Advances in Pulsed Power Mineral Processing Technologies
Abstract
:1. Introduction
2. High-Energy Methods for Pretreatment of Finely Disseminated Mineral Complexes
2.1. Applications of Accelerated Electron Energy in the Concentration Processes of Polymetallic Ores
2.2. Applications of Microwave Energy in Mineral Processing
2.3. Laser Technology for Mineral Processing
2.4. Magnetic-Pulse Technology for the Softening and Disintegration of Ferruginous Quartzites
2.5. Pulsed Power Technology for Mineral Processing
2.5.1. Electrohydraulic Disintegration Process
2.5.2. Advanced Pulsed Power Technology for Dry Mineral Processing
- (1)
- The temperature, T, of the environment as a whole, as well as the temperature of its characteristic relatively homogeneous elements, practically does not change, Taverage (before the treatment) ≅ Taverage (after the treatment).
- (2)
- The strength amplitude of the electric field of the pulse E is much greater than the static breakdown amplitude, Emax. imp. >> Estat.
- (3)
3. Dominant Mechanisms behind HPEMP and DBD Effects on Structural, Physicochemical, and Process Properties of Geomaterials
3.1. High-Power Nanosecond Electromagnetic Pulses
3.2. Subnanosecond Dielectric-Barrier Discharges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chanturiya, V.A. Scientific substantiation and development of innovative approaches to integrated mineral processing. Gorn. Zhurnal 2017, 11, 7–13. [Google Scholar] [CrossRef]
- Vaisberg, L.A.; Safronov, A.N. Innovative crushing and grinding equipment of vibration action. Ecol. Ind. Russ. 2019, 23, 4–9. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z. Non-traditional high-energy processes for disintegration and exposure of finely disseminated mineral complexes. J. Min. Sci. 2007, 43, 311–330. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Filippov, L.O. Theory and application of high-power nanosecond pulses to processing of mineral complexes. Miner. Processing Extr. Metall. Rev. 2011, 32, 105–136. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Ryazantseva, M.V.; Samusev, A.L.; Khabarova, I.A. Composite physicochemical and energy action on geomaterials and aqueous slurries: Theory and practice. Gorn. Zhurnal 2017, 11, 77–83. [Google Scholar] [CrossRef]
- Somani, A.; Nandi, T.K.; Pal, S.K.; Majumder, A.K. Pre-treatment of rocks prior to comminution—A critical review of present practices. Int. J. Min. Sci. Technol. 2017, 27, 339–348. [Google Scholar] [CrossRef]
- Gao, P.; Yuan, S.; Han, Y.; Li, Y.; Chen, H. Experimental study on the effect of pretreatment with high-voltage electrical pulses on mineral liberation and separation of magnetite ore. Minerals 2017, 7, 153. [Google Scholar] [CrossRef]
- Singh, V.; Dixit, P.; Venugopal, R.; Venkatesh, K.B. Ore pretreatment methods for grinding: Journey and prospects. Miner. Processing Extr. Metall. Rev. 2018, 40, 1–15. [Google Scholar] [CrossRef]
- Adewuyi, S.O.; Ahmed, H.A.; Ahmed, H.M.A. Methods of ore pretreatment for comminution energy reduction. Minerals 2020, 10, 423. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Y. The application of high voltage pulses in the mineral processing industry—A review. Powder Technol. 2021, 393, 116–130. [Google Scholar] [CrossRef]
- Qin, Y.; Han, Y.; Gao, P.; Li, Y.; Yuan, S. Pre-weakening behavior of magnetite quartzite based on high-voltage pulse discharge. Miner. Eng. 2021, 160, 106662. [Google Scholar] [CrossRef]
