Insights into Alpine-Karst-Type Tufa Deposits in Geological Environmental Records: A Case Study of the Calcareous Tufa Profile of the Jiuzhaigou Natural Reserve on the Eastern Margin of the Tibetan Plateau
Abstract
:1. Introduction
2. Geographic Setting
3. Materials and Methods
3.1. Sample Collection
3.2. Analytical Methods
4. Data Analysis
4.1. Calcareous Tufa Mineral Phase Test
4.2. Calcareous Tufa Radiocarbon Dating
4.3. Thin Section Observation
4.4. Results of the Major/Trace Element Analysis of Calcareous Tufa
4.5. Calcareous Tufa Carbon-Oxygen Isotope Test
5. Discussion
5.1. Response of Tufa Deposition to Paleohydrological Changes and Glaciation
5.2. Response of Calcareous Tufa Deposition to Tectonic Activity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, J.E.; Pedley, M.; Dennis, P.F. Palaeoenvironmental records in Holocene Spanish tufas; a stable isotope approach in search of reliable climatic archives. Sedimentology 2000, 47, 961–978. [Google Scholar] [CrossRef]
- Andrews, J.E. Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review. Earth-Sci. Rev. 2006, 75, 85–104. [Google Scholar] [CrossRef]
- Viles, H.A.; Taylor, M.P.; Nicoll, K.; Neumann, S.; Nash, D.J.; Bullard, J.; North, C.P. Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukluft Mountains, Namibia. Sediment. Geol. 2007, 195, 39–53. [Google Scholar] [CrossRef]
- Bertini, A.; Minissale, A.; Ricci, M. Use of Quaternary travertines of central-southern Italy as archives of paleoclimate, paleohydrology and neotectonics. Alp. Mediterr. Quat. 2008, 21, 99–112. [Google Scholar]
- Capezzuoli, E.; Gandin, A.; Sandrelli, F.; Pedley, H.M.; Rogerson, M. Calcareous tufa as indicators of climatic variability; a case study from southern Tuscany (Italy). Geol. Soc. Spec. Publ. 2010, 336, 263–281. [Google Scholar] [CrossRef]
- Cremaschi, M.; Zerboni, A.; Spoetl, C.; Felletti, F. The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya); an early Holocene palaeoclimate archive in the central Sahara. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 287, 81–94. [Google Scholar] [CrossRef]
- Dabkowski, J. High potential of calcareous tufas for integrative multidisciplinary studies and prospects for archaeology in Europe. J. Archaeol. Sci. 2014, 52, 72–83. [Google Scholar] [CrossRef]
- Pentecost, A. The Quaternary travertine deposits of Europe and Asia Minor. Quat. Sci. Rev. 1995, 14, 1005–1028. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; You, C.; Wan, N.; Sun, H. Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China; implications for paleoclimate reconstruction. Environ. Geol. 2006, 51, 257–265. [Google Scholar] [CrossRef]
- Luigi, D.F.; Claudio, F.; Andrea, B.; Erlisiana, A.; Mauro, B.; Michele, S.; Paola, T. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth Sci. Rev. 2013, 123, 35–52. [Google Scholar] [CrossRef]
- Gradzinski, M.; Wroblewski, W.; Dulinski, M.; Hercman, H.; Capezzuoli, E.; Capezzuoli, E. Earthquake-affected development of a travertine ridge. Sedimentology 2014, 61, 238–263. [Google Scholar] [CrossRef]
- Kokh, S.N.; Sokol, E.V.; Deev, E.V.; Ryapolova, Y.M.; Rusanov, G.G.; Tomilenko, A.A.; Bul’Bak, T.A. Post-late glacial calcareous tufas from the Kurai fault zone (southeastern Gorny Altai, Russia). Sediment. Geol. 2017, 355, 1–19. [Google Scholar] [CrossRef]
