Three-Dimensional Mineral Prospectivity Modeling for Delineation of Deep-Seated Skarn-Type Mineralization in Xuancheng–Magushan Area, China
Abstract
:1. Introduction
2. Methods
2.1. 3D Mineral Prospectivity Modeling
2.2. Logistic Regression Algorithm
2.3. Random Forest Algorithm
3. Case Study Area and Data
3.1. Geological Background
3.2. Database
3.3. 3D Prospectivity Modeling Model and 3D Prediction Data Set Construction
4. Prospectivity Modeling Process and Results
4.1. Predictive Model Building
4.2. Model Performance Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Teng, J.W.; Yang, L.Q.; Liu, H.C.; Yan, Y.F.; Yang, H.; Zhang, H.S.; Zhang, Y.Q.; Tian, Y. Geodynamical responses for formation and concentration of metall minerals in the second deep space of lithosphere. Chin. J. Geophys. 2009, 52, 1734–1756, (In Chinese with English Abstract). [Google Scholar]
- Yan, J.Y.; Teng, J.W.; Lv, Q.T. Geophysical Exploration and Application of Deep Metal Mineral Resources. Prog. Geophys. 2008, 23, 871–891, (In Chinese with English Abstract). [Google Scholar]
- Heinson, G.S.; Direen, N.G.; Gill, R.M. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology 2006, 34, 573–576. [Google Scholar] [CrossRef]
- Hu, X.Y.; Li, X.H.; Yuan, F.; Alison, O.; Simon, M.J.; Li, Y.; Dai, W.Q.; Zhou, T.F. Numerical modeling of ore-forming processes within the Chating Cu-Au porphyry-type deposit, China: Implications for the longevity of hydrothermal systems and potential uses in mineral exploration. Ore Geol. Rev. 2020, 116, 103230. [Google Scholar] [CrossRef]
- Liu, L.M.; Peng, S. Key strategies for predictive exploration in mature environment: Model innovation, exploration technology optimization and information integration. J. Cent. South Univ. Technol. (Engl. Ed.) 2005, 12, 186–191. [Google Scholar] [CrossRef]
- Niu, S.Y.; Wang, B.D.; Sun, A.Q.; Chen, C.; Wang, Z.L.; Ma, B.J.; Wang, W.S.; Jiang, X.P.; Zhao, Y.L.; Gao, Y.C.; et al. Analysis of the ore-controlling structure of the Shihu gold deposit, Hebei Province and deep-seated ore-prospecting prediction. Chin. J. Geochem. 2009, 28, 386–396. [Google Scholar] [CrossRef]
- Zhai, Y.S.; Deng, J.; Wang, J.P.; Peng, R.M.; Liu, J.J.; Yang, L.Q. Researches on deep ore prospecting. Miner. Depos. 2004, 23, 142–149, (In Chinese with English Abstract). [Google Scholar]
- Li, X.Y.; Yuan, Y.; Zhang, M.M.; Jia, C.; Jowitt, S.M.; Ord, A.; Zhou, T.F.; Dai, W.Q. 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe–Cu skarn-type mineralization within the Yueshan orefield, Anqing district, Anhui Province, China. Ore Geol. Rev. 2018, 105, 1–17. [Google Scholar] [CrossRef]
- Payne, C.E.; Cunningham, F.; Peters, K.J.; Nielsen, S.; Puccioni, E.; Wildman, C.; Partington, G.A. From 2D to 3D: Prospectivity modelling in the Taupo volcanic zone, New Zealand. Ore Geol. Rev. 2015, 71, 558–577. [Google Scholar] [CrossRef]
- Nielsen, S.H.; Cunningham, F.; Hay, R.; Partington, G.; Stokes, M. 3D prospectivity modelling of orogenic gold in the Marymia Inlier, Western Australia. Ore Geol. Rev. 2015, 71, 578–591. [Google Scholar] [CrossRef]
- Xiao, K.Y.; Li, N.; Sun, L.; Zhou, W.; Li, Y. Large Scale 3D Mineral Prediction Methods and Channels Based on 3D Information Technology. J. Geol. 2012, 36, 229–236. (In Chinese) [Google Scholar]
