Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System
Abstract
:1. Introduction
2. Geologic Setting and Petrography
3. Analytical Techniques
4. Results
4.1. Mineral Chemistry
4.2. Bulk-Rock Geochemistry
5. Discussion
5.1. Post-Magmatic Alteration and Crustal Contamination
5.2. Crystal Fractionation
5.3. Nature of the Mantle Source and Melting Conditions
5.4. Geotectonic Setting and Magmatic Affinity
5.5. Geodynamic Setting
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sami, M.; Ntaflos, T.; Farahat, E.S.; Mohamed, H.A.; Ahmed, A.F.; Hauzenberger, C. Mineralogical, geochemical and Sr-Nd isotopes characteristics of fluorite-bearing granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on petrogenesis and evolution of their associated rare metal mineralization. Ore Geology Reviews 2017, 88, 1–22. [Google Scholar] [CrossRef]
- Patchett, P.J.; Chase, C.G. Role of transform continental margins in major crustal growth episodes. Geology 2002, 30, 39. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Frost, C.D. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem. Geol. 2006, 226, 163–188. [Google Scholar] [CrossRef]
- Adam, M.M.A.; Lv, X.; Fathy, D.; Abdel Rahman, A.R.A.; Ali, A.A.; Mohammed, A.S.; Farahat, E.S.; Sami, M. Petrogenesis and tectonic implications of Tonian island arc volcanic rocks from the Gabgaba Terrane in the Arabian-Nubian Shield (NE Sudan). J. Asian Earth Sci. 2022, 223, 105006. [Google Scholar] [CrossRef]
- Stern, R.J. Crustal evolution in the East African Orogen: A neodymium isotopic perspective. J. Afr. Earth Sci. 2002, 34, 109–117. [Google Scholar] [CrossRef]
- Eyal, M.; Litvinovsky, B.; Jahn, B.M.; Zanvilevich, A.; Katzir, Y. Origin and evolution of post-collisional magmatism: Coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chem. Geol. 2010, 269, 153–179. [Google Scholar] [CrossRef]
- Farahat, E.S.; Zaki, R.; Hauzenberger, C.; Sami, M. Neoproterozoic calc-alkaline peraluminous granitoids of the Deleihimmi pluton, Central Eastern Desert, Egypt: Implications for transition from late- to post-collisional tectonomagmatic evolution in the northern Arabian-Nubian Shield. Geol. J. 2011, 46, 544–560. [Google Scholar] [CrossRef]
- Ali, S.; Alshammari, A.S. Genesis of gabbroic intrusions in the Arabian Shield, Saudi Arabia: Mineralogical, geochemical and tectonic fingerprints of the Neoproterozoic arc magmatism. Geol. Mag. 2021, 158, 1639–1656. [Google Scholar] [CrossRef]
- Sami, M.; El Monsef, M.A.; Abart, R.; Toksoy-Köksal, F.; Abdelfadil, K.M. Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr–Nd Isotope Systematics, and Mineral Chemistry. ACS Earth Space Chem. 2022, 6, 2368–2384. [Google Scholar] [CrossRef]
- Khalil, A.E.S.; Obeid, M.A.; Azer, M.K. Late Neoproterozoic post-collisional mafic magmatism in the Arabian–Nubian Shield: A case study from Wadi El-Mahash gabbroic intrusion in southeast Sinai, Egypt. J. Afr. Earth Sci. 2015, 105, 29–46. [Google Scholar] [CrossRef]
- Farahat, E.S.; Ali, S.; Hauzenberger, C. Red Sea rift-related Quseir basalts, central Eastern Desert, Egypt: Petrogenesis and tectonic processes. Bull. Volcanol. 2017, 79, 9. [Google Scholar] [CrossRef]