- Priestley, S.C.; Karlstrom, K.E.; Love, A.J.; Crossey, L.J.; Polyak, V.J.; Asmerom, Y.; Meredith, K.T.; Crow, R.; Keppel, M.N.; Habermehl, M.A. Uranium series dating of Great Artesian Basin travertine deposits: Implications for palaeohydrogeology and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 490, 163–177. [Google Scholar] [CrossRef]
- Meyer, M.C.; Aldenderfer, M.S.; Wang, Z.; Hoffmann, D.L.; Dahl, J.A.; Degering, D.; Haas, W.R.; Schluetz, F. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science 2017, 357, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Andrea, S.; Paola, M.; Michele, S.; Paola, T.; Erlisiana, A.; Andrea, B.; Stefania, F.; Massimo, R.; Luca, T. The uplift of the Adriatic flank of the Apennines since the Middle Pleistocene: New insights from the Tronto River basin and the Acquasanta Terme Travertine (central Italy). Geomorphology 2020, 352, 106990. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, X.; Dong, F.; Enrico, C.; Alexander, I.M.; Du, J. Classification of Alpine-type travertine in Jiuzhaigou valley on the eastern margin of the Qinghai-Tibet Plateau. Carsol. Sin. 2021, 40, 112–124. [Google Scholar] [CrossRef]
- Tye, G.J.; Sherriff, J.; Candy, I.; Coxon, P.; Palmer, A.; McClymont, E.L.; Schreve, D.C. The δ18O stratigraphy of the Hoxnian lacustrine sequence at Marks Tey, Essex, UK: Implications for the climatic structure of MIS 11 in Britain. J. Quat. Sci. 2016, 31, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, J.; Kano, A.; Oba, T.; Watanabe, T.; Sakai, S.; Seto, K. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan. Earth Planet. Sci. Lett. 2001, 192, 31–44. [Google Scholar] [CrossRef]
- Zidi, M.K.; Ben Ahmed, W.; Henchiri, M. Late Pleistocene Boulaaba travertine and calcareous tufa, Kasserine, Central Tunisia: Implications for North African spring-fed Ca-carbonates. Quatern. Int. 2022, 637, 57. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, J.; Yuan, D. Possibilities and problems associated with travertines and tufas in Quaternary studies: A case of the Tibetan Plateau. Chin. Sci. Bull. 2018, 63, 1012–1023. [Google Scholar] [CrossRef] [Green Version]
- Geological Survey of China University of Geosciences. The Instruction of Quaternary Geological and Geomorphologic Map of Qinghai-Tibetan Plateau and Its Adjacent Area; Geological Survey of China University of Geosciences: Wuhan, China, 2010. [Google Scholar]
- Niu, X.; Zheng, M.; Liu, X.; Qi, L. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau. Sci. Technol. Rev. 2017, 35, 59–64. [Google Scholar]
- Zhou, L. Characteristics of the Typical Hot Springs in the Central Tibet. Master’s Thesis, China University of Geosciences, Beijing, China, 2012. [Google Scholar]
- Zhou, X. On Periglacial Karst in the Minshan Mountains. Acta Geol. Sichuan 2013, 33, 479–487. [Google Scholar]