- Badenikov, A.V.; Badenikov, V.Y. Energy Effects on Flotation Components; Publishing House of Moscow State Mining University, Mining Book Publishing House: Moscow, Russia, 2010; 358p. [Google Scholar]
- Parker, T.; Shi, F.; Evans, C.; Powell, M. The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore. Miner. Eng. 2015, 82, 101–106. [Google Scholar] [CrossRef]
- May, F.; Hamann, S.; Quade, A.; Brüser, V. Froth flotation improvement by plasma pretreatment of sulfide minerals. Miner. Eng. 2017, 113, 95–101. [Google Scholar] [CrossRef]
- Ran, J.; Qiu, X.; Hu, Z.; Liu, Q.; Song, B. Selective flotation of pyrite from arsenopyrite by low temperature oxygen plasma pre-treatment. Minerals 2018, 8, 568. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Chanturiya, V.A.; Ryazantseva, M.V.; Koporulina, E.V.; Anashkina, N.E. Changes in the surface morphology, microhardness, and physicochemical properties of natural minerals under the influence of a dielectric barrier discharge. Bull. Russ. Acad. Sci. Phys. 2020, 84, 1161–1164. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Filippova, I.V.; Filippov, L.O.; Ryazantseva, M.V.; Bunin, I.Z. Effect of powerful nanosecond electromagnetic impulses on surface and flotation properties of carbonate-bearing pyrite and arsenopyrite. J. Min. Sci. 2008, 44, 518–530. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Filippova, I.V.; Koporulina, E.V. Nanosecond electromagnetic pulse effect on phase composition of pyrite and arsenopyrite surfaces, their sorption and flotation properties. J. Min. Sci. 2011, 47, 506–513. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Kovalev, A.T.; Koporulina, E.V. Formation of micro- and nanophases on sulfide mineral surfaces under the effect of nanosecond electromagnetic pulses. Bull. Russ. Acad. Sci. Phys. 2012, 76, 757–760. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Khabarova, I.A. Influence of nanosecond electromagnetic pulses on phase surface composition, electrochemical, sorption and flotation properties of chalcopyrite and sphalerite. J. Min. Sci. 2012, 48, 732–740. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Khabarova, I.A. X-Ray photoelectron spectroscopy-based analysis of change in the composition and chemical state of atoms on chalcopyrite and sphalerite surface before and after the nanosecond electromagnetic pulse treatment. J. Min. Sci. 2013, 49, 489–498. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Khabarova, I.A.; Koporulina, E.V.; Anashkina, N.E. Surface activation and induced change of physicochemical and process properties of galena by nanosecond electromagnetic pulses. J. Min. Sci. 2014, 50, 573–586. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V. XPS study of sulfide minerals surface oxidation under high-voltage nanosecond pulses. Miner. Eng. 2019, 143, 105939. [Google Scholar] [CrossRef]
- Rostovtsev, V.I. Change of elastic wave velocity in granite after radiation exposure and prospects for energy consumption reduction in ore pretreatment. J. Min. Sci. 2019, 55, 333–338. [Google Scholar] [CrossRef]
- Rostovtsev, V.I.; Bryazgin, A.A.; Korobeinikov, M.V. Improvement of milling selectivity and utilization completeness through radiation modification of mineral properties. J. Min. Sci. 2020, 56, 1000–1009. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Ivanova, T.A.; Lunin, V.D.; Nagibin, V.D. Intensification of the dissolution process of rebellious gold-bearing products under action of a flow of accelerated electrons. J. Min. Sci. 2000, 36, 393–398. [Google Scholar] [CrossRef]
