In Situ Argon Isotope Analyses of Chondrule-Forming Materials in the Allende Meteorite: A Preliminary Study for 40Ar/39Ar Dating Based on Cosmogenic 39Ar
Abstract
:1. Introduction
2. Sample Description and EMP Analytical Procedure
3. Petrography and Mineral Chemistry of Chondrules, Olivine Fragments, and CAIs
4. 40Ar/39Ar Method
5. Argon Isotope Analyses
5.1. Mass Spectrometer
5.2. In Situ Argon Isotope Analyses of Minerals in the Chondrules
5.3. Laser Step-Heating 40Ar/39Ar Analyses of Bulk Chondrules
6. Discussion
6.1. 40Ar/39Ar Age Determination Method Using the Cosmogenic 39Ar
6.2. K-Ar (40Ar/39Ar) Ages of Allende Meteorites
6.3. On 39Ar Recoil during High-Energy Cosmic Ray Irradiation
7. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Itaya, T.; Hyodo, H. Cosmogenic 39Ar in extraterrestrial materials: Application to 40Ar/39Ar dating. Bull. Inst. Front. Sci. Technol. Okayama Univ. Sci. 2022, 3, 33–35. [Google Scholar]
- Cho, Y.; Sugita, S.; Kameda, S.; Miura, Y.N.; Ishibashi, K.; Ohno, S.; Kamata, S.; Arai, T.; Morota, T.; Namiki, N.; et al. High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K–Ar dating of planetary surfaces. Spectrochim. Acta Part B 2015, 106, 28–35. [Google Scholar] [CrossRef]
- Cho, Y.; Sugita, S.; Miura, Y.N.; Okazaki, R.; Iwata, N.; Morota, T.; Kameda, S. An in-situ K–Ar isochron dating method for planetary landers using a spot-by-spot laser-ablation technique. Planet. Space Sci. 2016, 128, 14–29. [Google Scholar] [CrossRef]
- Takeshima, Y. Argon Isotope Analyses of Meteorite. Bachelor’s Thesis, Okayama University of Science, Okayama, Japan, 2001. (In Japanese). [Google Scholar]
- Kimura, M.; Ikeda, Y. Anhydrous alteration of Allende chondrules in the solar nebular II: Alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proc. NIPR Symp. Antarct. Meteor. 1995, 8, 123–138. [Google Scholar]
- Ikeda, Y.; Kimura, M. Anhydrous alteration of Allende chondrules in the solar nebular I: Description and alteration of chondrules with known oxygen-isotopic compositions. Proc. NIPR Symp. Antarct. Meteor. 1995, 8, 97–122. [Google Scholar]
- Takeshima, Y.; Gozu, C.; Tsujimori, T.; Hyodo, H. Fundamental research on the application of 40Ar-39Ar chronology to chondrite I: Significance of chlorine-bearing phase in Allende meteorite. Bull. Res. Inst. Nat. Sci. Okayama Univ. Sci. 2003, 29, 43–49, (In Japanese with English Abstract). [Google Scholar]
- Grossman, L.; Steele, I.M. Amoeboid olivine aggregates in the Allende meteorite. Geochim. Cosmochim. Acta 1976, 40, 149–155. [Google Scholar] [CrossRef]
- Allegre, C.J.; Manhes, G.; Gopel, C. The age of the earth. Geochim. Et Cosmochim. Acta 1995, 59, 1445–1456. [Google Scholar] [CrossRef]
- Connelly, J.N.; Amelin, Y.; Krot, A.N.; Bizzarro, M. Chronology of the solar system’s oldest solids. Astrophys. J. 2008, 675, L121–L124. [Google Scholar] [CrossRef] [Green Version]