- Oh, H.J.; Lee, S. Application of artificial neural network for gold-silver deposits potential mapping: A case study of Koreal. Nat. Resour. Res. 2010, 19, 103–124. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Zuo, R.G. Recognition of geochemical anomalies using a deep autoencoder network. Comput. Geosci. 2016, 86, 75–82. [Google Scholar] [CrossRef]
- Ghezelbash, R.; Maghsoudi, A.; Bigdeli, A.; Carranza, E.J.M. Regional-Scale Mineral Prospectivity Mapping: Support Vector Machines and an Improved Data-Driven Multi-criteria Decision-Making Technique. Nat. Resour. Res. 2021, 30, 1977–2005. [Google Scholar] [CrossRef]
- Abedi, M.; Norouzi, G.H. Integration of various geophysical data with geological and geochemical data to determine additional drilling for copper exploration. J. Appl. Geophys. 2012, 83, 35–45. [Google Scholar] [CrossRef]
- Leite, E.P.; de Souza Filho, C.R. Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the Carajás Mineral Province, Brazil. Geophys. Prospect. 2019, 57, 1049–1065. [Google Scholar] [CrossRef]
- Li, X.L.; Li, L.H.; Zhang, B.L.; Guo, Q.J. Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation. Neurocomputing 2013, 118, 179–190. [Google Scholar] [CrossRef]
- Zuo, R.G.; Carranza, E. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37, 1967–1975. [Google Scholar] [CrossRef]
- Bian, Y.C. On the origin of Magushan Cu–Mo deposit in South Anhui. J. Geol. 1995, 19, 17–20, (In Chinese with English Abstract). [Google Scholar]
- Xiao, K.Y.; Ding, J.H.; Liu, R. The discussion of three-part form of non-fuel mineralresource assessment. Ceological Rev. 2006, 52, 793–798, (In Chinese with English Abstract). [Google Scholar]
- Zhao, P.D. Three Component quantitative resource prediction and assessment: Theory and practice of digital mineral prospecting. Earth Sci.-J. China Univ. Geosci. 2002, 27, 482–489, (In Chinese with English Abstract). [Google Scholar]
- Agterberg, F.P. Multivariate prediction equations in geology. J. Int. Assoc. Math. Geol. 1970, 2, 319–324. [Google Scholar] [CrossRef]
- Agterberg, F.P.; Bonham-Carter, G.F.; Cheng, Q.; Wright, D.F. Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In Computers in Geology-25 Years of Progress; Davis, J.C., Herzfeld, U.C., Eds.; Oxford University Press: New York, NY, USA, 1993; pp. 13–32. [Google Scholar]
- Wang, S.C. The New Development of Theory and Method of Synthetic Information Mineral Resources Prognosis. Geol. Bull. China 2010, 29, 1399–1403, (In Chinese with English Abstract). [Google Scholar]
- Zhao, P.D. Quantitative Mineral Prediction and Deep Mineral Exploration. Earth Sci. Front. 2007, 14, 309–318, (In Chinese with English Abstract). [Google Scholar]
- Yuan, F.; Li, X.H.; Zhang, M.M.; Zhou, T.F.; Gao, D.M.; Hong, D.L.; Liu, X.M.; Wang, Q.N.; Zhu, J.B. Three Dimension Prospectivity Modelling Based on Integrated Geoinformation for Prediction of Buried Ore Bodies. Acta Geol. Sin. 2014, 88, 630–643, (In Chinese with English Abstract). [Google Scholar]
- Caté, A.; Perozzi, L.; Gloaguen, E.; Blouin, M. Machine learning as a tool for geologists. Lead. Edge 2017, 36, 215. [Google Scholar] [CrossRef]