- Didenko, A.N. Microwave Energy: Theory and Practice; Nauka: Moscow, Russia, 2003; 446p. [Google Scholar]
- Cumbane, A. Microwave Treatment of Minerals and Ores: Dielectric Properties of Minerals. The Effect of Microwave Radiation on the Grindability and Mineral Liberation; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2010. [Google Scholar]
- Buttress, A.J.; Katrib, J.; Jones, D.A.; Batchelor, A.R.; Craig, D.A.; Royal, T.A.; Dodds, C.; Kingman, S.W. Towards large scale microwave treatment of ores: Part 1—Basis of design, construction and commissioning. Miner. Eng. 2017, 109, 169–183. [Google Scholar] [CrossRef]
- Kingman, S.W. Microwave Processing of Materials. Ph.D Thesis, Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa, 2018. [Google Scholar]
- Gholami, H.; Rezai, B.; Mehdilo, A.; Hassanzadeh, A.; Yarahmadi, M. Effect of microwave system location on floatability of chalcopyrite and pyrite in a copper ore processing circuit. Physicochem. Probl. Miner. Process 2020, 56, 432–448. [Google Scholar] [CrossRef]
- Leonenko, N.A.; Sekisov, G.V.; Cheban, A.Y.; Shemyakin, S.A.; Kuz’menko, A.P.; Silyutin, I.V. Rock failure under laser radiation. J. Min. Sci. 2013, 49, 749–756. [Google Scholar] [CrossRef]
- Gridin, O.M.; Goncharov, S.A. Electromagnetic Processes. Textbook; Gornaya Kniga: Moscow, Russia, 2009; 498p. [Google Scholar]
- Sun, Y.; Zhou, W.; Han, Y.; Li, Y. Strengthening liberation and separation of magnetite ore via magnetic pulse pretreatment: An industrial test study. Adv. Powder Technol. 2020, 31, 2101–2109. [Google Scholar] [CrossRef]
- Kurets, V.I.; Usov, A.F.; Tsukerman, V.A. Electric Pulse Discharge Disintegration of Materials; Print. Kola Science Center RAS: Apatity, Russia, 2002; 324p. [Google Scholar]
- Zhidkov, I.S.; Kukharenko, A.I.; Cholakh, S.O. Electrophysical Methods of Material Processing: Textbook; Publishing House of the Ural University: Yekaterinburg, Russia, 2019; 195p. [Google Scholar]
- Chanturiya, V.A.; Gulyaev, Y.V.; Lunin, V.D.; Bunin, I.Z.; Cherepenin, V.A.; Vdovin, V.A.; Korzhenevskii, A.V. Breakdown of refractory gold-bearing ores by the action of powerful electromagnetic pulses. Dokl. Earth Sci. 1999, 367, 670–673. [Google Scholar]
- Chanturiya, V.A.; Bunin, I.Z.; Lunin, V.D.; Gulyaev, Y.V.; Bunina, N.S.; Vdovin, V.A.; Voronov, P.S.; Korzhenevskii, A.V.; Cherepenin, V.A. Use of high-power electromagnetic pulses in processes of disintegration and opening of rebellious gold-containing raw material. J. Min. Sci. 2001, 37, 427–437. [Google Scholar] [CrossRef]
- Punanov, I.F.; Zhidkov, I.S.; Cholakh, S.O. High-Voltage Nanosecond Breakdown of Condensed Media: A Textbook; Publishing House of the Ural University: Yekaterinburg, Russia, 2018; 116p. [Google Scholar]
- Avtaeva, S.V. Barrier Discharge. Research and Application. Lambert Academic Publishing: Saarbrücken, Germany, 2011; 193p. [Google Scholar]
- Bunin, I.Z.; Anashkina, N.E.; Khabarova, I.A.; Ryazantseva, M.V. Application of subnanosecond-pulsed dielectric barrier discharge in air to structural and technological properties modification of natural minerals. In Characterization of Minerals, Metals, and Materials; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Chanturiya, E.L.; Koporulina, E.V.; Anashkina, N.E. Mechanism of structural changes in the surface state and physicochemical properties of columbite and eudialyte upon exposure to low-temperature plasma. Bull. Russ. Acad. Sci. Phys. 2020, 84, 1147–1151. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Khabarova, I.A. Study of the effect of dielectric-barrier discharge on the surface morphology and physical-chemical roperties of pyrrhotite and chalcopyrite. J. Surf. Investig. 2022, 16, 281–284. [Google Scholar] [CrossRef]