- Martin, B.; Joel, A.B.; Henning, H. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature 2004, 431, 275–278. [Google Scholar]
- Connelly, J.N.; Bizzarro, M.; Krot, A.N.; Nordlund, A.; Wielandt, D.; Ivanova, M.A. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 2012, 338, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Doyle, P.M.; Jogo, K.; Nagashima, K.; Krot, A.N.; Wakita, S.; Ciesla, F.J.; Hutcheon, I.D. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 2015, 6, 7444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, Y.N.; Nagao, K.; Kimura, M. Noble gases in individual chondrules of the Allende CV3 chondrite. Meteorit. Planet. Sci. 2014, 49, 1037–1056. [Google Scholar] [CrossRef]
- Fruland, R.M.; King, A.E.; McKay, D.S. Allende dark inclusions. In Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1978; Volume 1, pp. 1305–1329. [Google Scholar]
- Johnson, C.A.; Prinz, M.; Weisberg, M.K.; Clayton, R.N.; Mayeda, T.K. Dark inclusions in Allende, Leoville, and Vigarano: Evidence for nebular oxidation of CV3 constituents. Geochim. Cosmochim. Acta 1990, 54, 819–831. [Google Scholar] [CrossRef]
- Kojima, T.; Tomeoka, K. Indicators of aqueous alteration and thermal metamorphism on the CV3 parent body: Microtextures of a dark inclusion from Allende. Geochim. Cosmochim. Acta 1996, 60, 2651–2666. [Google Scholar] [CrossRef]
- Buchanan, P.C.; Zolensky, M.E.; Reid, A.M. Petrology of Allende dark inclusions. Geochim. Cosmochim. Acta 1997, 61, 1733–1743. [Google Scholar] [CrossRef]
- Krot, A.N.; Petaev, M.I.; Meibom, A.; Keil, K. In situ growth of Ca-rich rims around Allende dark inclusions. Geochem. Int. 2000, 38, S351–S368. [Google Scholar]
- Sigurgeirsson, T. Age Dating of Young Basalts with the Potassium-Argon Method; Physical Laboratory Report; University of Iceland: Reykjavik, Iceland, 1962; 9p. (In Icelandic) [Google Scholar]
- Merrihue, C.M. Trace-element determinations and potassium-argon dating by mass spectroscopy of neutron-irradiated samples. Trans. Ameri. Geophys. Union 1965, 46, 125. [Google Scholar]
- Merrihue, C.M.; Turner, G. Potassium-argon dating by activation with fast neutrons. J. Geophys. Res. 1966, 71, 2852–2857. [Google Scholar] [CrossRef]
- Turner, G. The distribution of potassium and argon in chondrites. In Origin and Distribution of the Elements; Ahrens, L.H., Ed.; Pergamon Press: Oxford, UK, 1968; pp. 387–398. [Google Scholar]
- Turner, G. Argon 40-argon 39 dating—The optimization of irradiation parameters. Earth Planet. Sci. Lett. 1971, 10, 227–234. [Google Scholar] [CrossRef]
- Turner, G. 40Ar-39Ar and cosmic irradiation history of the Apollo 15 anorthosite, 15425. Earth Planet. Sci. Lett. 1972, 14, 169–175. [Google Scholar] [CrossRef]