- Li, X.H.; Yuan, F.; Zhang, M.M.; Jia, C.; Jowitt, S.M.; Ord, A.; Zheng, T.K.; Hu, X.Y.; Li, Y. Three-dimensional mineral prospectivity modeling for targeting of concealed mineralization within the Zhonggu iron orefield, Ningwu Basin, China. Ore Geol. Rev. 2015, 71, 633–654. [Google Scholar] [CrossRef]
- Sun, T.; Chen, F.; Zhong, L.X.; Liu, W.M.; Wang, Y. GIS-basedmineral prospectivity mapping using machine learning methods: Acase study from Tongling ore district, eastern China. Ore Geol. Rev. 2019, 109, 26–49. [Google Scholar] [CrossRef]
- Tao, J.T.; Yuan, F.; Zhang, N.N.; Chang, J.Y. Three-Dimensional Prospectivity Modeling of Honghai Volcanogenic Massive Sulfide Cu–Zn Deposit, Eastern Tianshan, Northwestern China Using Weights of Evidence and Fuzzy Logic. Math. Geosci. 2021, 53, 131–162. [Google Scholar] [CrossRef]
- Xiang, J.; Xiao, K.Y.; Carranza, E.J.M.; Chen, J.P.; Li, S. 3D Mineral Prospectivity Mapping with Random Forests: A Case Study of Tongling, Anhui, China. Nat. Resour. Res. 2020, 29, 395–414. [Google Scholar] [CrossRef]
- Mokhtari, A.R. Hydrothermal alteration mapping through multivariate logistic regression analysis of lithogeochemical data. J. Geochem. Explor. 2014, 145, 207–212. [Google Scholar] [CrossRef]
- Marian, F.; Piotr, C.; Sławomir, B.; Bogusław, R.; Mirosław, K. Logistic Regression Model for Determination of the Age of Brown Hare (Lepus europaeus Pall.) Based on Body Weight. Animals 2022, 12, 529. [Google Scholar]
- Yuko, K.; Koichi, S.; Takeshi, I.; Koichi, T.; Tetsuya, T. Predictors for development of palbociclib-induced neutropenia in breast cancer patients as determined by ordered logistic regression analysis. Sci. Rep. 2021, 11, 20055. [Google Scholar]
- Carranza, E.J.M.; Hale, M. Logistic Regression for Geologically Constrained Mapping of Gold Potential, Baguio District, Philippines. Explor. Min. Geol. 2001, 10, 165–175. [Google Scholar] [CrossRef]
- Xiong, Y.H.; Zuo, R.G. GIS-based rare events logistic regression for mineral prospectivity mapping. Comput. Geosci. 2018, 111, 18–25. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Hu, X.Y.; Li, X.Y.; Yuan, F.; Ord, A.; Jowitt, S.M.; Li, Y.; Dai, W.Q.; Ye, R.; Zhou, T.F. Numerical Simulation Based Targeting of the Magushan Skarn Cu–Mo Deposit, Middle-Lower Yangtze Metallogenic Belt, China. Minerals 2019, 9, 588. [Google Scholar] [CrossRef]
- Zhou, T.F.; Fan, Y.; Yuan, F. Advances on petrogenesis and metallogenic study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area. Acta Petrol. Sin. 2008, 24, 1665–1678, (In Chinese with English Abstract). [Google Scholar]
- Chang, Y.F.; Liu, X.P.; Wu, Y.C. The Cu-Fe Metallogenic Belt in the Middle-Lower Reaches of Yangtze River; Geological Publish House: Beijing, China, 1991; p. 379. (In Chinese) [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Duan, C.; Pirajno, F.; Ishiyama, D.; Chen, Y.C. A tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits along the Middle–Lower Yangtze River Valley, Eastern China. Ore Geol. Rev. 2011, 43, 294–314. [Google Scholar] [CrossRef]
- Ye, R. 3D Geological Modeling and Mineral Prospectivity Modeling of Magushan Ore Field in Nanling-Xuancheng Ore Concentration Area. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Hong, D.J.; Huang, Z.Z.; Chan, S.W.; Wang, X.H. Geological characteristics and exploration directions of the Cu-polymetallic ore deposits in the Magushan-Qiaomaishanareas in Xuancheng, Anhui Province. East China Geol. 2017, 38, 28–36, (In Chinese with English Abstract). [Google Scholar]