- Zentmyer, R.; Myrow, P.M.; Newell, D.L. Travertine deposits from along the South Tibetan Fault System near Nyalam, Tibet. Geol. Mag. 2008, 145, 753–765. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, H.; Baoying, L.; Xiangling, L.; Wenbing, Y.; Cheng, Z. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China; implications for the formation of biannual laminae in travertine and for climatic reconstruction. Chem. Geol. 2010, 273, 258–266. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, X.; Fang, B.; Li, T.; Tang, L.; Catto, N. U-series dating of the travertine depositing near the Rongma Hot Springs in northern Tibet, China, and its paleoclimatic implication. Quatern. Int. 2013, 298, 98–106. [Google Scholar] [CrossRef]
- Qin, J.; Han, P.; Che, X.; Yuan, G.; Fang, B.; Wang, G. Resuming the Holocene paleoclimate using δ18O and trace elements of travertine in Rongma area, Tibet. Earth Sci. Front. 2014, 21, 312–322. [Google Scholar] [CrossRef]
- Wang, Z.; Meyer, M.C.; Hoffmann, D.L. Sedimentology, petrography and early diagenesis of a travertine-colluvium succession from Chusang (southern Tibet). Sediment. Geol. 2016, 342, 218–236. [Google Scholar] [CrossRef]
- Wang, Z.; Meyer, M.C.; Gliganic, L.A.; Hoffmann, D.L.; May, J. Timing of fluvial terrace formation and concomitant travertine deposition in the upper Sutlej River (Tirthapuri, southwestern Tibet) and paleoclimatic implications. Quat. Sci. Rev. 2017, 169, 357–377. [Google Scholar] [CrossRef]
- Mischke, S.; Chengjun, Z. A laminated tufa carbonate from the mid Holocene of the Qilian Mountains and its potential for palaeoclimate inferences. Episodes 2008, 31, 401–407. [Google Scholar] [CrossRef]
- Guo, Y.; Ge, Y.; Cui, P.; Chen, X.; Mao, P.; Liu, T.; Zhou, L. Early and mid-Holocene hydroclimate change recorded in tufa deposits in the Jiuzhaigou gully, eastern Tibetan Plateau. Catena 2021, 196, 104834. [Google Scholar] [CrossRef]
- Lei, G.L.; Zhang, H.C.; Li, Z.Z.; Adam, M.H.; Zhu, Y.; Jiang, X.Y.; Chen, X.L.; Chang, F.Q.; Li, H.Y. Geochemical features and significance of shoreline tufa from a closed-basin lake ngangla ring tso in the western tibetan plateau. Quat. Sci. 2013, 33, 839–847. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Ustin, S.L.; Tang, Y.; Di, B.; Huang, C.; Qiao, X.; Peng, H.; Zhang, M.; Cai, Y. Basin-scale and travertine dam-scale controls on fluvial travertine, Jiuzhaigou, southwestern China. Geomorphology 2013, 180–181, 267–280. [Google Scholar] [CrossRef]
- Lugli, S.; Tang, Y.; Reghizzi, M.; Qiao, X.; Schreiber, B.C.; Deng, G. Seasonal Pattern In the High-Elevation Fluvial Travertine From the Jiuzhaigou National Nature Reserve, Sichuan, Southwestern China. J. Sediment. Res. 2017, 87, 253–271. [Google Scholar] [CrossRef]
- Bai, D.; Unsworth, M.J.; Meju, M.A.; Ma, X.; Teng, J.; Kong, X.; Sun, Y.; Sun, J.; Wang, L.; Jiang, C.; et al. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nat. Geosci. 2010, 3, 358–362. [Google Scholar] [CrossRef]
- Yi, G.; Long, F.; Liang, M.; Zhang, H.; Zhao, M.; Ye, Y.; Zhang, Z.; Qi, Y.; Wang, S.; Gong, Y.; et al. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan. Chin. J. Geophys. 2017, 60, 4083–4097. [Google Scholar]
- Gan, J.; Liu, M.; Huang, R.; Fan, C.; Li, Q.; Wang, C. A study of hydrological cycle in the Jiuzhaigou core scenic area. Hydrogeol. Eng. Geol. 2010, 37, e39. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Y.; Pei, X.; Ouyang, C.; Du, J.; Gianvito, S. Dam-break dynamics at Huohua Lake following the 2017 Mw 6.5 Jiuzhaigou earthquake in Sichuan, China. Eng. Geol. 2021, 289, 106145. [Google Scholar] [CrossRef]
