Editorial for the Special Issue “Minerals of Alkaline Igneous Rocks: Chemical and Isotopic Features as Tracers of Magmatic Processes”
Funding
Acknowledgments
Conflicts of Interest
References
- Powell, R.; Holland, T. Optimal geothermometry and geobarometry. Am. Mineral. 1994, 79, 120–133. [Google Scholar]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Lowenstern, J.B. Chlorine, fluid immiscibility and degassing in peralkaline magmas from Pantelleria, Italy. Am. Mineral. 1994, 79, 353–369. [Google Scholar]
- Blundy, J.; Cashman, K. Petrologic reconstruction of magmatic systems variables and processes. Rev. Mineral. Geochem. 2008, 69, 179–239. [Google Scholar] [CrossRef]
- Collins, S.J.; Pyle, D.M.; Maclennan, J. Melt inclusions track pre-eruption storage and dehydration of magmas at Etna. Geology 2009, 37, 571–574. [Google Scholar] [CrossRef]
- Di Muro, A.; Métrich, N.; Vergani, D.; Rosi, M.; Armienti, P.; Fourgeroux, T.; Deloule, E.; Arienzo, I.; Civetta, L. The shallow plumbing system of Piton de la Fournaise volcano (La Réunion island, Indian Ocean) revealed by the major 2007 caldera forming eruption. J. Petrol. 2014, 55, 1287–1315. [Google Scholar] [CrossRef] [Green Version]
- Moretti, R.; Arienzo, I.; Di Renzo, V.; Orsi, G.; Arzilli, F.; Brun, F.; D’Antonio, M.; Mancini, L.; Deloule, E. Volatile segregation and generation of highly vesiculated explosive magmas by volatile-melt fining processes: The case of the Campanian Ignimbrite eruption. Chem. Geol. 2019, 503, 1–14. [Google Scholar] [CrossRef]
- Arienzo, I.; Moretti, R.; Civetta, L.; Orsi, G.; Papale, P. The feeding system of the Agnano-Monte Spina eruption (Campi Flegrei, Italy): Dragging the past into present activity and future scenarios. Chem. Geol. 2010, 270, 135–147. [Google Scholar] [CrossRef]
- Arienzo, I.; Mazzeo, F.C.; Moretti, R.; Cavallo, A.; D’Antonio, M. Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: The archetype of Nisida eruption. Chem. Geol. 2016, 427, 109–124. [Google Scholar] [CrossRef]
- Francalanci, L.; Davies, G.R.; Lustenhouwer, W.I.M.; Tommasini, S.; Mason, P.R.; Conticelli, S. Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of Stromboli volcano, southern Italy. J. Petrol. 2005, 46, 1997–2021. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.M.; Davidson, J.; Morgan, D.; Jerram, D.A. Using the Sr isotope compositions of feldspars and glass to distinguish magma system components and dynamics. Geology 2010, 38, 539–542. [Google Scholar] [CrossRef]
- Arienzo, I.; D’Antonio, M.; Di Renzo, V.; Tonarini, S.; Minolfi, G.; Orsi, G.; Carandente, A.; Belviso, P.; Civetta, L. Isotopic microanalysis sheds light on the magmatic endmembers feeding volcanic eruptions: The Astroni 6 case study (Campi Flegrei, Italy). J. Volcanol. Geotherm. Res. 2015, 304, 24–37. [Google Scholar] [CrossRef]
- D’Antonio, M.; Tonarini, S.; Arienzo, I.; Civetta, L.; Dallai, L.; Moretti, R.; Orsi, G.; Andria, M.; Trecalli, A. Mantle and crustal processes in the magmatism of the Campania region: Inferences from mineralogy, geochemistry, and Sr–Nd–O isotopes of young hybrid volcanics of the Ischia island (South Italy). Contrib. Miner. Petrol. 2013, 165, 1173–1194. [Google Scholar] [CrossRef]
- Iovine, R.S.; Mazzeo, F.C.; Arienzo, I.; D’Antonio, M.; Wörner, G.; Civetta, L.; Pastore, Z.; Orsi, G. Source and magmatic evolution inferred from geochemical and Sr-O-isotope data on hybrid lavas of Arso, the last eruption at Ischia island (Italy; 1302 AD). J. Volcanol. Geotherm. Res. 2017, 331, 1–15. [Google Scholar] [CrossRef]
- Pelullo, C.; Cirillo, G.; Iovine, R.S.; Arienzo, I.; Aulinas, M.; Pappalardo, L.; Petrosino, P.; Fernandez-Turiel, J.L.; D’Antonio, M. Geochemical and Sr-Nd isotopic features of the Zaro volcanic complex: Insights on the magmatic processes triggering a small-scale prehistoric eruption at Ischia island (south Italy). Int. J. Earth Sci. 2020, 109, 2829–2849. [Google Scholar] [CrossRef]
- Zellmer, G.F.; Blake, S.; Vance, D.; Hawkesworth, C.; Turner, S. Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib. Mineral. Petrol. 1999, 136, 345–357. [Google Scholar] [CrossRef]