- Kondrat’ev, S.A.; Rostovtsev, V.I.; Bochkarev, G.R.; Pushkareva, G.I.; Kovalenko, K.A. Justification and development of innovative technologies for integrated processing of complex ore and mine waste. J. Min. Sci. 2014, 50, 959–973. [Google Scholar] [CrossRef]
- Vaisberg, L.; Safronov, A. Vibratory disintegration application in processing of different materials. Obogashchenie Rud (Miner. Processing J.) 2018, 1, 3–11. [Google Scholar] [CrossRef]
- Plaksin, I.N.; Shafeev, R.S.; Chanturiya, V.A.; Yakushkin, V.P. The influence of ionizing radiation on the flotation properties of certain minerals. In Selected Works, Mineral Concentration; Plaksin, I.N., Ed.; Nauka: Moscow, Russia, 1970; pp. 292–300. [Google Scholar]
- Shafeev, R.S.; Chanturiya, V.A.; Yakushkin, V.P. Effect of Ionizing Radiation on the Flotation Process; Nauka: Moscow, Russia, 1973; 58p. [Google Scholar]
- Chanturiya, V.A.; Shafeev, R.S. Chemistry of Surface Phenomena during Flotation; Nedra: Moscow, Russia, 1977; 191p. [Google Scholar]
- Bryazgin, A.A.; Kuksanov, N.K.; Salimov, R.A. Industrial electron accelerators developed at the Budker Institute of Nuclear Physics, SB RAS (BINP). Uspekhi Fiz. Nauk. 2018, 188, 672–685. [Google Scholar] [CrossRef]
- Kovalev, A.T. Generation of electric fields in inhomogeneous minerals by electron-beam irradiation. J. Min. Sci. 1997, 33, 269–274. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Vigdergauz, V.E. Theory and prospects for industrial application of energy of accelerated electrons in mineral processing. Gorn. Zhurnal 1995, 7, 53–57. [Google Scholar]
- Wang, H.; Lu, S. A new approach to electrification of powdered minerals by electron beam irradiation. J. Min. Sci. 2003, 39, 405–409. [Google Scholar] [CrossRef]
- Pavlov, Y.S.; Petrenko, V.V.; Alekseev, P.A.; Bystrov, P.A.; Souvorova, O.V. Trends and opportunities for the development of electron-beam energy-intensive technologies. Radiat. Phys. Chem. 2022, 198, 110199. [Google Scholar] [CrossRef]
- Rostovtsev, V.I. Ways of increasing recovery of micro- and nano-size valuable particles from natural mineral and waste. J. Min. Sci. 2021, 57, 654–662. [Google Scholar] [CrossRef]
- Wang, H.; Bochkarev, G.R.; Rostovtsev, V.I.; Veigel’t, Y.P.; Lu, S. Improvement of the magnetic properties of iron-bearing minerals during radiation-thermal treatment. J. Min. Sci. 2004, 40, 399–408. [Google Scholar] [CrossRef]
- Wang, H.; Lu, S. Modifying effect of electron beam irradiation on magnetic property of iron-bearing minerals. Physicochem. Probl. Miner. Process. 2014, 50, 79–86. [Google Scholar] [CrossRef]
- Bochkaryov, G.R.; Veigelt, Y.P.; Rostovtsev, V.I. Phase conversions in sulfide ores on combined irradiation and heating. J. Min. Sci. 2000, 36, 81–86. [Google Scholar] [CrossRef]
- Kotova, O.B.; Razmyslov, I.N.; Rostovtsev, V.I.; Silaev, V.I. Radiation-thermal modification of ferruginous bauxites in processing. Obogashchenie Rud. 2016, 4, 16–22. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Ivanova, T.I.; Lunin, V.D.; Nagibin, V.D. Influence of liquid phase and products of its radiolysis on surface properties of pyrite and arsenopyrite. J. Min. Sci. 1999, 35, 84–90. [Google Scholar] [CrossRef]
- Didenko, A.N.; Zverev, B.V.; Prokopenko, A.V. Microwave fracturing and grinding of solid rocks by example of kimberlite. Dokl. Phys. 2005, 50, 349–350. [Google Scholar] [CrossRef]