- Yao, T.; Qing, D.; Tian, L.; Jiao, K.; Yang, Z.; Xie, C.; Thompson, L.G. Changes of temperature and precipitation over the Qinghai-Tibet Plateau during the past 2ka—Guliya Ice Core record. Sci. Sin. Terrae 1996, 26, 348–353. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Kautz, C.Q.; Martin, C.E. Chemical and physical weathering in New Zealand’s Southern Alps monitored by bedload sediment major element composition. Appl. Geochem. 2007, 22, 1715–1735. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, B. Fundamentals of Quantitative Geography, 2nd ed.; Higher Education Press: Beijing, China, 2007; p. 202. [Google Scholar]
- Xu, J. Mathematical Methods in Contemporary Geography, 3rd ed.; Higher Education Press: Beijing, China, 2017; p. 432. [Google Scholar]
- Yin, G.; Fan, X.; Guo, J.; Yang, J. Isotope Tracer on Water Cycly System in Jiuzaigou, Sichuan. Acta Geogr. Sin. 2000, 55, 487–494. [Google Scholar] [CrossRef]
- Yin, G.; Ni, S.; Zhang, Q. Deuterium excess parameter and geohydrology significance-Taking the geohydrology researches in Jiuzaigou and Yele, Sichuan for example. J. Chengdu Univ. Technol. 2001, 28, 251–254. [Google Scholar]
- Dykoski, C.A.; Edwards, R.L.; Cheng, H.; Yuan, D.; Cai, Y.; Zhang, M.; Lin, Y.; Qing, J.; An, Z.; Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 2005, 233, 71–86. [Google Scholar] [CrossRef]
- Hu, C.; Henderson, G.M.; Huang, J.; Xie, S.; Sun, Y.; Johnson, K.R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 2008, 266, 221–232. [Google Scholar] [CrossRef]
- Changjiang Water Resources Commission of the Ministry of Water Resources. Compilation of 2000-Year Flood Historical Data in Sichuan; Cultural Relics Press: Beijing, China, 1993; p. 594. [Google Scholar]
- Liu, Z.; Li, Q.; Sun, H.; Wang, J. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects. J. Hydrol. 2007, 337, 207–223. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z. Wet–dry seasonal and spatial variations in the δ13C and δ18O values of the modern endogenic travertine at Baishuitai, Yunnan, SW China and their paleoclimatic and paleoenvironmental implications. Geochim. Cosmochim. Acta 2010, 74, 1016–1029. [Google Scholar] [CrossRef]
- Wang, H.; Yan, H.; Liu, Z. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations. Geochim. Cosmochim. Acta 2014, 125, 34–48. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Z.; Sun, H. Effect of in-stream physicochemical processes on the seasonal variations in δ13C and δ18O values in laminated travertine deposits in a mountain stream channel. Geochim. Cosmochim. Acta 2017, 202, 179–189. [Google Scholar] [CrossRef]
- Li, H.; Zhou, X.; Li, G. Thermoluminescence age of sedimentary calcium carbonate in late geological history. Chin. Sci. Bull. 1988, 33, 775–778. [Google Scholar]
- Dong, F. China’s travertine-the most natural asset in karst landscape worthy of world research and protection. Carsol. Sin. 2021, 40, 1–3. [Google Scholar]
- Ocampo, J.; Klinger, J. Adsorption of N2 and CO2 on ice. J. Colloid Interface Sci. 1982, 86, 377–383. [Google Scholar] [CrossRef]
- Qian, Z.; Yuan, Z.; Xu, J. Climatic characteristics of the last glacial period of Quaternary and Holocene climate recorded by oxygen and carbon isotopes in YaO2 hole, Yanhai, Yimeng, Inner Mongolia. Geol. Chem. Miner. 2002, 24, 96–100. [Google Scholar] [CrossRef]