- Farahat, E.S.; Ali, S.; Liu, Y. Origin and geotectonic evolution of Mir Tertiary basaltic andesite dykes, Western Desert, Egypt: Constraints from mineral and bulk-rock chemistry. Geol. J. 2019, 54, 2274–2287. [Google Scholar] [CrossRef]
- Ali, S.; Ntaflos, T.; Sami, M. Geochemistry of Khor Um-Safi ophiolitic serpentinites, central Eastern desert, Egypt: Implications for neoproterozoic arc-basin system in the Arabian-Nubian shield. Geochemistry 2021, 81, 125690. [Google Scholar] [CrossRef]
- Mogahed, M.M. Petrogenesis of Zeiatit gabbroic rocks in the Southern Eastern Desert of Egypt: Discrimination of arc-related Neoproterozoic gabbros. J. Afr. Earth Sci. 2019, 150, 239–263. [Google Scholar] [CrossRef]
- Abdelfadil, K.M.; Saleh, G.M.; Putiš, M.; Sami, M. Mantle source characteristics of the late Neoproterozoic post-collisional gabbroic intrusion of Wadi Abu Hadieda, north Arabian-Nubian Shield, Egypt. J. Afr. Earth Sci. 2022, 194, 104607. [Google Scholar] [CrossRef]
- Azer, M.K.; El-Gharbawy, R.I. The Neoproterozoic layered mafic–ultramafic intrusion of Gabal Imleih, south Sinai, Egypt: Implications of post-collisional magmatism in the north Arabian–Nubian Shield. J. Afr. Earth Sci. 2011, 60, 253–272. [Google Scholar] [CrossRef]
- Obeid, M.A.; Khalil, A.E.S.; Azer, M.K. Mineralogy, geochemistry, and geotectonic significance of the Neoproterozoic ophiolite of Wadi Arais area, south Eastern Desert, Egypt. Int. Geol. Rev. 2015, 58, 687–702. [Google Scholar] [CrossRef]
- Stern, R.J.; Ali, K.; Asimow, P.D.; Azer, M.K.; Leybourne, M.I.; Mubarak, H.S.; Ren, M.; Romer, R.L.; Whitehouse, M.J. The Atud gabbro–diorite complex: Glimpse of the Cryogenian mixing, assimilation, storage and homogenization zone beneath the Eastern Desert of Egypt. J. Geol. Soc. 2020, 177, 965–980. [Google Scholar] [CrossRef]
- Abu Anbar, M.M. Petrogenesis of the Nesryin gabbroic intrusion in SW Sinai, Egypt: New contributions from mineralogy, geochemistry, Nd and Sr isotopes. Mineral. Petrol. 2009, 95, 87–103. [Google Scholar] [CrossRef]
- Mahdy, N.M.; Ntaflos, T.; Pease, V.; Sami, M.; Slobodník, M.; Abu Steet, A.A.; Abdelfadil, K.M.; Fathy, D. Combined zircon U-Pb dating and chemical Th–U–total Pb chronology of monazite and thorite, Abu Diab A-type granite, Central Eastern Desert of Egypt: Constraints on the timing and magmatic-hydrothermal evolution of rare metal granitic magmatism in the Arabian Nubian Shield. Geochemistry 2020, 80, 125669. [Google Scholar] [CrossRef]
- Genna, A.; Nehlig, P.; Le Goff, E.; Guerrot, C.; Shanti, M. Proterozoic tectonism of the Arabian Shield. Precambrian Res. 2002, 117, 21–40. [Google Scholar] [CrossRef]
- Johnson, P.R.; Woldehaimanot, B. Development of the Arabian-Nubian Shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. Geol. Soc. Lond. Spec. Publ. 2022, 206, 289–325. [Google Scholar] [CrossRef]
- Fritz, H.; Wallbrecher, E.; Khudeir, A.; El Ela, F.A.; Dallmeyer, D. Formation of Neoproterozoic metamorphic complex during oblique convergence (Eastern Desert, Egypt). J. Afr. Earth Sci. 1996, 23, 311–329. [Google Scholar] [CrossRef]
- Abu-Alam, T.S.; StÜWe, K. Exhumation during oblique transpression: The Feiran-Solaf region, Egypt. J. Metamorph. Geol. 2009, 27, 439–459. [Google Scholar] [CrossRef]