- McDougall, I.; Harrison, T.M. Geochronology and Thermochronology by the 40Ar/39Ar Method; Oxford University Press: Oxford, UK, 1988; 212p. [Google Scholar]
- Takaoka, N. A low blank, metal system for rare gas analysis. Mass Spectrosc. 1976, 24, 73–86. [Google Scholar] [CrossRef]
- Nagao, K.; Itaya, T. K-Ar age determination. Mem. Geol. Soc. Japan 1988, 29, 5–21. [Google Scholar]
- Nagao, K.; Ogata, A. Noble Gases and 81Kr Terrestrial Ages of Antarctic Eucrites. J. Mass Spectrom. Soc. Jpn. 1989, 37, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Nagao, K.; Inoue, K.; Ogata, K. Primordial rare gases in Belgica-7904 (C2) carbonaceous chondrite. In Memoirs of National Institute of Polar Research; Special Issue 35; National Institute of Polar Research: Tachikawa, Japan, 1984; pp. 257–266. [Google Scholar]
- Nagao, K.; Ogata, K.; Takaoka, N.; Saito, K. Rare gas studies of sixteen stony meteorites from Antarctica. In Memoirs of National Institute of Polar Research; Special Issue 30; National Institute of Polar Research: Tachikawa, Japan, 1983; pp. 349–361. [Google Scholar]
- Fukumoto, H.; Nagao, K.; Matsuda, J. Noble gas studies on the host phase of high 3He/4He ratios in deep-sea sediments. Geochim. Cosmochim. Acta 1986, 50, 2245–2253. [Google Scholar] [CrossRef]
- Matsuda, J.; Nagao, K. Noble gas abundances in a deep-sea sediment core from eastern equatorial Pacific. Geochem. J. 1986, 20, 71–80. [Google Scholar] [CrossRef]
- Hyodo, H.; Matsuda, T.; Fukui, S.; Itaya, T. 40Ar/39Ar Age Determination of a Single Mineral Grain by Laser Step Heating. Bull. Res. Inst. Nat. Sci. Okayama Univ. Sci. 1994, 20, 63–67. [Google Scholar]
- Hyodo, H. Laser Probe 40Ar/39Ar dating: History and development from a technical perspective. Gondwana Res. 2008, 14, 609–616. [Google Scholar] [CrossRef]
- Gouzu, C.; Itaya, T.; Hyodo, H.; Matsuda, T. Excess 40Ar-free phengite in ultrahigh-pressure metamorphic rocks from the Lago di Cignana area, Western Alps. Lithos 2006, 92, 418–430. [Google Scholar] [CrossRef]
- Nuong, N.D.; Itaya, T.; Hyodo, H.; Yokoyama, K. K-Ar and 40Ar/39Ar phengite ages of Sanbagawa schist clasts from the Kuma Group, central Shikoku, SW Japan. Island Arc. 2009, 18, 282–292. [Google Scholar] [CrossRef]
- Itaya, T.; Hyodo, H.; Uruno, K.; Mikoshiba, M.-U. Ultra-high excess argon in kyanites: Implications for ultra-high pressure metamorphism in Northern Japan. Gondwana Res. 2005, 8, 617–621. [Google Scholar] [CrossRef]
- Itaya, T.; Hyodo, H.; Tsujimori, T.; Wallis, S.; Aoya, M.; Kawakami, T.; Gouzu, C. Regional-Scale Excess Ar wave in a Barrovian type metamorphic belt, eastern Tibetan Plateau. Island Arc. 2009, 18, 293–305. [Google Scholar] [CrossRef]