- Pazzaglia, F.; Barchi, M.R.; Buratti, N.; Cherin, M.; Pandolfi, L.; Ricci, M. Pleistocene calcareous tufa from the Ellera basin (Umbria, central Italy) as a key for an integrated paleoenvironmental and tectonic reconstruction. Quatern. Int. 2013, 292, 59–70. [Google Scholar] [CrossRef]
- Martini, I.; Capezzuoli, E. Interdigitated fluvial clastic deposits and calcareous tufa testifying an uplift of the catchment area: An example from the Pianizzoli area (southern Tuscany, Italy). Sediment. Geol. 2014, 299, 60–73. [Google Scholar] [CrossRef]
- Peng, G.; Jiao, W. Sedimentary age of travertine sinter in Jianchuan and new activity of Jianchuan fault. J. Seismol. Res. 1990, 13, 166–172. [Google Scholar]
- Yuan, D.; Liu, Z.; Lin, Y.; Shen, J.; He, S.; Xu, S. Karst Dynamical System in China; Geology Press: Beijing, China, 2002; p. 275. [Google Scholar]
- China Earthquake Administration. Catalogue of Historical Strong Earthquakes in China; Seismological Press: Beijing, China, 1995. [Google Scholar]
- Sun, C. Sichuan Earthquake Full Record; Sichuan People’s Publishing House: Chengdu, China, 2010. [Google Scholar]
- Zheng, X.; Tang, Y.; Du, J.; Lugli, S.; Xiao, Y.; Yang, Q.; Song, H.; Qiao, X. Enhanced soil erosion threatens fluvial tufa landscapes after an Ms 7.0 earthquake in the Jiuzhaigou World Heritage Site, southwestern China. Sci. Total Environ. 2022, 848, 157632. [Google Scholar] [CrossRef]
- Dang, Z.; Ren, J.; An, C.; Dai, Q.; Dong, F.; Deng, Y.; Yang, Q.; Zhuo, M. Effect of Ms 7.0 earthquake on travertine landscapes and hydrochmistry of Jiuzhaigou core scenic spots. Carsol. Sin. 2019, 38, 186–192. [Google Scholar]
- Qiao, X.; Xiao, Y.; Du, J.; Tang, Y.; Xiao, W.; Zheng, X.; Zhang, M. Tufa Landscapes in the Key Scenic Areas of the Jiuzhaigou Natural World Heritage Site: A ritical Review and Future Research Needs. Earth Environ. 2022, 50, 202–218. [Google Scholar]
- Hosono, T.; Yamada, C.; Shibata, T.; Tawara, Y.; Wang, C.Y.; Manga, M.; Rahman, A.T.M.S.; Shimada, J. Coseismic Groundwater Drawdown Along Crustal Ruptures During the 2016 Mw 7.0 Kumamoto Earthquake. Water Resour. Res. 2019, 55, 5891–5903. [Google Scholar] [CrossRef]
- Ichiyanagi, K.; Imatsu, M.; Ide, K.; Shimada, J. Effects on fluvial discharges of the 2016 Kumamoto earthquakes, Japan. J. Hydrol. 2020, 583, 124600. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, F.; Dong, F.; Tian, F.; Zhao, X.; Dai, Q.; Li, Q.; Zhu, Y.; Wang, Y. Sedimentary evolution of the Dawan travertines and their geological environmental significance, Huanglong, China. Depos. Rec. 2022, 8, 251–265. [Google Scholar] [CrossRef]
Sample Number | Quartz (%) | Calcite (%) | Clinochlore (%) | Albite (%) | Muscovite (%) | Montmorillonite (%) | Kaolinite (%) |
---|---|---|---|---|---|---|---|
14-2-2 | 1.8 | 98.2 | - | - | - | - | - |
14-2-4 | 2.0 | 98 | - | - | - | - | - |
14-2-5 | 4.4 | 95.6 | - | - | - | - | - |
14-2-11 | 1.8 | 98.2 | - | - | - | - | - |
14-2-22 | 3.4 | 96.6 | - | - | - | - | - |
14-2-23 | 27.5 | 4.8 | 10.8 | 3.3 | 43.8 | 4.6 | 5.2 |
14-2-26 | 8.9 | 74.3 | - | 0.4 | 11.6 | - | 4.8 |
14-2-30 | 2.1 | 97.9 | - | - | - | - | - |