- Sami, M.; Ntaflos, T.; Mohamed, H.A.; Farahat, E.S.; Hauzenberger, C.; Mahdy, N.M.; Abdelfadil, K.M.; Fathy, D. Origin and Petrogenetic Implications of Spessartine Garnet in Highly-Fractionated Granite from the Central Eastern Desert of Egypt. Acta Geol. Sin.—Engl. Ed. 2020, 94, 763–776. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.-F.M. Mineralogy of the Neoproterozoic epidote-bearing TTG suite, Mons Claudianus batholith (Egypt) and implications for synorogenic magmatism. Miner. Mag 2018, 80, 1291–1314. [Google Scholar] [CrossRef]
- Johnson, P.R.; Andresen, A.; Collins, A.S.; Fowler, A.R.; Fritz, H.; Ghebreab, W.; Kusky, T.; Stern, R.J. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J. Afr. Earth Sci. 2011, 61, 167–232. [Google Scholar] [CrossRef]
- Surour, A.A.; Ahmed, A.H.; Harbi, H.M. Mineral chemistry as a tool for understanding the petrogenesis of Cryogenian (arc-related)–Ediacaran (post-collisional) gabbros in the western Arabian Shield of Saudi Arabia. Int. J. Earth Sci. 2016, 106, 1597–1617. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A.; Azer, M.; Sami, M. Petrogenesis and tectonic implications of the Maladob ring complex in the South Eastern Desert, Egypt: New insights from mineral chemistry and whole-rock geochemistry. Int. J. Earth Sci. 2020, 110, 53–80. [Google Scholar] [CrossRef]
- Stern, R.J. Arc assembly and continental collision in the neoproterozoic east african orogen: Implications for the Consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Azer, M.K.; Abdelfadil, K.M.; Asimow, P.D.; Khalil, A.E.; Bozkurt, E. Tracking the transition from subduction-related to post-collisional magmatism in the north Arabian—Nubian Shield: A case study from the Homrit Waggat area of the Eastern Desert of Egypt. Geol. J. 2019, 55, 4426–4452. [Google Scholar] [CrossRef]
- Hassanen, M.A. Post-collision, A-type granites of Homrit Waggat complex, Egypt: Petrological and geochemical constraints on its origin. Precambrian Res. 1997, 82, 211–236. [Google Scholar] [CrossRef]
- Moghazi, A.; Mohamed, F.; Kanisawa, S. Geochemical and petrological evidence of calc-alkaline and A-type magmatism in the Homrit Waggat and El-Yatima areas of eastern Egypt. J. Afr. Earth Sci. 1999, 29, 535–549. [Google Scholar] [CrossRef]
- Giret, A.; Bonin, B.; Leger, J.-M. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-composition. Can. Mineral. 1980, 18, 481–495. [Google Scholar]
- Nachit, H.; Ibhi, A.; Abia, E.H.; Ben Ohoud, M. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V.; Thomson, J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Mineral. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Sasaki, K.; Nakashima, K.; Kanisawa, S. Pyrophanite and high Mn ilmenite discovered in the Cretaceous Tono pluton, NE Japan. Neues Jahrb. Mineral.—Mon. 2003, 2003, 302–320. [Google Scholar] [CrossRef]
- Johnston, A.D.; Wyllie, P.J. Constraints on the origin of Archean trondhjemites based on phase relationships of Nuk gneiss with H2O at 15 kbar. Contrib. Mineral. Petrol. 1988, 100, 35–46. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Birch, W.D.; Burke, E.A.; Ferraris, G.; Grice, J.D.; Hawthorne, F.C.; Kisch, H.J.; Krivovichev, V.G.; Schumacher, J.C. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Miner. Mag 2004, 68, 209–215. [Google Scholar] [CrossRef]
