (2022). Petrogenesis, Sources, and Tectonic Settings of Triassic Volcanic Rocks in the Ela Mountain Area of the East Kunlun Orogen: Insights from Geochronology, Geochemistry and Hf Isotopic Compositions. Minerals, 12(9), 1085. https://doi.org/10.3390/min12091085