14-2-34 | 5.3 | 93.2 | - | 1.5 | - | - | - |
14-2-35 | 20.9 | 45.9 | 4.7 | 3.8 | 19.1 | 1.8 | 3.8 |
14-2-37 | 3 | 81.1 | - | - | 9.4 | - | 6.5 |
14-2-42 | 11.7 | 65.8 | - | 1.6 | 18.3 | - | 2.6 |
14-2-50 | 4.1 | 95.9 | - | - | - | - | - |
Sample Number | K (%) | Na (%) | Ca (%) | Mg (%) | Al (%) | K/Ca | K/Al | Na/Al | Mg/Al | Ca/Al | Al2O3 (%) | K2O (%) | Na2O (%) | CaO (%) | MgO (%) | CIA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14-2-1 | 0.05 | 0.06 | 38.5 | 0.24 | 0.19 | 0.13 | 0.26 | 0.32 | 1.26 | 202.63 | 0.32 | 0.07 | 0.08 | 54.0 | 0.37 | 58.18 |
14-2-2 | 0.09 | 0.07 | 37.5 | 0.25 | 0.32 | 0.24 | 0.28 | 0.22 | 0.78 | 117.19 | 0.57 | 0.11 | 0.09 | 52.8 | 0.42 | 66.28 |
14-2-3 | 0.09 | 0.07 | 38.5 | 0.26 | 0.31 | 0.23 | 0.29 | 0.23 | 0.84 | 124.19 | 0.53 | 0.11 | 0.09 | 53.7 | 0.42 | 64.63 |
14-2-4 | 0.17 | 0.07 | 37.0 | 0.28 | 0.61 | 0.46 | 0.28 | 0.11 | 0.46 | 60.66 | 1.14 | 0.21 | 0.09 | 52.1 | 0.48 | 74.51 |
14-2-5 | 0.21 | 0.09 | 36.9 | 0.30 | 0.75 | 0.57 | 0.28 | 0.12 | 0.40 | 49.20 | 1.37 | 0.26 | 0.12 | 50.6 | 0.50 | 73.26 |
14-2-6 | 0.15 | 0.07 | 38.1 | 0.27 | 0.53 | 0.39 | 0.28 | 0.13 | 0.51 | 71.89 | 0.97 | 0.18 | 0.09 | 52.4 | 0.43 | 72.93 |
14-2-7 | 0.09 | 0.06 | 37.6 | 0.25 | 0.30 | 0.24 | 0.30 | 0.20 | 0.83 | 125.33 | 0.56 | 0.11 | 0.08 | 53.7 | 0.42 | 67.47 |
14-2-8 | 0.16 | 0.07 | 36.9 | 0.28 | 0.55 | 0.43 | 0.29 | 0.13 | 0.51 | 67.09 | 1.03 | 0.19 | 0.09 | 52.4 | 0.47 | 73.57 |
14-2-9 | 0.26 | 0.09 | 35.3 | 0.31 | 0.98 | 0.74 | 0.27 | 0.09 | 0.32 | 36.02 | 1.81 | 0.31 | 0.12 | 50.2 | 0.51 | 76.69 |
14-2-10 | 0.18 | 0.08 | 36.9 | 0.29 | 0.71 | 0.49 | 0.25 | 0.11 | 0.41 | 51.97 | 1.27 | 0.22 | 0.11 | 51.7 | 0.48 | 74.27 |
14-2-11 | 0.12 | 0.07 | 38.8 | 0.28 | 0.48 | 0.31 | 0.25 | 0.15 | 0.58 | 80.83 | 0.85 | 0.15 | 0.09 | 53.1 | 0.45 | 72.03 |
14-2-12 | 0.64 | 0.16 | 31.7 | 0.45 | 2.55 | 2.02 | 0.25 | 0.06 | 0.18 | 12.43 | 4.76 | 0.77 | 0.22 | 42.7 | 0.75 | 79.73 |
14-2-13 | 0.22 | 0.08 | 36.8 | 0.29 | 0.85 | 0.60 | 0.26 | 0.09 | 0.34 | 43.29 | 1.53 | 0.26 | 0.11 | 50.9 | 0.48 | 76.12 |
14-2-14 | 0.16 | 0.07 | 35.7 | 0.27 | 0.61 | 0.45 | 0.26 | 0.11 | 0.44 | 58.52 | 1.13 | 0.20 | 0.09 | 52.4 | 0.46 | 74.83 |
14-2-15 | 0.27 | 0.09 | 35.9 | 0.30 | 0.92 | 0.75 | 0.29 | 0.10 | 0.33 | 39.02 | 1.73 | 0.32 | 0.12 | 50.3 | 0.50 | 75.55 |
14-2-16 | 0.26 | 0.09 | 35.7 | 0.31 | 0.91 | 0.73 | 0.29 | 0.10 | 0.34 | 39.23 | 1.61 | 0.31 | 0.12 | 50.0 | 0.51 | 74.54 |
14-2-17 | 0.13 | 0.07 | 36.2 | 0.26 | 0.45 | 0.36 | 0.29 | 0.16 | 0.58 | 80.44 | 0.83 | 0.16 | 0.09 | 52.0 | 0.43 | 70.94 |
14-2-18 | 0.09 | 0.06 | 37.7 | 0.24 | 0.31 | 0.24 | 0.29 | 0.19 | 0.77 | 121.61 | 0.54 | 0.11 | 0.08 | 53.3 | 0.39 | 66.67 |
14-2-19 | 0.17 | 0.08 | 36.8 | 0.26 | 0.57 | 0.46 | 0.30 | 0.14 | 0.46 | 64.56 | 1.04 | 0.20 | 0.11 | 51.7 | 0.43 | 71.23 |
14-2-20 | 0.23 | 0.08 | 36.0 | 0.28 | 0.78 | 0.64 | 0.29 | 0.10 | 0.36 | 46.15 | 1.43 | 0.27 | 0.11 | 50.7 | 0.47 | 74.48 |
14-2-21 | 0.15 | 0.07 | 37.6 | 0.26 | 0.51 | 0.40 | 0.29 | 0.14 | 0.51 | 73.73 | 0.92 | 0.18 | 0.09 | 52.5 | 0.43 | 71.88 |
14-2-22 | 0.35 | 0.09 | 33.9 | 0.30 | 1.21 | 1.03 | 0.29 | 0.07 | 0.25 | 28.02 | 2.27 | 0.43 | 0.12 | 48.7 | 0.51 | 77.21 |
14-2-23 | 1.06 | 0.35 | 4.64 | 0.62 | 3.52 | 22.84 | 0.30 | 0.10 | 0.18 | 1.32 | 7.47 | 0.70 | 0.47 | 6.80 | 1.14 | 76.30 |