- Itaya, T.; Hyodo, H.; Imayama, T.; Groppo, C. Laser step-heating 40Ar/39Ar analyses of biotites from meta-granites in the UHP Brossasco-Isasca Unit of Dora-Maira Massif, Italy. J. Mineral. Petrol. Sci. 2018, 113, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Hanyu, T.; Kawabata, H.; Tatsumi, Y.; Kimura, J.; Hyodo, H.; Sato, K.; Miyazaki, T.; Chang, Q.; Hirahara, Y.; Takahashi, T.; et al. Isotope evolution in the HIMU reservoir beneath St. Helena: Implications for the mantle recycling of U and Th. Geochim. Cosmochim. Acta 2014, 143, 232–252. [Google Scholar] [CrossRef]
- Katoh, S.; Beyene, Y.; Itaya, T.; Hyodo, H.; Hyodo, M.; Yagi, K.; Gouzu, C.; WoldeGabriel, G.; Hart, W.K.; Ambrose, S.H.; et al. New geological and palaeontological age constraint for the gorilla–human lineage split. Nature 2016, 530, 215–220. [Google Scholar] [CrossRef]
- Miki, M.; Seki, H.; Yamamoto, Y.; Gouzu, C.; Hyodo, H.; Uno, K.; Otofuji, Y. Paleomagnetism, paleointensity and geochronology of a Proterozoic dolerite dyke from southern West Greenland. J. Geodyn. 2020, 139, 101752. [Google Scholar] [CrossRef]
- Gobel, R.; Begemann, F.; Ott, T. On neutron-induced and other noble gases in Allende inclusions. Gechimica Cosmochim. Acta 1982, 46, 1777–1792. [Google Scholar] [CrossRef]
- Roddick, J.C. High precision intercalibration of 40Ar-39Ar standards. Geochim. Cosmochim. Acta 1983, 47, 887–898. [Google Scholar] [CrossRef]
- Hyodo, H.; Kim, S.; Itaya, T.; Matsuda, T. Homogeneity of neutron flux during irradiation for 40Ar/39Ar age dating in the research reactor at Kyoto University. J. Mineral. Petrol. Sci. 1999, 94, 329–337. [Google Scholar] [CrossRef]
- Hyodo, H.; Itaya, T.; Matsuda, T. Temperature measurement of small minerals and its precision using Laser heating. Bull. Res. Inst. Nat. Sci. Okayama Univ. Sci. 1995, 21, 3–6, (In Japanese with English Abstract). [Google Scholar]
- Taylor, L.A.; Shervais, J.W.; Hunter, R.H.; Shih, C.-Y.; Bansal, B.M.; Wooden, J.; Nyquist, L.E.; Laul, L.C. Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth Planet. Sci. Lett. 1983, 66, 33–47. [Google Scholar] [CrossRef]
- Jessberger, E.K.; Dominik, B.; Staudacher, T.; Herzog, G.F. Ar-Ar ages of Allende. Icarus 1980, 42, 380–405. [Google Scholar] [CrossRef]
- Mason, B.; Martin, P.M. Geochemical differences among components of the Allende meteorite. In. Min. Sci. Invest. (B. Mason. Ed). Smithonian Contrib. Earth Sci. 1977, 19, 84–95. [Google Scholar]
- Dominik, B.; Jessberger, E.K.; Staudacher, T.; Nagel, K.; Goresy, A. A new type of white inclusion in Allende: Petrography, mineral chemistry, 40Ar-39Ar ages, and genetic implications. In Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1978; p. 1249. [Google Scholar]
- Jessberger, E.K.; Dominik, B. Gerontology of the Allende meteorite. Nature 1979, 277, 554–555. [Google Scholar] [CrossRef]
- Huss, G.R.; Rubin, A.E.; Grossman, J.N. Thermal metamorphism in chondrites. In Meteorites and the Early Solar System II; Lauretta, D.S., McSween, H.Y., Jr., Eds.; The University of Arizona Press: Tucson, AZ, USA, 2006; pp. 567–586. [Google Scholar]