- Fleet, M.E.; Barnett, R.L. Al iv /Al vi partitioning in calciferous amphiboles from the Frood Mine, Sudbury, Ontario. Can. Mineral. 1978, 16, 527–532. [Google Scholar]
- Tischendorf, G.; Förster, H.-J.; Gottesmann, B. The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Miner. Mag 1999, 63, 57. [Google Scholar] [CrossRef]
- Hey, M.H. A new review of the chlorites. Mineral. Mag. J. Mineral. Soc. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Sun, S.s.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 2022, 42, 313–345. [Google Scholar] [CrossRef]
- Abd El-Rahman, Y.; Seifert, T.; Gutzmer, J.; Said, A.; Hofmann, M.; Gärtner, A.; Linnemann, U. The South Um Mongul Cu-Mo-Au prospect in the Eastern Desert of Egypt: From a mid-Cryogenian continental arc to Ediacaran post-collisional appinite-high Ba-Sr monzogranite. Ore Geol. Rev. 2017, 80, 250–266. [Google Scholar] [CrossRef]
- Munker, C.; Pfander, J.A.; Weyer, S.; Buchl, A.; Kleine, T.; Mezger, K. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science 2003, 301, 84–87. [Google Scholar] [CrossRef]
- Ali, S.; Ntaflos, T.; Upton, B.G.J. Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian Region, Styria, Austria. Chem. Geol. 2013, 337–338, 99–113. [Google Scholar] [CrossRef]
- Polat, A.; Hofmann, A.W. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Res. 2003, 126, 197–218. [Google Scholar] [CrossRef]
- Plank, T. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. J Pet. 2005, 46, 921–944. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 3.01—Composition of the Continental Crust A2—Holland, Heinrich D. In Treatise on Geochemistry; Turekian, K.K., Ed.; Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- Miyashiro, A.; Shido, F. Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium, and nickel. Am. J. Sci. 1975, 275, 265–277. [Google Scholar] [CrossRef]
- Herzberg, C.; Asimow, P.D. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Yang, S.-H.; Zhou, M.-F. Geochemistry of the ~430-Ma Jingbulake mafic–ultramafic intrusion in Western Xinjiang, NW China: Implications for subduction related magmatism in the South Tianshan orogenic belt. Lithos 2009, 113, 259–273. [Google Scholar] [CrossRef]
- Geng, H.; Sun, M.; Yuan, C.; Zhao, G.; Xiao, W. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications. J. Asian Earth Sci. 2011, 42, 854–866. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Tang, Y.-J.; Zhang, H.-F.; Ying, J.-F. Asthenosphere–lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem. Geol. 2006, 233, 309–327. [Google Scholar] [CrossRef]
- Arndt, N.T.; Christensen, U. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. J. Geophys. Res. 1992, 97, 10967. [Google Scholar] [CrossRef]
- Shahsavari Alavijeh, B.; Rashidnejad-Omran, N.; Toksoy-Köksal, F.; Chew, D.; Szopa, K.; Ghalamghash, J.; Gaweda, A. Geochemistry and apatite U–Pb geochronology of alkaline gabbros from the Nodoushan plutonic complex, Sanandaj–Sirjan Zone, Central Iran: Evidence for Early Palaeozoic rifting of northern Gondwana. Geol. J. 2019, 54, 1902–1926. [Google Scholar] [CrossRef]