- Bachmann, O.; Bergantz, G. The magma reservoirs that feed supereruptions. Elements 2008, 4, 17–21. [Google Scholar] [CrossRef]
- Druitt, T.H.; Costa, F.; Deloule, E.; Dungan, M.; Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 2012, 482, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Cooper, K.M.; Kent, A.J. Rapid remobilization of magmatic crystals kept in cold storage. Nature 2014, 506, 480–483. [Google Scholar] [CrossRef]
- Rubin, A.E.; Cooper, K.M.; Till, C.B.; Kent, A.J.; Costa, F.; Bose, M.; Gravley, D.; Deering, C.; Cole, J. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 2017, 356, 1154–1156. [Google Scholar] [CrossRef] [Green Version]
- Till, C.B.; Vazquez, J.A.; Stelten, M.E.; Shamloo, H.I.; Shaffer, J.S. Coexisting discrete bodies of rhyolite and punctuated volcanism characterize Yellowstone’s post-Lava Creek Tuff caldera evolution. Geochem. Geophys. Geosyst. 2019, 20, 3861–3881. [Google Scholar] [CrossRef]
- Costa, F.; Shea, T.; Ubide, T. Diffusion chronometry and the timescales of magmatic processes. Nat. Rev. Earth Environ. 2020, 1, 201–214. [Google Scholar] [CrossRef]
- Di Renzo, V.; Pelullo, C.; Arienzo, I.; Civetta, L.; Petrosino, P.; D’Antonio, M. Geochemical and Sr-Isotopic study of clinopyroxenes from Somma-Vesuvius lavas: Inferences for magmatic processes and eruptive behavior. Minerals 2022, 12, 1114. [Google Scholar] [CrossRef]
- Pelullo, C.; Iovine, R.S.; Arienzo, I.; Di Renzo, V.; Pappalardo, L.; Petrosino, P.; D’Antonio, M. Mineral-melt equilibria and geothermobarometry of Campi Flegrei Magmas: Inferences for magma storage conditions. Minerals 2022, 12, 308. [Google Scholar] [CrossRef]
- Orsi, G.; D’Antonio, M.; Civetta, L. Introduction. In Campi Flegrei—A Restless Caldera in a Densely Populated Area; Orsi, G., D’Antonio, M., Civetta, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. vii–x. [Google Scholar] [CrossRef]
- Donato, P.; De Rosa, R.; Tenuta, M.; Iovine, R.S.; Totaro, F.; D’Antonio, M. Sr-Nd isotopic composition of pyroxenes as a provenance indicator of a double-volcanic source in sands of the Ofanto River (Southern Italy). Minerals 2022, 12, 232. [Google Scholar] [CrossRef]
- Melluso, L.; de’ Gennaro, R.; Fedele, L.; Franciosi, L.; Morra, V. Evidence of crystallization in residual, Cl-F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt-trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geol. Mag. 2012, 149, 532–550. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Civetta, L.; Arienzo, I.; D’Antonio, M.; Moretti, R.; Orsi, G.; Tomlinson, E.L.; Albert, P.G.; Menzies, M. Assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib. Mineral. Petrol. 2014, 168, 1035. [Google Scholar] [CrossRef] [Green Version]
- Melluso, L.; Morra, V.; Guarino, V.; de’ Gennaro, R.; Franciosi, L.; Grifa, C. The crystallization of shoshonitic to peralkaline trachyphonolitic magmas in a H2O–Cl–F-rich environment at Ischia (Italy), with implications for the feeder system of the Campania Plain volcanoes. Lithos 2014, 210, 242–259. [Google Scholar] [CrossRef]
- D’Antonio, M.; Arienzo, I.; Di Renzo, V.; Civetta, L.; Carandente, A.; Tonarini, S. Origin and differentiation history of the magmatic system feeding the Campi Flegrei volcanic field (Italy) constrained by radiogenic and stable isotope data. In Campi Flegrei—A Restless Caldera in a Densely Populated Area; Orsi, G., D’Antonio, M., Civetta, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 125–149. [Google Scholar] [CrossRef]
- De Fino, M.; La Volpe, L.; Piccarreta, G. Magma evolution at Mount Vulture (southern Italy). Bull. Volcanol. 1982, 45, 115–126. [Google Scholar] [CrossRef]
- Melluso, L.; Morra, V.; Di Girolamo, P. The Mt. Vulture volcanic complex (Italy): Evidence for distinct parental magmas and for residual melts with melilite. Mineral. Petrol. 1996, 56, 225–250. [Google Scholar] [CrossRef]