14-2-24 | 0.60 | 0.23 | 28.8 | 0.40 | 1.98 | 2.08 | 0.30 | 0.12 | 0.20 | 14.55 | 3.74 | 0.80 | 0.31 | 41.5 | 0.69 | 73.91 |
14-2-25 | 0.67 | 0.34 | 28.4 | 0.45 | 2.24 | 2.36 | 0.30 | 0.15 | 0.20 | 12.68 | 4.17 | 0.63 | 0.46 | 39.2 | 0.78 | 70.80 |
14-2-26 | 0.52 | 0.23 | 30.1 | 0.40 | 1.75 | 1.73 | 0.30 | 0.13 | 0.23 | 17.20 | 3.23 | 0.34 | 0.31 | 42.5 | 0.69 | 72.10 |
14-2-27 | 0.28 | 0.11 | 34.3 | 0.33 | 0.96 | 0.82 | 0.29 | 0.11 | 0.34 | 35.73 | 1.81 | 0.24 | 0.15 | 49.5 | 0.56 | 73.88 |
14-2-28 | 0.20 | 0.07 | 36.1 | 0.30 | 0.67 | 0.55 | 0.30 | 0.10 | 0.45 | 53.88 | 1.22 | 0.20 | 0.09 | 51.2 | 0.48 | 74.39 |
14-2-29 | 0.16 | 0.07 | 37.5 | 0.29 | 0.55 | 0.43 | 0.29 | 0.13 | 0.53 | 68.18 | 0.99 | 0.26 | 0.09 | 52.3 | 0.48 | 72.26 |
14-2-30 | 0.22 | 0.08 | 36.3 | 0.30 | 0.76 | 0.61 | 0.29 | 0.11 | 0.39 | 47.76 | 1.39 | 0.70 | 0.11 | 51.2 | 0.51 | 74.33 |
14-2-31 | 0.29 | 0.10 | 34.1 | 0.31 | 1.00 | 0.85 | 0.29 | 0.10 | 0.31 | 34.10 | 1.88 | 0.35 | 0.13 | 49.2 | 0.53 | 75.50 |
14-2-32 | 0.26 | 0.10 | 35.8 | 0.31 | 0.90 | 0.73 | 0.29 | 0.11 | 0.34 | 39.78 | 1.64 | 0.31 | 0.13 | 50.3 | 0.53 | 74.21 |
14-2-33 | 0.27 | 0.09 | 36.2 | 0.32 | 0.95 | 0.75 | 0.28 | 0.09 | 0.34 | 38.11 | 1.74 | 0.33 | 0.12 | 50.0 | 0.51 | 75.32 |
14-2-34 | 0.39 | 0.12 | 33.6 | 0.35 | 1.36 | 1.16 | 0.29 | 0.09 | 0.26 | 24.71 | 2.58 | 0.48 | 0.16 | 48.0 | 0.60 | 76.33 |
14-2-35 | 1.16 | 0.44 | 16.15 | 0.64 | 3.83 | 7.18 | 0.30 | 0.11 | 0.17 | 4.22 | 7.52 | 1.44 | 0.59 | 22.7 | 1.16 | 74.16 |
14-2-36 | 0.38 | 0.14 | 33.3 | 0.36 | 1.24 | 1.14 | 0.31 | 0.11 | 0.29 | 26.85 | 2.31 | 0.46 | 0.19 | 46.9 | 0.61 | 73.33 |
14-2-37 | 0.28 | 0.11 | 35.2 | 0.32 | 0.91 | 0.80 | 0.31 | 0.12 | 0.35 | 38.68 | 1.67 | 0.34 | 0.15 | 49.3 | 0.53 | 72.29 |
14-2-38 | 0.28 | 0.10 | 34.5 | 0.32 | 0.93 | 0.81 | 0.30 | 0.11 | 0.34 | 37.10 | 1.69 | 0.34 | 0.13 | 48.8 | 0.52 | 73.80 |
14-2-39 | 0.30 | 0.09 | 34.5 | 0.32 | 0.97 | 0.87 | 0.31 | 0.09 | 0.33 | 35.57 | 1.84 | 0.37 | 0.12 | 49.4 | 0.55 | 75.10 |
14-2-40 | 0.82 | 0.31 | 17.55 | 0.55 | 2.74 | 4.67 | 0.30 | 0.11 | 0.20 | 6.41 | 5.58 | 1.05 | 0.32 | 25.9 | 1.02 | 76.75 |
14-2-41 | 0.71 | 0.27 | 20.9 | 0.51 | 2.39 | 3.40 | 0.30 | 0.11 | 0.21 | 8.74 | 4.67 | 0.88 | 0.36 | 30.3 | 0.91 | 74.48 |
14-2-42 | 0.69 | 0.28 | 23.2 | 0.50 | 2.31 | 2.97 | 0.30 | 0.12 | 0.22 | 10.04 | 4.47 | 0.86 | 0.38 | 33.4 | 0.88 | 73.40 |
14-2-43 | 0.49 | 0.19 | 29.6 | 0.43 | 1.65 | 1.66 | 0.30 | 0.12 | 0.26 | 17.94 | 3.08 | 0.60 | 0.26 | 42.2 | 0.75 | 73.33 |
14-2-44 | 0.40 | 0.16 | 31.4 | 0.39 | 1.34 | 1.27 | 0.30 | 0.12 | 0.29 | 23.43 | 2.53 | 0.49 | 0.22 | 45.2 | 0.69 | 73.12 |
14-2-45 | 0.20 | 0.10 | 36.3 | 0.33 | 0.69 | 0.55 | 0.29 | 0.14 | 0.48 | 52.61 | 1.26 | 0.24 | 0.13 | 51.0 | 0.57 | 71.59 |
14-2-46 | 0.18 | 0.08 | 33.7 | 0.32 | 0.62 | 0.53 | 0.29 | 0.13 | 0.52 | 54.35 | 1.13 | 0.22 | 0.11 | 50.5 | 0.56 | 71.97 |
14-2-47 | 0.21 | 0.10 | 33.6 | 0.34 | 0.75 | 0.63 | 0.28 | 0.13 | 0.45 | 44.80 | 1.38 | 0.26 | 0.13 | 49.6 | 0.60 | 72.63 |
14-2-48 | 0.08 | 0.05 | 36.4 | 0.30 | 0.27 | 0.22 | 0.30 | 0.19 | 1.11 | 134.81 | 0.45 | 0.09 | 0.07 | 52.3 | 0.49 | 66.18 |
14-2-49 | 0.07 | 0.06 | 35.8 | 0.28 | 0.25 | 0.20 | 0.28 | 0.24 | 1.12 | 143.20 | 0.44 | 0.09 | 0.08 | 52.7 | 0.46 | 63.77 |