- Shaw, D.M. Trace element fractionation during anatexis. Geochim. Et Cosmochim. Acta 1970, 34, 237–243. [Google Scholar] [CrossRef]
- McKenzie, D.; O’Nions, R.K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. J. Pet. 1991, 32, 1021–1091. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.F.; Mitchell, J.G. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Pfänder, J.A.; Jung, S.; Münker, C.; Stracke, A.; Mezger, K. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget—Evidence from continental basalts from Central Germany. Geochim. Cosmochim. Acta 2012, 77, 232–251. [Google Scholar] [CrossRef] [Green Version]
- Zeng, G.; Chen, L.-H.; Xu, X.-S.; Jiang, S.-Y.; Hofmann, A.W. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chem. Geol. 2010, 273, 35–45. [Google Scholar] [CrossRef]
- Salters, V.J.M.; Longhi, J.E.; Bizimis, M. Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem. Geophys. Geosyst. 2002, 3, 1–23. [Google Scholar] [CrossRef]
- Sisson, T.W.; Grove, T.L. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 1993, 113, 143–166. [Google Scholar] [CrossRef]
- Condie, K. Changing tectonic settings through time: Indiscriminate use of geochemical discriminant diagrams. Precambrian Res. 2015, 266, 587–591. [Google Scholar] [CrossRef]
- Blundy, J.D.; Robinson, J.A.C.; Wood, B.J. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet. Sci. Lett. 1998, 160, 493–504. [Google Scholar] [CrossRef]
- Wang, K.; Plank, T.; Walker, J.D.; Smith, E.I. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. Solid Earth 2002, 107, ECV 5-1–ECV 5-21. [Google Scholar] [CrossRef]
- O’Neill, H.S.C. The transition between spinel lherzolite and garnet lherzolite, and its use as a Geobarometer. Contrib. Mineral. Petrol. 1981, 77, 185–194. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A.M.; Ali, S.; Helmy, H.M.; El-Shafei, S.A. A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: Evidence from mineral chemistry and geochemistry of ultramafites. Lithos 2016, 263, 52–65. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A.M.; Ali, S.; El-Shafei, S.A. Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt. Int. J. Earth Sci. 2018, 107, 2337–2355. [Google Scholar] [CrossRef]
- Ali, K.A.; Azer, M.K.; Gahlan, H.A.; Wilde, S.A.; Samuel, M.D.; Stern, R.J. Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi–Heiani Suture, South Eastern Desert of Egypt. Gondwana Res 2010, 18, 583–595. [Google Scholar] [CrossRef]
- Kröner, A.; Krüger, J.; Rashwan, A.A.A. Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geol. Rundsch. 1994, 83, 502–513. [Google Scholar] [CrossRef]
- Meert, J.G. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 2003, 362, 1–40. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Obeid, M.A.; Azer, M.K.; Asimow, P.D. An example of post-collisional appinitic magmatism with an arc-like signature: The Wadi Nasb mafic intrusion, north Arabian–Nubian Shield, south Sinai, Egypt. Int. Geol. Rev. 2017, 60, 865–888. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.-M.; Guo, F.; Wang, Y.-J.; Zhang, M. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? Chem. Geol. 2004, 209, 27–48. [Google Scholar] [CrossRef]