- D’Antonio, M.; Arienzo, I.; Brown, R.J.; Petrosino, P.; Pelullo, C.; Giaccio, B. Petrography and mineral chemistry of Monte Epomeo Green Tuff, Ischia Island, South Italy: Constraints for identification of the Y-7 tephrostratigraphic marker in distal sequences of the Central Mediterranean. Minerals 2021, 11, 955. [Google Scholar] [CrossRef]
- Keller, J.; Ryan, W.B.F.; Ninkovich, D.; Altherr, R. Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geol. Soc. Am. Bull. 1978, 89, 591–604. [Google Scholar] [CrossRef]
- Calanchi, N.; Gasparotto, G.; Romagnoli, C. Glass chemistry in volcaniclastic sediments of ODP Leg 107, Site 650, sedimentary sequence: Provenance and chronological implications. J. Volcanol. Geotherm. Res. 1994, 60, 59–85. [Google Scholar] [CrossRef]
- Lourens, L.J. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the d18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 2004, 19, PA3010. [Google Scholar] [CrossRef]
- Wulf, S.; Kraml, M.; Brauer, A.; Keller, J.; Negendank, J.F.W. Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat. Int. 2004, 122, 7–30. [Google Scholar] [CrossRef]
- Bourne, A.J.; Lowe, J.J.; Trincardi, F.; Asioli, A.; Blockley, S.P.E.; Wulf, S.; Matthews, I.P.; Piva, A.; Vigliotti, L. Distal tephra record for the last ca 105,000 years from core PRAD 1–2 in the central Adriatic Sea: Implications for marine tephrostratigraphy. Quat. Sci. Rev. 2010, 29, 3079–3094. [Google Scholar] [CrossRef]
- Petrosino, P.; Arienzo, I.; Mazzeo, F.C.; Natale, J.; Petrelli, M.; Milia, A.; Perugini, D.; D’Antonio, M. The San Gregorio Magno lacustrine basin (Campania, Southern Italy): Improved characterization of the tephrostratigraphic markers based on trace elements and isotopic data. J. Quat. Sci. 2019, 34, 393–404. [Google Scholar] [CrossRef]
- Vlach, S.R.F. On the morphology and geochemistry of hydrothermal crypto- and microcrystalline zircon aggregates in a peralkaline granite. Minerals 2022, 12, 628. [Google Scholar] [CrossRef]
- Frondel, C.; Collette, R.L. Hydrothermal synthesis of zircon, thorite and huttonite. Am. Mineral. 1957, 42, 759–765. [Google Scholar]
- Valéro, R.; Durand, B.; Guth, J.-L.; Chopin, T. Hydrothermal synthesis of porous zircon in basic fluorinated medium. Microporous Mesoporous Mater. 1999, 29, 311–318. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Sun, Z.; Qin, K.; Mao, Y.; Tang, D.; Wang, F.; Evans, N.J.; Zhou, Q. Mineral chemistry of pyrochlore supergroup minerals from the Boziguoer Nb-Ta-Zr-Rb-REE deposit, NW China: Implications for Nb enrichment by alkaline magma differentiation. Minerals 2022, 12, 785. [Google Scholar] [CrossRef]
- Kamali, A.A.; Moayyed, M.; Saumur, B.M.; Fadaeian, M. Mineralogy and mineral chemistry of dioritic dykes, quartz diorite enclaves and pyroxene of the Sungun Cu-Mo porphyry deposit, East Azerbaijan, Iran. Minerals 2022, 12, 1218. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Kamali, A.A.; Moayyed, M.; Amel, N.; Hosseinzadeh, M.R.; Mohammadiha, K.; Santos, J.F.; Brenna, M. Post-mineralization, cogenetic magmatism at the Sungun Cu-Mo porphyry deposit (Northwest Iran): Protracted melting and extraction in an arc system. Minerals 2018, 8, 588. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Antonio, M.; Arienzo, I. Editorial for the Special Issue “Minerals of Alkaline Igneous Rocks: Chemical and Isotopic Features as Tracers of Magmatic Processes”. Minerals 2023, 13, 7. https://doi.org/10.3390/min13010007
D’Antonio M, Arienzo I. Editorial for the Special Issue “Minerals of Alkaline Igneous Rocks: Chemical and Isotopic Features as Tracers of Magmatic Processes”. Minerals. 2023; 13(1):7. https://doi.org/10.3390/min13010007
Chicago/Turabian StyleD’Antonio, Massimo, and Ilenia Arienzo. 2023. "Editorial for the Special Issue “Minerals of Alkaline Igneous Rocks: Chemical and Isotopic Features as Tracers of Magmatic Processes”" Minerals 13, no. 1: 7. https://doi.org/10.3390/min13010007
APA StyleD’Antonio, M., & Arienzo, I. (2023). Editorial for the Special Issue “Minerals of Alkaline Igneous Rocks: Chemical and Isotopic Features as Tracers of Magmatic Processes”. Minerals, 13(1), 7. https://doi.org/10.3390/min13010007