- Mimura, K.; Okumra, F.; Harada, N. Constrains on the thermal history of the Allende (CV3) meteorite by gradual and stepwise pyrolyses of insoluble organic matter. Geochem. J. 2020, 54, 255–265. [Google Scholar] [CrossRef]
- Yanase, Y.; Wampler, J.M.; Dooley, R.E. Recoil-induced loss of 39Ar from glauconite and other clay minerals. EOS Trans. Am. Geophys. Union 1975, 56, 472. [Google Scholar]
- Smith, P.E.; Evensen, N.M.; York, D. First successful 40Ar-39Ar dating of glauconies: Argon recoil in single grains of cryptocrystalline material. Geology 1993, 21, 41–44. [Google Scholar] [CrossRef]
- Villa, I.M.; Huneke, J.C.; Wasserburg, G.J. 39Ar recoil loses and presolar ages in Allende inclusions. Earth Planet. Sci. Lett. 1983, 63, 1–12. [Google Scholar] [CrossRef]
- Takeshima, Y.; Tsujimori, T.; Hyodo, T. Electron-microprobe analyses of Allende chondrules and CAIs: Implication to the argon isotope study of carbonaceous chondrite. Bull. Res. Inst. Nat. Sci. Okayama Univ. Sci. 2004, 51–60. [Google Scholar]
Sample No. | Ol | CPX | OPX | Pl | Sp | Geh | Ne | Sod |
---|---|---|---|---|---|---|---|---|
Barred olivine chondrule | ||||||||
BOC-01 | ○ | ○ | ○ | ○ | ○ | |||
BOC-02 | ○ | ○ | ○ | |||||
BOC-03 | ○ | ○ | ○ | ? | ||||
BOC-04 | ○ | ○ | ○ | ○ | ||||
BOC-05 | ○ | ○ | ○ | ○ | ○ | |||
BOC-06 | ○ | ○ | ○ | ○ | ○ | |||
BOC-07 | ○ | ○ | ○ | ○ | ○ | |||
BOC-08 | ○ | ○ | ○ | ○ | ○ | |||
BOC-09 | ○ | ○ | ○ | |||||
BOC-10 | ○ | ○ | ○ | ○ | ○ | ○ | ||
BOC-11 | ○ | ○ | ○ | ? | ||||
Porphyritic olivine chondrule | ||||||||
POC-01 | ○ | ○ | ○ | ○ | ○ | |||
POC-02 | ○ | ○ | ○ | ○ | ○ | ○ | ||
POC-03 | ○ | ○ | ○ | ○ | ○ | ○ | ||
POC-04 | ○ | ○ | ○ | ○ | ○ | |||
POC-05 | ○ | ○ | ○ | ○ | ○ | ○ | ||
POC-06 | ○ | ○ | ○ | ○ | ○ | |||
POC-07 | ○ | ○ | ○ | ○ | ○ | ○ | ||
POC-08 | ○ | ○ | ○ | ○ | ○ | |||
POC-09 | ○ | ○ | ○ | ○ | ○ | |||
POC-10 | ○ | ○ | ○ | ○ | ○ | |||
POC-11 | ○ | ○ | ○ | ○ | ○ | |||
POC-12 | ○ | ○ | ○ | ○ | ○ | |||
POC-13 | ○ | ○ | ○ | ○ | ○ | ○ | ||
POC-14 | ○ | ○ | ○ | ○ | ||||
POC-15 | ○ | ○ | ○ | ○ | ○ | ○ | ||
POC-16 | ○ | ○ | ○ | ○ | ○ | |||
POC-17 | ○ | ○ | ○ | ○ | ○ | |||
POC-18 | ○ | ○ | ○ | ○ | ||||
POC-19 | ○ | ○ | ○ | ○ | ○ | |||
Unclassified chondrule | ||||||||
UC-01 | ○ | ○ | ○ | ○ | ○ | ○ | ||
UC-02 | ○ | ○ | ○ | ○ | ○ | |||
UC-03 | ○ | ○ | ○ | ○ | ○ | |||
Olivine fragment | ||||||||
OF-01 | ○ | ? | ○ | ? | ||||
OF-02 | ○ | ○ | ○ | ? | ||||
CAI | ||||||||
CAI-01 | ○ | ○ | ○ | |||||
CAI-02 | ○ | ○ | ○ | ○ | ? | ? |
Analitical | Sample | 36Ar | 38Ar | 39Ar | 40Ar | 40Ar/36Ar | 38Ar/36Ar | (40Ar/39Ar)a | (40Ar/39Ar)c | J value | Age | Age | Age |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Numbers | Numbers | 10−14(ccSTP) | 10−14(ccSTP) | 10−14(ccSTP) | 10−11(ccSTP) | 10+2 | 10+2 | 10+2 | 10+3 | (Ga) | (Ga) | (Ga) | |