- Hu, X.Y.; Li, X.Y.; Yuan, F.; Jowitt, S.M.; Ord, A.; Ye, R.; Li, Y.; Dai, W.Q.; Li, X.L. 3D Numerical Simulation-Based Targeting of Skarn Type Mineralization within the Xuancheng-Magushan Orefield, Middle-Lower Yangtze Metallogenic Belt, China. Lithosphere 2020, 1, 8351536. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zuo, R.G.; Xiong, Y.H. A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China. Sci. China (Earth Sci.) 2016, 59, 556–572. [Google Scholar] [CrossRef]
- Fabbri, A.G.; Chung, C. On blind tests and spatial prediction models. Nat. Resour. Res. 2008, 17, 107–118. [Google Scholar] [CrossRef]
- Porwal, A.; Gonzalez-Alvarez, I.; Markwitz, V.; McCuaig, T.; Mamuse, A. Weights-of evidence and logistic regression modelling of magmatic nickel sulfide prospectivity in the Yilgarn Craton, Western Australia. Ore Geol. Rev. 2010, 38, 184–196. [Google Scholar] [CrossRef]
Classification | Exploration Criteria | Spatial Analysis Methods |
---|---|---|
Strata | Carboniferous stratigraphic contact surface distance field | 3D geological body surface extraction function 3D Distance Field Analysis |
Permian stratigraphic contact surface distance field | 3D geological body surface extraction function 3D Distance Field Analysis | |
Triassic stratigraphic contact surface distance field | 3D geological body surface extraction function 3D Distance Field Analysis | |
Intrusions | Rock mass contact zone distance field | 3D geological body surface extraction function 3D Distance Field Analysis |
Structures | Distance field of diorite uplift location | 3D Mathematical Morphological Methods 3D Distance Field Analysis |
Parameter | Value (m) |
---|---|
North-south extent (x axis) | 23,500 |
East-west extent (y axis) | 21,500 |
Vertical extent (z axis) | 500~−3000 |
X axis block size | 100 |
Y axis block size | 100 |
Z axis block size | 25 |
Models | Accuracy | Recall | Speciality |
---|---|---|---|
Logistic regression | 90.625% | 83.62% | 93.33% |
Random forest | 96.63% | 93.97% | 97.67% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Li, X.; Chen, Y.; Ye, R.; Yuan, F. Three-Dimensional Mineral Prospectivity Modeling for Delineation of Deep-Seated Skarn-Type Mineralization in Xuancheng–Magushan Area, China. Minerals 2022, 12, 1174. https://doi.org/10.3390/min12091174
Meng F, Li X, Chen Y, Ye R, Yuan F. Three-Dimensional Mineral Prospectivity Modeling for Delineation of Deep-Seated Skarn-Type Mineralization in Xuancheng–Magushan Area, China. Minerals. 2022; 12(9):1174. https://doi.org/10.3390/min12091174
Chicago/Turabian StyleMeng, Fandong, Xiaohui Li, Yuheng Chen, Rui Ye, and Feng Yuan. 2022. "Three-Dimensional Mineral Prospectivity Modeling for Delineation of Deep-Seated Skarn-Type Mineralization in Xuancheng–Magushan Area, China" Minerals 12, no. 9: 1174. https://doi.org/10.3390/min12091174
APA StyleMeng, F., Li, X., Chen, Y., Ye, R., & Yuan, F. (2022). Three-Dimensional Mineral Prospectivity Modeling for Delineation of Deep-Seated Skarn-Type Mineralization in Xuancheng–Magushan Area, China. Minerals, 12(9), 1174. https://doi.org/10.3390/min12091174