14-2-50 | 0.11 | 0.08 | 34.0 | 0.30 | 0.37 | 0.32 | 0.30 | 0.22 | 0.81 | 91.89 | 0.70 | 0.14 | 0.11 | 50.8 | 0.52 | 66.04 |
Element | K | Na | Ca | Mg | Al | CIA | K/Ca | K/Al | Na/Al | Ca/Al | Mg/Al | δ18OV-SMOW | δ13CV-PDB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | 1 | ||||||||||||
Na | 0.962 ** | 1 | |||||||||||
Ca | −0.927 ** | −0.905 ** | 1 | ||||||||||
Mg | 0.975 ** | 0.955 ** | −0.954 ** | 1 | |||||||||
Al | 0.997 ** | 0.949 ** | −0.914 ** | 0.971 ** | 1 | ||||||||
CIA | 0.467 ** | 0.284 * | −0.320 * | 0.391 ** | 0.492 ** | 1 | |||||||
K/Ca | 0.727 ** | 0.670 ** | −0.86 6** | 0.727 ** | 0.716 ** | 0.248 | 1 | ||||||
K/Al | 0.289 * | 0.327 * | −0.333 * | 0.279 * | 0.231 | −0.024 | 0.211 | 1 | |||||
Na/Al | −0.418 ** | −0.237 | 0.261 | −0.342 * | −0.437 ** | −0.982 ** | −0.195 | −0.056 | 1 | ||||
Ca/Al | −0.722 ** | −0.621 ** | 0.573 ** | −0.671 ** | −0.728 ** | −0.869 ** | −0.384 ** | −0.231 | 0.865 ** | 1 | |||
Mg/Al | −0.677 ** | 0.569 ** | 0.501 ** | −0.594 ** | −0.687 ** | −0.890 | −0.342 * | −0.180 | 0.880 ** | 0.980 ** | 1 | ||
δ18OV-SMOW | −0.238 | −0.561 ** | 0.125 | −0.144 | −0.251 | −0.561 * | −0.172 | 0.278 | 0.515 | 0.291 | 0.445 | 1 | |
δ13CV-PDB | −0.529 | 0.046 | 0.384 | −0.425 | −0.529 | −0.481 | −0.506 | −0.138 | 0.488 | 0.461 | 0.566 * | 0.529 | 1 |
Sample Number | δ13CV-PDB (‰) | δ18OV-SMOW (‰) |
---|---|---|
14-2-2 | −0.13 | 17.88 |
14-2-5 | 0.30 | 18.19 |
14-2-11 | −0.24 | 17.91 |
14-2-22 | −0.28 | 17.91 |
14-2-23 | the content of carbonate is low enough to measure C isotope | the content of carbonate is low enough to measure O isotope |
14-2-26 | −0.33 | 18.00 |
14-2-30 | −0.35 | 18.09 |
14-2-34 | −0.21 | 18.01 |
14-2-35 | −0.62 | 18.09 |
14-2-37 | −0.36 | 18.62 |
14-2-42 | −0.10 | 17.78 |
14-2-50 | 0.50 | 19.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, C.; Zhao, X.; Jiang, Y.; Zhu, H.; Zhang, H.; Wang, F.; Li, Q.; Hou, K. Insights into Alpine-Karst-Type Tufa Deposits in Geological Environmental Records: A Case Study of the Calcareous Tufa Profile of the Jiuzhaigou Natural Reserve on the Eastern Margin of the Tibetan Plateau. Minerals 2023, 13, 120. https://doi.org/10.3390/min13010120
Lv C, Zhao X, Jiang Y, Zhu H, Zhang H, Wang F, Li Q, Hou K. Insights into Alpine-Karst-Type Tufa Deposits in Geological Environmental Records: A Case Study of the Calcareous Tufa Profile of the Jiuzhaigou Natural Reserve on the Eastern Margin of the Tibetan Plateau. Minerals. 2023; 13(1):120. https://doi.org/10.3390/min13010120
Chicago/Turabian StyleLv, Congcong, Xueqin Zhao, Yaoxi Jiang, Heyan Zhu, Hongmin Zhang, Fudong Wang, Qiongfang Li, and Keli Hou. 2023. "Insights into Alpine-Karst-Type Tufa Deposits in Geological Environmental Records: A Case Study of the Calcareous Tufa Profile of the Jiuzhaigou Natural Reserve on the Eastern Margin of the Tibetan Plateau" Minerals 13, no. 1: 120. https://doi.org/10.3390/min13010120
APA StyleLv, C., Zhao, X., Jiang, Y., Zhu, H., Zhang, H., Wang, F., Li, Q., & Hou, K. (2023). Insights into Alpine-Karst-Type Tufa Deposits in Geological Environmental Records: A Case Study of the Calcareous Tufa Profile of the Jiuzhaigou Natural Reserve on the Eastern Margin of the Tibetan Plateau. Minerals, 13(1), 120. https://doi.org/10.3390/min13010120