1210A2A | BOC-06Ol(1) | 4.25 ± 0.43 | 1.22 ± 0.37 | 3.15 ± 1.21 | 2.86 ± 0.12 | 6.71 | 0.287 | 9.05 | 9.91 | 2.59 | 4.28 | 1.06 | |
1210A2B | BOC-06Ol(2) | 1.71 ± 0.46 | 3.49 ± 0.52 | 7.03 ± 1.80 | 2.55 ± 0.09 | 14.9 | 2.04 | 3.63 | 3.97 | 1.49 | 2.87 | 0.5 | |
1210A2C | BOC-06Ol(3) | 5.55 ± 0.44 | 2.35 ± 0.32 | 8.00 ± 0.17 | 14.4 | 0.424 | |||||||
1210A2D | BOC-06Ol(5) | 6.84 ± 0.40 | 3.63 ± 0.41 | 2.28 ± 4.37 | 13.5± 0.40 | 19.7 | 0.531 | 59.2 | 64.8 | 5.57 | 7.53 | 3.30 | |
1210A2E | BOC-06Meso | 10.8 ± 0.47 | 4.19 ± 0.43 | 11.0 ± 2.04 | 13.1 ± 0.44 | 12.1 | 0.386 | 11.9 | 13.1 | 2.98 | 4.74 | 1.30 | |
1210A2F | BOC-06Neph | 5.59 ± 0.56 | 2.58 ± 0.50 | 0.925 ± 2.81 | 12.1 ± 0.56 | 21.7 | 0.463 | 131 | 143 | 80.6 | 6.96 | 8.94 | 4.56 |
1210A2G | BOC-07Ol+Py | 28.4 ± 0.63 | 8.85± 0.43 | 30.0 ± 4.19 | 27.7 ± 0.89 | 9.75 | 0.311 | 9.23 | 10.1 | 2.62 | 4.32 | 1.07 | |
1210A2H | POC-13Soda | 47.6 ± 0.91 | 15.1 ± 0.85 | 48.0 ± 7.52 | 29.8 ± 0.55 | 6.26 | 0.317 | 6.21 | 6.8 | 2.10 | 3.68 | 0.79 | |
1210A2I | POC-13Neph | 27.0 ± 0.79 | 13.2 ± 0.76 | 16.5 ± 5.18 | 53.8 ± 2.27 | 19.9 | 0.487 | 32.7 | 35.7 | 3.23 | 4.56 | 6.47 | 2.45 |
1210A5A | POC-06Ol | 4.94 ± 0.50 | 4.02 ± 0.54 | 20.2 ± 2.27 | 3.41± 0.15 | 6.91 | 0.814 | 1.69 | 1.85 | 0.85 | 1.87 | 0.25 | |
1210A5B | POC-06Neph | 16.1 ± 0.71 | 9.46 ± 0.76 | 33.4 ± 7.02 | 35.8± 1.70 | 22.2 | 0.587 | 10.7 | 11.7 | 9.85 | 2.83 | 4.56 | 1.20 |
1210A5C | UC-02Soda | 57.1 ± 0.86 | 19.7 ± 1.06 | 55.5 ± 6.83 | 92.4 ± 5.62 | 16.2 | 0.345 | 16.7 | 18.2 | 3.48 | 5.31 | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeshima, Y.; Hyodo, H.; Tsujimori, T.; Gouzu, C.; Itaya, T. In Situ Argon Isotope Analyses of Chondrule-Forming Materials in the Allende Meteorite: A Preliminary Study for 40Ar/39Ar Dating Based on Cosmogenic 39Ar. Minerals 2023, 13, 31. https://doi.org/10.3390/min13010031
Takeshima Y, Hyodo H, Tsujimori T, Gouzu C, Itaya T. In Situ Argon Isotope Analyses of Chondrule-Forming Materials in the Allende Meteorite: A Preliminary Study for 40Ar/39Ar Dating Based on Cosmogenic 39Ar. Minerals. 2023; 13(1):31. https://doi.org/10.3390/min13010031
Chicago/Turabian StyleTakeshima, Yuko, Hironobu Hyodo, Tatsuki Tsujimori, Chitaro Gouzu, and Tetsumaru Itaya. 2023. "In Situ Argon Isotope Analyses of Chondrule-Forming Materials in the Allende Meteorite: A Preliminary Study for 40Ar/39Ar Dating Based on Cosmogenic 39Ar" Minerals 13, no. 1: 31. https://doi.org/10.3390/min13010031
APA StyleTakeshima, Y., Hyodo, H., Tsujimori, T., Gouzu, C., & Itaya, T. (2023). In Situ Argon Isotope Analyses of Chondrule-Forming Materials in the Allende Meteorite: A Preliminary Study for 40Ar/39Ar Dating Based on Cosmogenic 39Ar. Minerals, 13(1), 31. https://doi.org/10.3390/min13010031