- Hartlieb, P.; Kuchar, F.; Moser, P.; Kargl, H.; Restner, U. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity. Miner. Eng. 2018, 118, 37–51. [Google Scholar] [CrossRef]
- Hassani, F.; Shadi, A.; Rafezi, H.; Sasmito, A.P.; Ghoreishi-Madiseh, S.A. Energy analysis of the effectiveness of microwave-assisted fragmentation. Miner. Eng. 2020, 159, 106642. [Google Scholar] [CrossRef]
- Salsman, J.B.; Williamson, R.L.; Tolley, W.K.; Rice, D.A. Short-pulse microwave treatment of disseminated sulfide ores. Miner. Eng. 1996, 9, 43–54. [Google Scholar] [CrossRef]
- Solovyov, V.I. Interaction of high-power microwave fields of the meter range with ore rocks of various compositions. Obogashchenie Rud. 2001, 2, 13–14. [Google Scholar]
- Kolesnik, V.G.; Basova, E.S.; Urusova, E.V.; Yuldashev, B.S. Application of the microwave field in the grinding of sulfide gold-bearing ores. Tsvetnye Met. 2003, 2, 16–18. [Google Scholar]
- Lunin, V.D.; Narseev, A.V.; Barashnev, N.I.; Ratnikov, E.V. Model of process of microwave action on refractory gold concentrate. J. Min. Sci. 1997, 33, 373–377. [Google Scholar] [CrossRef]
- Kuz’menko, A.P.; Kuz’menko, N.A.; Khrapov, I.V.; Rasskazov, I.Y.; Leonenko, N.A.; Kapustina, G.G.; Silyutin, I.V.; Li, J. Thermocapillary extraction and laser-induced agglomeration of fine gold out of mineral and waste complexes. J. Min. Sci. 2011, 47, 850–860. [Google Scholar] [CrossRef]
- Leonenko, N.A.; Vanina, E.A.; Kapustina, G.G.; Veselova, E.M. Study of nonlinear effect about laser-induced processes of nanodispersed gold in mineral association. Adv. Mater. Res. 2013, 772, 355–358. [Google Scholar] [CrossRef]
- Zuev, A.L.; Kostarev, K.G. Certain peculiarities of the solutocapillary convection. Uspekhi Fiz. Nauk. 2008, 178, 1065–1085. [Google Scholar] [CrossRef]
- Goncharov, S.A.; Ananiev, P.P.; Bruev, V.P. Softening of ferruginous quartzites by the method of pulsed electromagnetic treatment. Gorn. Zhurnal 2004, 1, 73–75. [Google Scholar]
- Chanturiya, V.A.; Trubetskoy, K.N.; Viktorov, S.D.; Bunin, I.Z. Nanoparticles in the Processes of Destruction and Opening of Geomaterials; IPKON RAN Publishing House: Moscow, Russia, 2006; 216p. [Google Scholar]
- Yu, J.W.; Han, Y.X.; Li, Y.J.; Gao, P. Effect of magnetic pulse pretreatment on grindability of a magnetite ore and its implication on magnetic separation. J. Cent. South Univ. 2016, 23, 3108–3114. [Google Scholar] [CrossRef]
- Mesyats, G.A. Pulse Power and Electronics; Nauka: Moscow, Russia, 2004; 704p. [Google Scholar]
- Vorob’ev, G.A. Effect of discharge incorporation into a solid insulator immersed in an insulating fluid. Tech. Phys. 2005, 50, 517–519. [Google Scholar] [CrossRef]
- Vorob’ev, G.A.; Ekhanin, S.G.; Nesmelov, N.S. Electrical breakdown in solid dielectrics. Phys. Solid State 2005, 47, 1083–1087. [Google Scholar] [CrossRef]
- Andres, U.; Bialecki, R. Liberation of mineral constituents by high-voltage pulses. Powder Technol. 1986, 48, 269–277. [Google Scholar] [CrossRef]
- Yutkin, L.A. Electrohydraulic Effect and Its Application in Industry; Mechanical Engineering, Leningrad Branch: Leningrad, Russia, 1986; 253p. [Google Scholar]
- selFrag. High Voltage Pulse Application in Mining. 2022. Available online: https://www.selfrag.com/high-voltage-pulse-power/ (accessed on 10 August 2022).
- ElectroHydroDynamics Research and Production Company. Available online: https://xn--80aaheadwcbnhcvmjd3ae6a0t.xn--p1ai/produkciya (accessed on 10 August 2022).