- Biermanns, L. Chemical classification of gabbroic-dioritic rocks, based on TiO2, SiO2, FeO tot, MgO, K2O, Y and Zr. In Géodynamique Andine: Résumé Étendus = Andean Geodynamics: Extended Abstracts; Colloques et Séminaires; ORSTOM: Paris, France, 1996; pp. 547–550. [Google Scholar]
- Song, S.; Wang, M.; Wang, C.; Niu, Y. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective. Sci. China Earth Sci. 2015, 58, 1284–1304. [Google Scholar] [CrossRef]
- Sami, M.; Ntaflos, T.; Farahat, E.S.; Mohamed, H.A.; Hauzenberger, C.; Ahmed, A.F. Petrogenesis and geodynamic implications of Ediacaran highly fractionated A-type granitoids in the north Arabian-Nubian Shield (Egypt): Constraints from whole-rock geochemistry and Sr-Nd isotopes. Lithos 2018, 304–307, 329–346. [Google Scholar] [CrossRef]
- Blasband, B.; White, S.; Brooijmans, P.; De Boorder, H.; Visser, W. Late Proterozoic extensional collapse in the Arabian–Nubian Shield. J. Geol. Soc. 2022, 157, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Abdel Halim, A.H.; Helmy, H.M.; Abd El-Rahman, Y.M.; Shibata, T.; El Mahallawi, M.M.; Yoshikawa, M.; Arai, S. Petrology of the Motaghairat mafic–ultramafic complex, Eastern Desert, Egypt: A high-Mg post-collisional extension-related layered intrusion. J. Asian Earth Sci. 2016, 116, 164–180. [Google Scholar] [CrossRef]
Sample | FGB-01 | FGB-02 | FGB-03 | FGB-04 | FGB-05 | FGB-06 | FGB-07 | FGB-08 | FGB-09 | FGB-10 | FGB-11 | FGB-12 | FGB-13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 53.13 | 51.99 | 51.07 | 51.18 | 52.23 | 52.07 | 52.81 | 50.17 | 52.39 | 50.17 | 51.41 | 51.29 | 50.27 |
TiO2 | 0.47 | 0.63 | 0.55 | 0.69 | 0.56 | 0.57 | 0.62 | 0.49 | 0.62 | 0.55 | 0.49 | 0.69 | 0.71 |
Al2O3 | 17.83 | 18.52 | 18.19 | 19.36 | 18.04 | 18.46 | 18.49 | 18.66 | 19.01 | 19.71 | 18.49 | 18.27 | 19.93 |
Fe2O3T | 7.78 | 8.35 | 9.33 | 8.75 | 8.73 | 9.16 | 8.88 | 7.82 | 8.31 | 8.51 | 9.35 | 9.62 | 8.77 |
MnO | 0.07 | 0.08 | 0.08 | 0.07 | 0.06 | 0.11 | 0.09 | 0.11 | 0.08 | 0.08 | 0.12 | 0.08 | 0.09 |
MgO | 5.39 | 4.96 | 5.94 | 5.42 | 6.37 | 5.31 | 4.72 | 6.11 | 4.08 | 4.92 | 4.86 | 4.93 | 5.61 |
CaO | 10.86 | 10.92 | 10.17 | 10.43 | 9.85 | 9.32 | 9.44 | 11.29 | 10.83 | 10.98 | 10.64 | 10.33 | 10.42 |
Na2O | 2.25 | 2.79 | 2.76 | 2.27 | 2.29 | 2.71 | 2.56 | 2.75 | 2.78 | 2.69 | 2.43 | 2.57 | 2.83 |
K2O | 0.48 | 0.46 | 0.42 | 0.49 | 0.52 | 0.82 | 0.93 | 0.69 | 0.49 | 0.63 | 0.77 | 0.64 | 0.55 |
P2O5 | 0.29 | 0.18 | 0.21 | 0.18 | 0.22 | 0.18 | 0.19 | 0.23 | 0.21 | 0.18 | 0.18 | 0.22 | 0.19 |
LOI | 1.23 | 1.17 | 1.2 | 1.34 | 1.19 | 1.38 | 1.35 | 1.42 | 1.19 | 1.63 | 1.42 | 1.15 | 1.22 |
Total | 99.78 | 100.05 | 99.92 | 100.18 | 100.06 | 100.09 | 100.08 | 99.74 | 99.99 | 100.05 | 100.16 | 99.79 | 100.59 |
Mg# | 57.85 | 54.06 | 55.78 | 55.10 | 59.11 | 53.45 | 51.29 | 60.75 | 49.31 | 53.39 | 50.73 | 50.38 | 55.89 |
As | 3.9 | 2.7 | 2.5 | 2.1 | 2.7 | 1.8 | 1.3 | 2.1 | 1.6 | 1.3 | 1.7 | 2.3 | 1.9 |
Ba | 268 | 328 | 299 | 273 | 365 | 208 | 245 | 314 | 255 | 232 | 239 | 271 | 264 |
Co | 32 | 28 | 31 | 27 | 35 | 34 | 36 | 38 | 41 | 39 | 45 | 39 | 34 |
Cr | 199 | 138 | 144 | 208 | 202 | 218 | 197 | 191 | 123 | 157 | 143 | 182 | 174 |
Cu | 33 | 36 | 27 | 41 | 53 | 29 | 46 | 39 | 24 | 62 | 34 | 51 | 49 |