- Martynov, N.V.; Dobromirov, V.N.; Avramov, D.V. Electro-Hydraulic disintegration technology for diamond-bearing rocks. Obogashchenie Rud (Miner. Processing J.) 2020, 385, 8–14. [Google Scholar] [CrossRef]
- Kotov, Y.A.; Mesyats, G.A.; Filatov, A.L.; Korzhenevskii, S.R.; Motovilova, V.A.; Shcherbinin, S.V.; Boriskov, F.F.; Koryukin, B.M. Complex processing of pyrite wastes from ore-dressing plants by nanosecond pulses. Dokl. Earth Sci. 2000, 373, 790–792. [Google Scholar]
- Adushkin, V.V.; Andreev, S.N.; Popel, S.I. Cavitation separation of nano-and microscale monomineral fractions from polymineral microparticles. Geol. Ore Depos. 2007, 49, 201–207. [Google Scholar] [CrossRef]
- Korzhenevsky, S.R.; Bessonova, V.A.; Komarsky, A.A.; Motovilov, V.A.; Chepusov, A.S. Selection of electrohydraulic grinding parameters for quartz ore. J. Min. Sci. 2016, 52, 493–496. [Google Scholar] [CrossRef]
- Kolpakova, N.A.; Potsyapun, N.P.; Buinovsky, A.S. Leaching of finely dispersed gold from refractory ores activated by electric discharges in liquid with thiocarbamide. Tsvetnye Met. 2006, 4, 47–49. [Google Scholar]
- Belyaev, I.; Postnikova, I. Semi-dry and dry methods for enriching of poor hos-phorite ores. Mod. Sci. -Intensive Technol. 2017, 3, 67–74. [Google Scholar]
- Nunna, V.; Hapugoda, S.; Eswarappa, S.G.; Raparla, S.K.; Pownceby, M.I.; Sparrow, G.J. Evaluation of dry processing technologies for treating low grade lateritic iron ore fines. Miner. Processing Extr. Metall. Rev. 2020, 43, 283–299. [Google Scholar] [CrossRef]
- Chelgani, S.C.; Neisiani, A.A. Dry Mineral Processing; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Bugaev, S.P.; Kanavets, V.I.; Koshelev, V.I.; Cherepenin, V.A. Relativistic Multiwave Microwave Generators; Nauka: Novosibirsk, Russia, 1991; 296p. [Google Scholar]
- Cherepenin, V.A. Relativistic multiwave oscillators and their possible applications. Phys. Usp. 2006, 49, 1097–1102. [Google Scholar] [CrossRef]
- Bystrov, R.P.; Potapov, A.A.; Cherepenin, V.A.; Dmitriev, V.G.; Perunov, Y.M. Electromagnetic systems and means of deliberate interference to physical and biological objects. Rensit 2014, 6, 129–169. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, H.C.; Liu, T.M.; Lu, J.T.; Hung, W.T.; Huang, Y.R.; Tsai, Y.C.; Kao, C.L.; Chen, S.Y.; Sun, C.K. Efficient structure resonance energy transfer from microwaves to confined acoustic vibrations in viruses. Sci. Rep. 2016, 5, 18030. [Google Scholar] [CrossRef] [PubMed]
- Gulyaev, Y.V.; Taranov, I.V.; Cherepenin, V.A. The use of high-power electromagnetic pulses on bacteria and viruses. Dokl. Phys. 2020, 65, 230–232. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Kovalev, A.T. On the field-emission properties of sulfide minerals under high-power nanosecond pulses. Bull. Russ. Acad. Sci. Phys. 2007, 71, 646–649. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Lunin, V.D. Non-traditional methods of disintegrating and liberating of resistant gold-bearing minerals. Theory and technological results. Theory and technological results. Gorn. Zhurnal 2005, 4, 68–74. [Google Scholar]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Chanturiya, E.L.; Samusev, A.L.; Koporulina, E.V.; Anashkina, N.E. Intensification of eudialyte concentrate leaching by nanosecond high-voltage pulses. J. Min. Sci. 2018, 54, 646–655. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Chanturiya, E.L.; Minenko, V.G.; Samusev, A.L. Acid leaching process intensification for eudialyte concentrate based on energy effects. Obogashchenie Rud 2019, 3, 29–36. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Minenko, V.G.; Samusev, A.L.; Chanturiya, E.L.; Koporulina, E.V.; Bunin, I.Z.; Ryazantseva, M.V. The effect of energy impacts on the acid leaching of eudialyte concentrate. Miner. Processing Extr. Metall. Rev. 2021, 42, 484–495. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Ryazantseva, M.V.; Minenko, V.G.; Samusev, A.L. Effects of massive (high-power) electromagnetic pulses on the structural and chemical properties and leaching efficiency of eudialyte concentrate. Obogashchenie Rud 2021, 395, 15–20. [Google Scholar] [CrossRef]