Ga | 15 | 16 | 16 | 15 | 15 | 21 | 19 | 17 | 16 | 18 | 16 | 15 | 17 |
Hf | 1.2 | 1.1 | 0.9 | 1 | 1.5 | 1.1 | 1.5 | 1.3 | 1.2 | 1.4 | 1.2 | 1.1 | 1.3 |
Nb | 5 | 5 | 4 | 2 | 4 | 5 | 4 | 4 | 5 | 6 | 4 | 5 | 4 |
Ni | 95 | 89 | 105 | 88 | 111 | 94 | 79 | 102 | 76 | 89 | 124 | 96 | 71 |
Pb | 4 | 2 | 3 | 3 | 4 | 6 | 4 | 5 | 4 | 7 | 5 | 5 | 3 |
Rb | 24 | 31 | 38 | 31 | 29 | 40 | 37 | 36 | 35 | 34 | 39 | 33 | 42 |
Sc | 21 | 27 | 19 | 28 | 24 | 25 | 26 | 28 | 27 | 29 | 26 | 27 | 24 |
Sr | 531 | 496 | 556 | 478 | 512 | 562 | 551 | 559 | 472 | 516 | 548 | 493 | 477 |
Ta | 0.5 | 0.4 | 1.2 | 0.6 | 0.8 | 0.4 | 0.5 | 0.4 | 0.3 | 0.6 | 0.5 | 0.4 | 0.7 |
Th | 2.1 | 1.7 | 1.8 | 1.5 | 1.9 | 1.8 | 2.2 | 2.1 | 2 | 2.2 | 2.3 | 1.9 | 1.7 |
U | 0.9 | 1.2 | 0.8 | 0.9 | 1.2 | 0.7 | 1.2 | 0.9 | 1.1 | 1.3 | 0.9 | 1.2 | 0.8 |
V | 182 | 194 | 197 | 193 | 185 | 218 | 169 | 184 | 178 | 201 | 193 | 159 | 145 |
Y | 8 | 10 | 9 | 8 | 11 | 12 | 14 | 9 | 13 | 11 | 9 | 12 | 10 |
Zn | 66 | 64 | 61 | 58 | 59 | 63 | 71 | 65 | 69 | 68 | 71 | 63 | 72 |
Zr | 82 | 77 | 76 | 81 | 83 | 101 | 78 | 65 | 98 | 67 | 49 | 93 | 69 |
La | 12.21 | - | 17.51 | - | 14.84 | 12.71 | - | 18.32 | 13.09 | - | - | 18.12 | 14.95 |
Ce | 27.30 | - | 29.14 | - | 23.04 | 28.28 | - | 21.12 | 24.47 | - | - | 31.69 | 27.95 |
Pr | 2.91 | - | 3.04 | - | 2.85 | 3.15 | - | 2.91 | 2.78 | - | - | 3.12 | 3.01 |
Nd | 14.37 | - | 14.45 | - | 13.25 | 13.69 | - | 12.97 | 14.65 | - | - | 13.82 | 12.66 |
Sm | 3.14 | - | 3.28 | - | 3.78 | 2.98 | - | 3.09 | 2.99 | - | - | 3.48 | 3.72 |
Eu | 1.07 | - | 0.97 | - | 0.95 | 1.05 | - | 1.06 | 1.11 | - | - | 1.03 | 0.99 |
Gd | 3.22 | - | 3.86 | - | 3.45 | 3.41 | - | 3.08 | 2.78 | - | - | 3.09 | 4.02 |
Tb | 0.55 | - | 0.62 | - | 0.49 | 0.52 | - | 0.46 | 0.57 | - | - | 0.43 | 0.53 |
Dy | 2.56 | - | 2.59 | - | 2.81 | 2.49 | - | 2.61 | 3.01 | - | - | 2.81 | 3.11 |
Ho | 0.69 | - | 0.55 | - | 0.58 | 0.65 | - | 0.67 | 0.61 | - | - | 0.63 | 0.78 |
Er | 1.59 | - | 1.67 | - | 1.46 | 1.57 | - | 1.44 | 1.38 | - | - | 1.46 | 1.61 |
Tm | 0.22 | - | 0.24 | - | 0.31 | 0.27 | - | 0.29 | 0.23 | - | - | 0.24 | 0.31 |
Yb | 1.57 | - | 1.48 | - | 1.51 | 1.68 | - | 1.53 | 1.42 | - | - | 1.55 | 1.33 |
Lu | 0.21 | - | 0.23 | - | 0.2 | 0.23 | - | 0.24 | 0.19 | - | - | 0.23 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Abart, R.; Sayyed, M.I.; Hauzenberger, C.A.; Sami, M. Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System. Minerals 2023, 13, 10. https://doi.org/10.3390/min13010010
Ali S, Abart R, Sayyed MI, Hauzenberger CA, Sami M. Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System. Minerals. 2023; 13(1):10. https://doi.org/10.3390/min13010010
Chicago/Turabian StyleAli, Shehata, Rainer Abart, M. I. Sayyed, Christoph A. Hauzenberger, and Mabrouk Sami. 2023. "Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System" Minerals 13, no. 1: 10. https://doi.org/10.3390/min13010010
APA StyleAli, S., Abart, R., Sayyed, M. I., Hauzenberger, C. A., & Sami, M. (2023). Petrogenesis of the Wadi El-Faliq Gabbroic Intrusion in the Central Eastern Desert of Egypt: Implications for Neoproterozoic Post-Collisional Magmatism Associated with the Najd Fault System. Minerals, 13(1), 10. https://doi.org/10.3390/min13010010