- Ivanova, T.A.; Bunin, I.Z.; Khabarova, I.A. On the characteristic properties of oxidation of sulfide minerals exposed to nanosecond electromagnetic pulses. Bull. Russ. Acad. Sci. Phys. 2008, 72, 1326–1329. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Gulyaev, Y.V.; Bunin, I.Z.; Vdovin, V.A.; Korzhenevskii, A.V.; Lunin, V.D.; Cherepenin, V.A. Synergetic effect of powerful electromagnetic pulses and pore moisture on the breakdown of gold-bearing raw materials. Dokl. Earth Sci. 2001, 379 A, 653–657. [Google Scholar]
- May, F.; Gock, E.; Vogt, V.; Bruser, V. Plasma-modification of sulfides for optimizing froth-flotation properties. Miner. Eng. 2012, 35, 67–74. [Google Scholar] [CrossRef]
- May, F.; Hamann, S.; Quade, A.; Bruser, V. Study on Cu2S mineral surface modification by low temperature Ar/O2 plasmas. Miner. Eng. 2013, 50–51, 48–56. [Google Scholar] [CrossRef]
- Hirajima, T.; Mori, M.; Ichikawa, O.; Sasaki, K.; Miki, H.; Farahat, M.; Sawada, M. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment. Miner. Eng. 2014, 66–68, 102–111. [Google Scholar] [CrossRef]
- Marshall, G.M.; Patarachao, B.; Moran, K.; Mercier, P.H.J. Zircon mineral solids concentrated from Athabasca oil sands froth treatment tailings: Surface chemistry and flotation properties. Miner. Eng. 2014, 65, 79–87. [Google Scholar] [CrossRef]
- Kalygina, V.M.; Zarubin, A.N.; Novikov, V.A.; Petrova, Y.S.; Skakunov, M.S.; Tolbanov, O.P.; Tyazhev, A.V.; Yaskevich, T.M. Effect of oxygen plasma on the properties of tantalum oxide films. Semiconductors 2010, 44, 1227–1234. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Koporulina, E.V.; Anashkina, N.E. Effect of electromagnetic pulses on structural, physicochemical and flotation properties of eudialyte. J. Min. Sci. 2021, 57, 96–105. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Chanturiya, V.A.; Anashkina, N.E.; Koporulina, E.V.; Khachatryan, G.K. Effect of high-voltage nanosecond pulses and dielectric barrier discharges on the structural state and physicochemical properties of ilmenite surfaces. Bull. Russ. Acad. Sci. Phys. 2021, 85, 974–978. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Khabarova, I.A. Comparative study on high-voltage nanosecond pulses and dielectric barrier discharge effects on surface morphology and physico-chemical properties of natural pyrrhotite. J. Phys. Conf. Ser. 2021, 2064, 012056. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Ryazantseva, M.V.; Khabarova, I.A. Effect of high-power electromagnetic pulses and dielectric barrier discharges on physicochemical and flotation properties of perovskite. Eurasian Min. 2022, 1, 45–51. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.J.; Kovalev, A.T. Disintegration of mineral media exposed to high-power electromagnetic pulses. Proc. Russ. Acad. Sci. (Izv. RAN). Ser. Phys. 2004, 68, 630–632. [Google Scholar]
- Chanturiya, V.A.; Bunin, I.J.; Kovalev, A.T. Mechanisms of disintegration of mineral media exposed to high-power electromagnetic pulses. In Computational Methods; Liu, G.R., Tan, V.B.C., Han, X., Eds.; Springer: Dordrecht, Netherlands, 2006; Volume 1, pp. 1607–1614. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Kovalev, A.T. Selective disintegration of finely disseminated mineral complexes under exposure to high-power pulses. Bull. Russ. Acad. Sci. Phys. 2005, 69, 1186–1190. [Google Scholar]
- Raizer, Y.P. Gas Discharge Physics, 2nd ed.; Springer: Berlin, Germany, 1997; 450p. [Google Scholar]
- Lozanskiĭ, É.D. Development of electron avalances and streamers. Sov. Phys. Usp. 1975, 18, 893–908. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Kovalev, A.T. The role of gas outflow from nanosecond breakdown channels in the electric-pulse discharge disintegration of sulfide minerals. Bull. Russ. Acad. Sci. Phys. 2010, 74, 663–666. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Bunin, I.Z.; Kovalev, A.T.; Koporulina, E.V. Condensation of matter during gas outflow from nanosecond breakdown channels of sulfide minerals. Bull. Russ. Acad. Sci. Phys. 2011, 75, 593–597. [Google Scholar] [CrossRef]
- Chanturiya, V.A.; Ivanova, T.A.; Khabarova, I.A.; Ryazantseva, M.V. Effect of ozone on physicochemical and flotation properties of surface of pyrrhotite under the nanosecond electromagnetic pulse treatment. J. Min. Sci. 2007, 43, 83–90. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Bunina, N.S.; Vdovin, V.A.; Voronov, P.S.; Gulyaev, Y.V.; Korzhenevsky, A.V.; Lunin, V.D.; Chanturiya, V.A.; Cherepenin, V.A. Experimental study of nonthermal influence of powerful electromagnetic pulses on rusty gold-bearing minerals. Bull. Russ. Acad. Sci. Phys. 2001, 65, 1950–1955. [Google Scholar]
- Bunin, I.Z.; Chanturiya, V.A.; Anashkina, N.E.; Ryazantseva, M.V. Experimental validation of mechanism for pulsed energy effect on structure, chemical properties and microhardness of rock-forming minerals of kimberlites. J. Min. Sci. 2015, 51, 799–810. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Chanturiya, V.A.; Ryazantseva, M.V.; Koporulina, E.V.; Anashkina, N.E. Mechanism of the effect of high-voltage nanosecond pulses on the structural, chemical, and technological properties of natural dielectric minerals. Bull. Russ. Acad. Sci. Phys. 2018, 82, 561–566. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Chanturiya, V.A.; Ryazantseva, M.V.; Anashkina, N.E. Change in the functional chemical composition of the surface and technological properties of natural quartz under the influence of high-voltage nanosecond pulses. Bull. Russ. Acad. Sci. Phys. 2019, 83, 668–672. [Google Scholar] [CrossRef]
- Bunin, I.Z.; Chanturiya, V.A.; Anashkina, N.E.; Ryazantseva, M.V.; Koporulina, E.V.; Khachatryan, G.K. Changes in the functional chemical compositions of surface and structural defects of diamonds, due to the nonthermal influence of nanosecond high voltage pulses. Bull. Russ. Acad. Sci. Phys. 2017, 81, 368–372. [Google Scholar] [CrossRef]
- Rastsvetaeva, R.K.; Chukanov, N.V.; Pekov, I.V.; Schäfer, C.; Van, K.V. New Data on the isomorphism in eudialyte-group minerals. 1. Crystal chemistry of eudialyte-group members with Na incorporated into the framework as a marker of hyperagpaitic conditions. Minerals 2020, 10, 587. [Google Scholar] [CrossRef]
- Andreev, V.V. Study of impact of dielectric barrier discharge on the silicon-containing film. Appl. Phys. Sci. Tech. J. 2014, 6, 24–28. [Google Scholar]
- Renev, M.E.; Safronova, Y.F.; Stishkov, Y.K. Specific features of the structure of a diffuse barrier discharge. High Temp. 2021, 59, 27–35. [Google Scholar] [CrossRef]
- Lazukin, A.V.; Grabel’nykh, O.I.; Serdyukov, Y.A.; Pobezhimova, T.P.; Nurminskii, V.N.; Korsukova, A.V.; Krivov, S.A. The effect of surface barrier discharge plasma products on the germination of cereals. Tech. Phys. Lett. 2019, 45, 16–19. [Google Scholar] [CrossRef]
- Bobkova, E.S.; Khodor, Y.V.; Kornilova, O.N.; Rybkin, V.V. Chemical composition of plasma of dielectric barrier discharge at atmospheric pressure with a liquid electrode. High Temp. 2014, 52, 511–517. [Google Scholar] [CrossRef]
- Naifonov, T.B.; Beloborodov, V.I.; Zakharova, I.B. Flotation Benefication of Complex Titanium and Zirconium Ores; Publishing House of the KSC RAS: Apatity, Russia, 1994; 155p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanturiya, V.A.; Bunin, I.Z. Advances in Pulsed Power Mineral Processing Technologies. Minerals 2022, 12, 1177. https://doi.org/10.3390/min12091177
Chanturiya VA, Bunin IZ. Advances in Pulsed Power Mineral Processing Technologies. Minerals. 2022; 12(9):1177. https://doi.org/10.3390/min12091177
Chicago/Turabian StyleChanturiya, Valentine A., and Igor Zh. Bunin. 2022. "Advances in Pulsed Power Mineral Processing Technologies" Minerals 12, no. 9: 1177. https://doi.org/10.3390/min12091177
APA StyleChanturiya, V. A., & Bunin, I. Z. (2022). Advances in Pulsed Power Mineral Processing Technologies. Minerals, 12(9), 1177. https://doi.org/10.3390/min12091177